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Abstract: We present a method using contour integration to evaluate the definite integral of the
form

∫ ∞
0 logk(ay)R(y)dy in terms of special functions, where R(y) = ym

1+αyn and k, m, a, α and n are
arbitrary complex numbers. We use this method for evaluation as well as to derive some interesting
related material and check entries in tables of integrals.
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1. Introduction

The main purpose of this work is to establish a new method which can be used to evaluate the

integral
∫ ∞

0
ym logk(ay)

1+αyn dy in the form of a special function, where k, α, a, m and n are arbitrary complex
numbers subject to the restrictions given. This is a novel approach to these problems in mathematics
and has been used by us in [1]. This method involves using a form of the Cauchy integral formula.
Both the definite integral and special function can be written in terms of the same contour integral,
and therefore we can equate the two. This integral and its related special function form a solution
space for some well known problems investigated by Prudnikov [2] and Bierens de Haan [3], with
other integrals being possible. The integral can be thought of as a Mellin transform, which has been
extensively tabulated.

2. Simultaneous Contour Integrals

2.1. Definite Integral of the Contour Integral

We start with Cauchy’s integral Formula (1) where C is the generalized Hankel contour as
described by Reynolds and Stauffer [4].

yk

k!
=

1
2πi

∫
C

ewy

wk+1 dw, (1)

where the −1 < Re(w) < 0, Im(w) > 0, and k! is short for the Gamma function, Γ(k + 1). We replace
y by log(ay) and multiply both sides by ym

1+αyn in (2) to get the Cauchy equation

ym logk(ay)
k!(1 + αyn)

=
1

2πi

∫
C

ym+waw

(1 + αyn)wk+1 dw, (2)

Mathematics 2019, 7, 1148; doi:10.3390/math7121148 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-4230-9925
http://dx.doi.org/10.3390/math7121148
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/12/1148?type=check_update&version=2


Mathematics 2019, 7, 1148 2 of 5

where the definition of the logarithmic function is from Section 4.1 in [5]. This definition of the
logarithmic function is used throughout this paper. Then we take the definite integral over y ∈ [0, ∞)

of both sides to get

1
k!

∫ ∞

0

ym logk(ay)
1 + αyn dy =

1
2πi

∫ ∞

0

∫
C

ym+waw

(1 + αyn)wk+1 dwdy

=
1

2πi

∫
C

(∫ ∞

0

ym+w

1 + αyn dy
)

awdw
wk+1

=
1

2in

∫
C

α−
1+m+w

n aw csc
(

π(1 + m + w)

n

)
w−k−1dw,

(3)

from Equation (3.241.2) in [6]. We replace y with α1/ny and the integral is valid for α, a, n complex,
−1 < Re(w) < 0, −1 < Re(w + m) ≤ Re(n− 1).

2.2. Infinite Sum of the Contour Integral

In this section we will derive an equivalent contour integral by taking an infinite sum over p
of a transformed Cauchy integral formula. We once again start with Equation (1), replacing y with
2πip

n + πi
n + log(a)− log(α)

n . Then, we multiply both sides by − 2πiα−
m+1

n
n exp(πi(m+1)(2p+1)

n ) to yield

(−2πi)et ((2p + 1)πi
n + log(a)− log(α)

n )k

α(m+1)/nnk!
= −2πi

∫
C

et ew
(
(2p+1) πi

n +log(a)− log(α)
n

)
α(m+1)/nnwk+1

dw. (4)

We then take the infinite sum of both sides of Equation (4) with respect to p over [0, ∞), where
t = πi(m+1)(2p+1)

n to get

− 2πi
α(m+1)/nnk!

∞

∑
p=0

et
(
(2p + 1)

πi
n

+ log(a)− log(α)
n

)k
= −2πi

∞

∑
p=0

∫
C

et ew
(
(2p+1) πi

n +log(a)− log(α)
n

)
α(m+1)/nnwk+1

dw

= −2πi
∫

C

∞

∑
p=0

et ew
(
(2p+1) πi

n +log(a)− log(α)
n

)
α(m+1)/nnwk+1

dw

=
1

2in

∫
C

α−
1+m+w

n aw csc
(

π(1 + m + w)

n

)
w−k−1dw,

(5)

from (1.232.3) in [6], where csch(ix) = −i csc(x) from (4.5.10) in [5] and Im(w) > 0 for the sum to
converge; and if the Re(k) < 0, then the argument of the sum over p cannot be zero for some value of
p. The log terms cannot be combined in general.

2.3. Equating the Definite Integral and Infinite Sum

Since the right hand side of Equations (3) and (5) are equal we can equate the left hand sides of
these equations to yield

∫ ∞

0

ym logk(ay)
1 + αyn dy = − 2πi

α(m+1)/nn

∞

∑
p=0

et
(
(2p + 1)

πi
n

+ log(a)− log(α)
n

)k
. (6)

We can simplify the infinite sum on the right hand side to get

∫ ∞
0

ym logk(ay)
1+αyn dy =

eπi(m+1)/n( i
n )

k−1(2π)k+1α−(m+1)/n

n2 Φ
(

e
2πi(m+1)

n ,−k, π−in log(a)+i log(α)
2π

)
(7)

from (9.550) in [6], where Φ(r, s, u) is the Lerch function, which is a generalization of the Hurwitz zeta
function and polylogarithm function, and n is any general complex number.
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The Lerch function has a series representation given by

Φ(z, s, v) =
∞

∑
n=0

(v + n)−szn, (8)

where |z| < 1, v 6= 0,−1, . . . and is continued analytically by its integral representation given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt, (9)

where Re(v) > 0, or |z| ≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1.
Note the left-hand side of Equation (7) converges for all finite k. The integral in Equation (7) can

be interpreted as a Mellin transform by replacing m by m− 1 from Equation (17.41) in [6]. The integral
in Equation (7) can be used as an alternative method to evaluating the Lerch function. Also note that
the right-hand side is defined for all values of α so that if it is real and negative, the integral must be
considered as a principle value since there is a singularity in the integrand.

3. Special Cases of the Logarithmic Integral

In this section we use Equation (7) with various values of the parameters to yield known integral
forms. This illustrates the various forms the integral can take.

3.1. When k = −1, a = 1, n = 2n, α = 1 and m = m− 1 or m = q− 1

We get two equations where we look at their difference to yield

∫ ∞

0

ym−1 − yq−1

(1 + y2n) log(y)
dy = −2 arctanh

(
e

imπ
2n

)
+ 2 arctanh

(
e

iqπ
2n

)
, (10)

from Equation (1.643.2) in [6] and (4.6.22) in [5], where 0 < Re(m) < Re(2n) and 0 < Re(q) < Re(2n).
This result is equivalent to equation (4.267.18) in [6] and the case with n = q and some algebraic
manipulation forms the solution space for Equations (143.1), (143.2) and (143.5) in [3].

3.2. When k = −1, a = eai, α = −1, and n = 2

We consider the difference of Equation (7) with m and −m. We get, after rationalizing the
denominator, transforming the integral in (7) from the domain y ∈ [0, ∞) to [0, 1] and [1, ∞) and
replacing y by 1/y in the second integral; then, adding the two integrals over the interval [0, 1]

∫ 1

0

ym − y−m

(1− y2)(a2 + log2(y))
dy =

ime
πi(1−m)

2 Φ
(

eπi(1−m), 1, a
π

)
− i−me

πi(1+m)
2 Φ

(
eπi(1+m), 1, a

π

)
2a

. (11)

The term ym in the integral from [1, ∞) contributes to the term y−m in the integral from [0, 1] and vice
versa, where −1 < Re(m) < 1 and Re(a) > 0, which is Equation (4.282.13) in [6]. The real part of
the integral from [0, ∞) containing log(y) is equal to zero. The numerator is zero at y = 1 so that the
integral exists there in spite of the factor 1− y in the denominator.

In the proceeding sections we will use the first derivative with respect to k of Equation (7) and

c = eπi(m+1)/n( i
n )

k−1(2π)k+1α−(m+1)/n

n2 given by

∫ ∞

0

ym logk(ay) log(log(ay))
1 + αyn dy = cΦ

(
e

2πi(m+1)
n ,−k,

π − in log(a) + i log(α)
2π

)
log
(

2πi
n

)
− cΦ′

(
e

2πi(m+1)
n ,−k,

π − in log(a) + i log(α)
2π

)
,

(12)
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where Φ′(z, s, v) is the first partial derivative with respect to s of Φ(z, s, v).

3.3. When a = 1, α = 1, n = 2 and m = 0

We use Equation (12) with k = 0 to get (13) in terms of Φ and Φ′ on the right-hand side

∫ ∞

0

log(log(y))
1 + y2 dy = πΦ

(
−1, 0,

1
2

)
log(πi)− πΦ′

(
−1, 0,

1
2

)
=

π

4

(
πi + log

[
4π2Γ4( 3

4 )

Γ4( 1
4 )

])
,

(13)

from Equations (12) and (28) in [7]. This result is Equation (1) of Table 148 in [3], where this result is
in error.

3.4. When a = i, α = 1, n = 2 and m = 0

we use Equation (12) with k = 0 to get (14) in terms of Φ and Φ′ on the right-hand side, transform
the integral in (12) from the domain y ∈ [0, ∞) to [0, 1] and [1, ∞), and then substitute 1/y for y, and
add the two over the interval [0, 1] to yield

∫ 1

0

log(π2

4 + log2(y))
y2 + 1

dy = πΦ(−1, 0, 1) log(πi)− πΦ′(−1, 0, 1)−
∫ 1

0

πi
y2 + 1

dy

=
π

2
log(2),

(14)

from Equations (12) and (28) in [7]. This result is Equation (13) of Table 147 in [3]. We have also used
Equation (7) to check certain integrals tabulated in [2]. These integrals are at once more general than
in [2] since all of the parameters in (7) can be complex and the form of the integral contains extra
parameters and less general in that the denominator is linear in our work. In particular, we have
checked formulas 7, 9, 10, 11, 12 and 15 in Section 2.6.4 as well as 15, 17 and 18 of Section 2.6.5.

4. Summary

In this paper we derived a closed form solution of the powers of the logarithm function divided
by a generalized denominator in terms of the Lerch function. We then used this integral formula to
derive known results for famous integrals. Some of these integrals have been derived using other
methods involving a different contour integral. We were able to produce a closed form solution for
integrals in Bierens de Haan not previously solved. We also checked various tabulated integrals in
Prudnikov in order to verify that they are equivalent to our result. The results in this article were
numerically verified for various values, both real and imaginary, using the parameters in the integrals
from Mathematica by Wolfram.
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