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Abstract: In this paper, we present four new constructions of complex codebooks with multiplicative
characters, additive characters, and quadratic irreducible polynomials and determine the maximal
cross-correlation amplitude of these codebooks. We prove that the codebooks we constructed are
asymptotically optimal with respect to the Welch bound. Moreover, we generalize the result obtained
by Zhang and Feng and contain theirs as a special case. The parameters of these codebooks are new.
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1. Introduction

An (N, K) codebook C = {c0, c1, . . . , cN−1} is a set of N unit-norm complex vectors ci ∈ CK over
an alphabet A, where i = 0, 1, . . . , N− 1. The size of A is called the alphabet size of C. As a performance
measure of a codebook in practical applications, the maximum magnitude of inner products between a
pair of distinct vectors in C is defined by:

Imax(C) = max
0≤i 6=j≤N−1

|cicH
j |,

where cH
j denotes the conjugate transpose of the complex vector cj. To evaluate an (N, K) codebook

C, it is important to find the minimum achievable Imax(C) or its lower bound. The Welch bound [1]
provides a well known lower bound on Imax(C),

Imax(C) ≥ IW =

√
N − K

(N − 1)K
.

The equality holds if and only if for all pairs of (i, j) with i 6= j:

|cicH
j | =

√
N − K

(N − 1)K
.

A codebook C achieving the Welch bound equality is called a maximum Welch bound equality
(MWBE) codebook [2] or an equiangular tight frame [3]. MWBE codebooks are employed in
various applications including code division multiple access (CDMA) communication systems [4],
communications [2], combinatorial designs [5–7], packing [8], compressed sensing [9], coding
theory [10–12], and quantum computing [13]. To our knowledge, only the following MWBE codebooks
have been presented as follows:

• (N, N) orthogonal MWBE codebooks for any N > 1 [2,7];
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• (N, N − 1) MWBE codebooks for N > 1 based on discrete Fourier transformation matrices [2,7]
or m-sequences [2];

• (N, K) MWBE codebooks from conference matrices [8,14], where N = 2K = 2d+1 for a positive
integer d or N = 2K = pd + 1 for a prime p and a positive integer d;

• (N, K) MWBE codebooks based on (N, K, λ) difference sets in cyclic groups [7] and abelian
groups [5,6];

• (N, K) MWBE codebooks from (2, k, ν)-Steiner systems [15];
• (N, K) MWBE codebooks dependent on graph theory and finite geometries [16–19].

The construction of an MWBE codebook is known to be very hard in general, and the known
classes of MWBE codebooks only exist for very restrictive N and K. Many research works have been
done instead to construct near optimal codebooks, i.e., codebook C whose Imax(C) nearly achieves
the Welch bound. In [2], Sarwate gave some nearly optimal codebooks from codes and signal sets.
As an extension of the optimal codebooks based on difference sets, various types of near optimal
codebooks based on almost difference sets, relative difference sets, and cyclotomic classes have been
proposed; see [5,20–23]. Near optimal codebooks constructed from binary row selection sequences
were presented in [24,25]. In [26–30], some near optimal codebooks were constructed via Jacobi sums
and a hyper Eisenstein sum.

In [31], Mohades and Tadaion combined a Reed–Solomon generator matrix with itself by the
tensor product and employed this generated matrix to construct a complex measurement matrix.
They proved that this matrix is asymptotically optimal according to the Welch bound. In this paper,
we use additive characters and multiplicative characters to construct four new codebooks, and we
determine the maximal cross-correlation amplitude of these codebooks by the properties of characters
and character sums. Moreover, we generalize the result in [21] and contain the result in [21] as a special
case. All of these codebooks we constructed are new and near optimal according to the Welch bound.
As a comparison, in Table 1, we list the parameters of some known classes of near optimal codebooks
and the parameters of ours.

This paper is organized as follows. In Section 2, we recall some notations and basic results that
will be needed in our discussion. In Section 3, we present our four constructions of near optimal
codebooks. In Section 4, we give the conclusion.
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Table 1. The parameters of codebooks asymptotically meeting the Welch bound.

Parameters (N, K) Imax IWelch References

(pn, K)
with odd p, where K =

p−1
2p (pn + pn/2) + 1

(p+1)pn/2

2pK

√
pn−K

(pn−1)K [24]

(q2, (q−1)2

2 ), q = ps with odd p q+1
(q−1)2 (q− 1)

√
q2+2q−1

q2−1 [21]

q(q + 4), (q+3)(q+1)
2 , q is a prime power 1

q+1

√
q2+4q−3

(q2+4q−1)(q+3)(q+1) [32]

q, q−1
2 , q is a prime power

√
q+1

q−1

√
q+1

q−1 [32]

(pn − 1, pn−1
2 ) with odd p

√
pn+1

pn−1
1√

pn−1
[25]

(ql + ql−1 − 1, ql−1) for any l > 2 1√
ql−1

√
ql−1

(ql+ql−1−1)ql−1 [23]

((q− 1)k + qk−1, qk−1),
for any k > 2 and q ≥ 4

√
qk+1

(q−1)k+(−1)k+1

√
(q−1)k

((q−1)k+qk−1−1)qk−1 [26]

((q− 1)k + K, K), for any k > 2,

where K =
(q−1)k+(−1)k+1

q

√
qk−1

K

√
(q−1)k

((q−1)k+K−1)K [26]

((qs − 1)n + K, K), for any s > 1 and n > 1, √
qsn+1

(qs−1)n+(−1)n+1

√
(qs−1)n

((qs−1)n+K−1)K
[28]

where K =
(qs−1)n+(−1)n+1

q

((qs − 1)n + qsn−1, qsn−1), for any s > 1 and n > 1
√

qsn+1

(qs−1)n+(−1)n+1

√
(qs−1)n

((qs−1)n+qsn−1−1)qsn−1 [28]

(q− 1, q(r−1)
2r ), r = pt, q = rs, with odd p and ps

√
r√

q(
√

r−1)

√
qr−2r+q

q(q−2)(r−1) [33]

(q2, q(q+1)(r−1)
2r ), r = pt, q = rs, with odd p (r+1)q

2rK

√
2rq−(q+1)(r−1)
(q+1)2(q−1)(r−1) [33]

((q− 1)q2, (q− 1)q), q is a prime power 1
q−1

√
q−1

q3−q2−1 [34]

(q− 1, q−1
m − 1), q = pt with odd p, m | q− 1 ≤ (m−1)

√
q+1

q−1−m

√
(m−1)q+1

(q−2)(q−1−m)
this paper

(q, q−1
m ), q = pt with odd p, m | q− 1 ≤ (m−1)

√
q+1

q−1

√
(m−1)q+1

q−1 this paper

(q1q2, (q1−1)(q2−1)
m ), qi = pt

i with odd pi, ≤ (m−1)
√

q1q2+1
(q1−1)(q2−1)

√
(m−1)q1q2+q1+q2−1
(q1q2−1)(q1−1)(q2−1)

this paperm | qi − 1, i = 1, 2

(q− 1, q−1
2 ), q = pt with odd p ≤ 2

√
q

q−1
1√
q−2

this paper

(q− 1, q−3
2 ), q = pt with odd p ≤ 2

√
q

q−3

√
q+3

(q−2)(q−3) this paper

2. Preliminaries

In this paper, we set q o be a power of a prime p and Fq to be a finite field with q elements. For a
set E, #E denotes the cardinality of E.

In this section, we introduce some basic results on characters and character sums over finite fields,
which will play important roles in the construction of codebooks.

2.1. Characters over Finite Fields

Let Fq be a finite field. In this subsection, we recall the definitions of the additive and multiplicative
characters of Fq.

For each a ∈ Fq, an additive character of Fq is defined by the function λa(x) = ζ
Trq/p(ax)
p , where

ζp is a primitive p−th root of complex unity and Trq/p(·) is the trace functions from Fq to Fp. By the
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definition, λa(x) = λ1(ax). When a = 0, we call λ0 the trivial additive character of Fq. When a = 1,
we call λ1 the canonical additive character of Fq. Let F̂q be the set of all additive characters of Fq.
The orthogonal relation of additive characters (see [35]) is given by:

∑
x∈Fq

λa(x) =

{
q, if a = 0,
0, otherwise.

As in [35], the multiplicative characters of Fq are defined as follows. For j = 0, 1, . . . , q− 2, the
functions ϕj defined by:

ϕj(α
i) = ζ

ij
q−1,

are all the multiplicative characters of Fq, where α is a primitive element of F∗q , and 0 ≤ i ≤ q− 2. If
j = 0, we have ϕ0(x) = 1 for any x ∈ F∗q , and ϕ0 is called the trivial multiplicative character of Fq. Let

F̂∗q be the set of all the multiplicative characters of F∗q .
Let ϕ be a multiplicative character of Fq. The orthogonal relation of multiplicative characters

(see [35]) is given by:

∑
x∈F∗q

ϕ(x) =

{
q− 1, if ϕ = ϕ0,
0, otherwise.

2.2. Character Sums over Finite Fields

2.2.1. Gauss Sum

Let ϕ be a multiplicative character of Fq and χ an additive character of Fq. Then, the Gauss sum
over Fq is given by:

G(ϕ, χ) = ∑
x∈F∗q

ϕ(x)χ(x).

For simplicity, we write G(ϕ, χ1) over Fq simply as g(ϕ). It is easy to see that the absolute value
of G(ϕ, χ) is at most q− 1, but is much smaller in general. The following lemma shows all the cases.

Lemma 1. ([35], Theorem 5.11) Let ϕ be a multiplicative character and χ an additive character of Fq. Then, the
Gauss sum G(ϕ, χ) over Fq satisfies:

G(ϕ, χ) =


q− 1, if ϕ = ϕ0, χ = χ0,
−1, if ϕ = ϕ0, χ 6= χ0,
0, if ϕ 6= ϕ0, χ = χ0.

For ϕ 6= ϕ0 and χ 6= χ0, we have |G(ϕ, χ)| = √q.

2.2.2. Jacobi Sum

The definition of a multiplicative character ϕ can be extended as follows.

ϕ(0) =

{
1, if ϕ = ϕ0,
0, if ϕ 6= ϕ0.

Let ϕ1 and ϕ2 be multiplicative characters of Fq. The sum:

J(ϕ1, ϕ2) = ∑
c1+c2=1,c1,c2∈Fq

ϕ1(c1)ϕ2(c2)

is called a Jacobi sum in Fq.
The values of Jacobi sums are given as follows.
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Lemma 2. ([35], Theorem 5.19, Theorem 5.20) For the values of Jacobi sums, we have the following results.

(1) If ϕ1 and ϕ2 are trivial, then J(ϕ1, ϕ2) = q.
(2) If one of ϕ1 and ϕ2 is trivial, the other is nontrivial, J(ϕ1, ϕ2) = 0.
(3) If ϕ1 and ϕ2 are both nontrivial and ϕ1 ϕ2 is nontrivial, then |J(ϕ1, ϕ2)| =

√
q.

(4) If ϕ1 and ϕ2 are both nontrivial and ϕ1 ϕ2 is trivial, then |J(ϕ1, ϕ2)| = 1.

2.3. A General Construction of Codebooks

There are two steps in the construction of the codebooks. In the first step, we need a set D, which
determines the length of the vectors. In the second step, we choose a set of functions from D for the
unit circle, which determine the number of vectors.

Let D be a set and K = #D. Let E be a set of some functions that satisfy:

f : D → S, where S is the unit circle.

A general construction of codebooks is stated as follows in the complex plane,

C(D; E) = {c f :=
1√
K
( f (x))x∈D | f ∈ E}.

3. Four Constructions of Near Optimal Codebooks

In this section, by multiplicative characters, additive characters, Gauss sums, and Jacobi sums, we
construct four new series of codebooks.

3.1. The First Construction of Codebooks

In this section, we propose a construction of codebooks by the group of multiplicative characters
of Fq and a set D1 derived by the multiplicative character of order m. The construction was inspired
by [21], and we generalized the quadratic multiplicative character of a finite field to the multiplicative
character of order m.

Let q = pt, where p is an odd prime number and t ≥ 1 is a positive integer. Let ϕ be the
multiplicative character of order m of Fq, where m|q− 1. Let:

D1 := {x ∈ F∗q | ϕ(x + 1) = 1},

Then, K = #D1 = q−1
m − 1.

A codeword of length K is defined as:

cχ =
1√
K
(χ(x))x∈D1 ,

where χ ∈ F̂∗q .
Then, we construct the following (N, K) codebook C(D1) as:

C(D1) = {
1√
K
(χ(x))x∈D1 | χ ∈ F̂∗q}.

It is easy to see that N = q− 1.
We set:

δ1(x) =

{
1+ϕ(x+1)+...+ϕm−1(x+1)

m , if x ∈ F∗q and x 6= −1,
0, if x = −1;

through the definition of D1, we known that:



Mathematics 2019, 7, 1144 6 of 13

δ1(x) =

{
1, if x ∈ D1,
0, otherwise.

Lemma 3. With the above notation, we have:

Imax(C(D1)) ≤
(m− 1)

√
q + 1

q− 1−m
.

Proof. For any characters χi and χj in F̂∗q , where 1 ≤ i 6= j ≤ q− 1, we have:

K(cχi c
H
χj
)

= K 1√
K
(χi(x))x∈D1

1√
K
(χj(x))H

x∈D1

= ∑x∈D1
χi(x)χj(x) = ∑x∈D1

χ(x), (where χ = χiχj)

= ∑x∈F∗q χ(x)δ1(x)

= ∑x∈F∗q ,x 6=−1 χ(x) 1+ϕ(x+1)+...+ϕm−1(x+1)
m

= 1
m [∑x∈F∗q χ(x) + ∑x∈F∗q χ(x)ϕ(x + 1) . . . + ∑x∈F∗q χ(x)ϕm−1(x + 1)]− 1

m χ(−1)
= 1

m [∑x∈F∗q χ(x) + ∑x∈F∗q χ(−x)ϕ(−x + 1) + . . . + ∑x∈F∗q χ(−x)ϕm−1(−x + 1)]− 1
m χ(−1)

= 1
m χ(−1)[∑x∈F∗q χ(x) + ∑x∈F∗q χ(x)ϕ(1− x) + . . . + ∑x∈F∗q χ(x)ϕm−1(1− x)]− 1

m χ(−1)
= 1

m χ(−1)[J(χ, ϕ) + . . . + J(χ, ϕm−1)− 1],

the equations hold since ∑x∈F∗q χ(x) = 0, where χ is a nontrivial character as χi 6= χj. By the results in

Lemma 2, we get |J(χ, ϕi)| = √q, 1 ≤ i ≤ m− 1, so |[J(χ, ϕ) + . . . + J(χ, ϕm−1)− 1]| ≤ (m− 1)
√

q + 1.
It follows that:

Imax(C(D1)) = max{|cχi c
H
χj
| : 1 ≤ i 6= j ≤ q− 1}

≤ (m−1)
√

q+1
q−1−m .

Remark 1. (1) Since N = q− 1 and K = q−1
m − 1 in this construction, the corresponding Welch bound is:

IWelch =

√
N − K

(N − 1)K
=

√
(m− 1)q + 1

(q− 2)(q− 1−m)
.

Thus,
Imax(C(D1))− IWelch → 0,

and:

1 ≤ Imax(C(D1))

IWelch
≤
√

m− 1,

as q→ ∞.
(2) When m = 2, we get Imax(C(D1))

IWelch
= 1, when q→ ∞, which is similar to the first construction in [21].

3.2. The Second Construction of Codebooks

In this section, we propose a construction of codebooks by the group of additive characters and
a set D2 derived by the multiplicative character of order m. In the first construction, we use the
multiplicative characters, which lead to the Jacobi sums. In this section, we use the additive characters,
which will lead to Gauss sums.
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Let q = pt, where p is an odd prime number and t ≥ 1 is a positive integer. Let ϕ be the
multiplicative character of order m of Fq, where m|q− 1. Let:

D2 := {x ∈ F∗q | ϕ(x) = 1}.

Then, K = #D2 = q−1
m .

A codeword of length K is defined as:

cλ =
1√
K
(λ(x))x∈D2 .

where λ ∈ F̂q.
Then, we construct the following (N, K) codebook C(D2) as:

C(D2) = {
1√
K
(λ(x))x∈D2 | λ ∈ F̂q}.

It is easy to see that N = q.
Let:

δ2(x) =
1 + ϕ(x) + . . . + ϕm−1(x)

m
, x ∈ F∗q

Through the definition of D2, we known that:

δ2(x) =

{
1, if x ∈ D2,
0, otherwise.

Theorem 1. With the above notation, we have:

Imax(C(D2)) ≤
(m− 1)

√
q + 1

q− 1
.

Proof. For any characters λi and λj in F̂q, where 0 ≤ i 6= j ≤ q− 1, we have:

K(cλi c
H
λj
)

= ∑x∈D2
λi(x)λj(x) = ∑x∈D2

λ(x),
(where λ = λiλj)

= ∑x∈F∗q λ(x)δ2(x)

= ∑x∈F∗q λ(x) 1+ϕ(x)+...+ϕm−1(x)
m

= 1
m [∑x∈F∗q λ(x) + ∑x∈F∗q λ(x)ϕ(x) . . . + ∑x∈F∗q λ(x)ϕm−1(x)]

= 1
m [−1 + G(ϕ, λ) + . . . + G(ϕ, λm−1)],

and the last equation holds since ∑x∈F∗q λ(x) = −1, where λ is a nontrivial character as λi 6= λj.

By the results in Lemma 1, we get |G(ϕ, λi)| = √q, 1 ≤ i ≤ m− 1, then:

Imax(C(D2)) = max{|cλi c
H
λj
| : 0 ≤ i 6= j ≤ q− 1}

≤ (m−1)
√

q+1
q−1 .
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Remark 2. (1) Since N = q and K = q−1
m in this construction, the corresponding Welch bound is:

IWelch =

√
N − K

(N − 1)K
=

√
(m− 1)q + 1

q− 1
.

Thus,
Imax(C(D2))− IWelch → 0,

and:

1 ≤ Imax(C(D2))

IWelch
≤
√

m− 1,

as q→ ∞.
(2) When m = 2, we get Imax(C(D2))

IWelch
= 1 when q→ ∞.

3.3. The Third Construction of Codebooks

In this section, we propose a construction of codebooks by the group of additive characters
of Fq1 ⊕ Fq2 and a set D3 derived by the multiplicative characters of order m. We generalized the
quadratic multiplicative character of a finite field in [21] to the multiplicative character of order m, and
we contain the second construction in [21] as a special case. The third construction seems very close
to [27,29]; however, the set D in our construction is defined by multiplicative characters, and the sets
in their construction are defined by trace functions.

Let q1 = pt1
1 , q2 = pt2

2 , where p1, p2 are odd primes and t1, t2 ≥ 1 are positive integers. Let
R = Fq1 ⊕ Fq2 , R∗ = F∗q1

⊕ F∗q2
. Let ϕ1 and ϕ2 be the multiplicative character of order m of Fq1 and Fq2 ,

respectively, where m|(q1 − 1, q2 − 1). The character group of the additive group R = Fq1 ⊕ Fq2 is:

R̂ = {λb : b = (b1, b2) ∈ R},

where λb(x) = λb1(x1)λb2(x2), for x = (x1, x2) ∈ R.
We set:

D3 = {x = (x1, x2) ∈ R∗ | ϕ1(x1)ϕ2(x2) = 1}.

Then, K = #D3 = (q1−1)(q2−1)
m .

A codeword of length K is defined as:

cb =
1√
K
(λb(x))x∈D3 .

where b ∈ R.
Then, we construct the following (N, K) codebook C(D3) as:

C(D3) = {cb =
1√
K
(λb(x))x∈D3 | b ∈ R}.

It is easy to see that N = q1q2.
We set:

δ3(x) =
1 + ϕ1(x1)ϕ2(x2) + . . . + ϕm−1

1 (x1)ϕm−1
2 (x2)

m
,

where x ∈ R∗ through the definition of D3, we known that:

δ3(x) =

{
1, if x ∈ D3,
0, otherwise.
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Theorem 2. With the above notation, we have:

Imax(C(D3)) ≤
(m− 1)

√
q1q2 + 1

m
.

Proof. For any characters λi and λj in R̂, where λi 6= λj, we have:

K(cλi c
H
λj
)

= ∑
x∈D3

λi(x)λj(x) = ∑
x∈D3

λb(x) = ∑
x∈R∗

λb(x)δ3(x) (where λb = λiλj)

= ∑
x∈R∗

λb1(x1)λb2(x2)
1 + ϕ1(x1)ϕ2(x2) + . . . + ϕm−1

1 (x1)ϕm−1
2 (x2)

m

=
1
m
[ ∑
x1∈F∗q1

λb1(x1) ∑
x2∈F∗q2

λb2(x2) + ∑
x1∈F∗q1

λb1(x1)ϕ1(x1) ∑
x2∈F∗q2

λb2(x2)ϕ2(x2)

+ . . . + ∑
x1∈F∗q1

λb1(x1)ϕm−1
1 (x1) ∑

x2∈F∗q2

λb2(x2)ϕm−1
2 (x2)],

since λi 6= λj, λb is a nontrivial character, which means not both b1 and b2 are equal to zero.
By the orthogonal relation of additive characters, we get:

∑
xi∈F∗qi

λbi
(xi) =

{
qi − 1, for bi = 0,
−1, for bi 6= 0.

(1)

and:

∑
xi∈F∗qi

λbi
(xi)ϕk

i (xi) = G(ϕk
i , λbi

) =

{
0, for bi = 0,
√

qi, for bi 6= 0,
(2)

where i = 1, 2 and 0 ≤ k ≤ m− 1.
It follows that:

mKCC·H =


1− q1, for b1 = 0, b2 6= 0

1− q2, for b1 6= 0, b2 = 0
1 + G1(ϕ1, λb1)G2(ϕ2, λb2) + . . .
+G1(ϕm−1

1 , λb1)G2(ϕm−1
2 , λb2), for b1 6= 0, b2 6= 0.

(3)

Thus:

Imax(C(D3)) = max{|cλi c
H
λj
| : 0 ≤ i 6= j ≤ q− 1}

≤
(m− 1)

√
q1q2 + 1

(q1 − 1)(q2 − 1)
.

Remark 3. (1) Since N = q1q2 and K = (q1−1)(q2−1)
m in this construction, the corresponding Welch bound is:

IWelch =

√
N − K

(N − 1)K
=

√
(m− 1)q1q2 + q1 + q2 − 1
(q1q2 − 1)(q1 − 1)(q2 − 1)

.



Mathematics 2019, 7, 1144 10 of 13

Thus,
Imax(C(D2))− IWelch → 0,

and:

1 ≤ Imax(C(D2))

IWelch
≤
√

m− 1,

as q1, q2 → ∞ and |q1 − q2| = O(1).
(2) When m = 2, we get Imax(C(D3))

IWelch
= 1, when q1, q2 → ∞ and |q1 − q2| = O(1), which is similar to

the second construction in [21].

3.4. The Fourth Construction of Codebooks

In this section, we propose a construction of codebooks by the group of multiplicative characters
and a set D4 derived by the quadratic character and a quadratic irreducible polynomial.

Let q = pt, where p is an odd prime number and t is a positive integer. Let η be the quadratic
character of Fq. Let f (x) = x2 + a1x + a0 ∈ Fq[x] be a quadratic irreducible polynomial. We set:

D4 := {x ∈ F∗q | η( f (x)) = 1},

and #D4 = K.

Lemma 4. ([35], Theorem 5.48) Let f (x) = a2x2 + a1x + a0 ∈ Fq[x] with q odd and a2 6= 0. Put b =

a2
1 − 4a2a0, and let η be the quadratic character of Fq. Then:

∑
c∈Fq

η( f (c)) =

{
−η(a2), if d 6= 0,
(q− 1)η(a2), if d = 0.

Lemma 5. With the above notations, we get:

K =

{
q−1

2 , if η(a0) = −1,
q−3

2 , if η(a0) = 1.

Proof. Let K1 = #{x ∈ F∗q : η( f (x)) = 1}. Since f is irreducible, we get:

K + K1 = q− 1.

On the other hand, by Lemma 4, it is easy to see:

K− K1 + η(a0) = K− K1 + η( f (0)) = ∑
c∈Fq

η( f (c)) = −η(1) = −1.

The result then follows.

A codeword of length K is defined as:

cχ =
1√
K
(χ(x))x∈D4 .

where χ ∈ F̂∗q .
Then, we construct the following (N, K) codebook C(D4) as:

C(D4) = {
1√
K
(χ(x))x∈D4 | χ ∈ F̂∗q},

and it is easy to see N = q− 1.
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Let:

δ4(x) =
1 + η( f (x))

2
.

Through the definition of D4, we known that:

δ4(x) =

{
1, if x ∈ D4,
0, otherwise.

Theorem 3. With the above notation, we have:

Imax(C(D4)) ≤
√

q
K

=


2
√

q
q−1 , if η(a0) = −1,
2
√

q
q−3 , if η(a0) = 1.

Proof. For any characters χi and χj in F̂∗q , where 1 ≤ i 6= j ≤ q− 1, let χ = χiχj, then we have:

K(cχi c
H
χj
)

= ∑
x∈D4

χi(x)χj(x) = ∑
x∈D4

χ(x) = ∑
x∈F∗q

χ(x)δ4(x) (where χ = χiχj)

= ∑
x∈F∗q

χ(x)
1 + η( f (x))

2

=
1
2 ∑

x∈F∗q
χ(x) +

1
2 ∑

x∈F∗q
χ(x)η( f (x))

=
1
2 ∑

x∈F∗q
χ(x)η( f (x)).

By the result in Lemma 6, we get:

| ∑
x∈F∗q

χ(x)η( f (x))| ≤ (3− 1)
√

q = 2
√

q

Then:

Imax(C(D4)) ≤
√

q
K

=


2
√

q
q−1 , if η(a0) = −1,
2
√

q
q−3 , if η(a0) = 1.

Lemma 6. ([36]) Let f1(x), . . . , fh(x) be h monic, distinct, and irreducible polynomials in Fq[x], which have
the positive degrees d1, . . . , dh, respectively. Let d be the number of distinct roots of f (x) = ∏h

i=1 fi(x) in its
splitting field over Fq. Let ψ1, . . . , ψh be the multiplicative characters of Fq. Assume that the product character
∏h

i=1 ψi( fi(x)) is nontrivial for some x ∈ Fq. Then, for every ai ∈ F∗q , i = 1, . . . , h,

| ∑
x∈Fq

ψ1(a1 f1(x)), . . . , ψh(ah fh(x))| ≤ (d− 1)
√

q.

Remark 4. Since N = q− 1, combining the result in Lemma 5 about K, the corresponding Welch bound is:

IWelch =


1√
q−2

, if η(a0) = −1,√
q+3

(q−2)(q−3) , if η(a0) = 1.
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Thus,
Imax(C(D4))− IWelch → 0,

and:

lim
q→∞

Imax(C(D2))

IWelch
= 2.

4. Concluding Remarks

In this paper, we proposed four constructions of codebooks and determined the maximum
cross-correlation amplitude of codebooks generated by these four constructions. We verified that the
codebooks generated by these four constructions were asymptotically optimal with respect to the
Welch bound. Notably, the parameters of our codebooks were new and flexible. The technique of our
paper was the properties of the Gauss sum, Jacobi sum, and some conclusions about the upper bound
of the multiplicative characters acting on irreducible polynomials. The parameters of our codebooks
were flexible and new, and the p in our constructions could be any odd prime.
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