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Abstract: Many basic laws of physics or chemistry can be written in the form of differential equations.
With the development of digital signals and computer technology, the research on discrete models
has received more and more attention. The estimates of the unknown coefficients in the discretized
difference equation can be obtained by optimizing certain criterion functions. In modern control
theory, the state-space model transforms high-order differential equations into first-order differential
equations by introducing intermediate state variables. In this paper, the parameter estimation
problem for linear difference equation systems with uncertain noise is developed. By transforming
system equations into state-space models and on the basis of the considered priors of the noise and
parameters, a variational Bayesian iterative estimation algorithm is derived from the observation
data to obtain the parameter estimates. The unknown states involved in the variational Bayesian
algorithm are updated by the Kalman filter. A numerical simulation example is given to validate the
effectiveness of the proposed algorithm.

Keywords: iterative algorithm; variational Bayesian; parameter estimation; Kalman filter

1. Introduction

Differential equations arise in many instances when using the mathematical models to describe
phenomena in economics, engineering, biology, etc. [1,2]. Considering the following nth-order linear
differential equation with zero initial conditions

y(n)k +α1y(n−1)
k + α2y(n−2)

k + · · ·+ αn−1y(1)k + αnyk

= β1u(n−1)
k + β2u(n−2)

k + · · ·+ βn−1u(1) + βnuk,
(1)

where yk is the system output, uk is the system input, k is the time variable, αi and βi are the unknown
real parameters. Each derivative symbol is defined as

y(i)k =
diyk

dik
, y(2)k =

d2yk
d2k

= ÿk, y(1)k =
dyk
dk

= ẏk,

u(i)
k =

diuk

dik
, u(2)

k =
d2uk
d2k

= ük, u(1)
k =

duk
dk

= u̇k.

Although the laws of the systems are continuously evolved over time, the sampled values of
the systems are always discretized. In order to obtain the estimates of the unknown parameters in
the system mathematical models, there are usually two approaches to further process the differential
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equation models. One is called the frequency-domain analysis methods, and the other is called the
time-domain analysis methods [3–6].

For linear continuous systems, Laplace transform of Equation (1) under zero initial conditions is
given by

(sn−1 + α1sn−1 + α2sn−2 + · · ·+ αn−1s + αn)Y(s) = (β1sn−1 + β2sn−2 + · · ·+ βn−1s + βn)U(s),

where the variable s is the laplace operator, Y(s) and U(s) are the Laplace transform of yk and uk:
Y(s) := L[yk], U(s) := L[uk]. Then the transfer function of the system is written as

G(s) :=
Y(s)
U(s)

=
β1sn−1 + β2sn−2 + · · ·+ βn−1s + βn

sn−1 + α1sn−1 + α2sn−2 + · · ·+ αn−1s + αn
.

So the output equation can be further expressed as

Y(s) = G(s)U(s).

The system will be excited by designing different input signals to obtain different output
responses. The parameters of the system are further obtained according to the analysis of the output
responses [7–9]. By using the Laplace transform, the transfer function is one of the most important
mathematical models in control theory. Under the zero initial conditions, the Laplace transform of the
system output divided by the Laplace transform of the system input is called the transfer function.
However, the transfer function is only suitable for describing linear constant coefficient differential
equation systems.

In the time-domain analysis method, the system is represented in discrete time and the sampling
interval is assumed to be one time unit. In this case, the discrete-time operator equations or difference
equations are necessary [10–13]. A typical controlled autoregressive difference equation is written as

yk + a1yk−1 + a2yk−2 + · · ·+ anyk−n = b1uk−1 + b2uk−2 + · · ·+ bnuk−n.

Then the output yk can be further written as a form of determining the next value for given
previous observations:

yk =−a1yk−1 − a2yk−2 − · · · − anyk−n + b1uk−1 + b2uk−2 + · · ·+ bnuk−n
= ψT

kϑ,
(2)

where

ψk := [−yk−1,−yk−2, . . . ,−yk−n, uk−1, uk−2, . . . , uk−n]
T ∈ R2n,

ϑ := [a1, a2, . . . , an, b1, b2, . . . , bn]
T ∈ R2n.

From Equation (2), it is easy to find that the calculation of yk from past data depends on the
parameters in ϑ. Call the calculated value ŷk|ϑ and write

ŷk|ϑ = ψT
kϑ.

The solution of obtaining the estimates of the parameters is to optimize a criterion function.
The effective estimates make the prediction error ε(k, ϑ) = yk − ŷk|ϑ as small as possible. Given a batch
of inputs and outputs over a time interval 1 ≤ k ≤ N:
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ZN = [u1, y1, u2, y2, . . . , uN , yN ].

The quadratic criterion function is defined as [14]:

VN(ϑ, ZN) =
1
N

N

∑
k=1

[yk − ŷk|ϑ]
2.

The process of computing the estimate ϑ̂N is the process of finding the solution of the following
optimization problem:

ϑ̂N = argmin
ϑ

VN(ϑ, ZN),

where ‘argmin
ϑ

’ represents the value of the considered parameter vector when the objective function

takes the minimum value. The classical least squares-based and gradient descent-based numerical
methods have been applied to search the estimates of the parameters by minimizing the criterion
function [15–18]. For example, Xu et al. developed a least squares-based iterative parameter estimation
algorithm for dynamic systems based on the parameter decomposition by using the hierarchical
identification principle [19].

However, the gradient and least squares-based iterative algorithm only obtain the point estimates
of parameters based on the known noise variance. They minimize a cost function on the parameter
vector and then obtain the estimate of the parameter vector. Different from the stochastic gradient
and least squares algorithm, the variational Bayesian (VB) algorithm needs the priors of parameters
and then iteratively updates the posterior expression of the parameters by maximizing the lower
bound marginal likelihood function [20,21]. The VB algorithm can obtain the distributions of the
unknown parameters rather than the point estimates. For example, Yang and Yin applied the VB
inference to estimate the parameters of finite impulse response (FIR) systems with randomly missing
output data [22].

In this paper, the difference equation is further transformed to the state-space model. In modern
control theory, the state-space model is widely used to describe the dynamics of systems, because it can
not only reflect the internal states of systems but also reveals the relationship between the intermediate
states and the external input and output variables [23–28]. A general linear state-space model

x1,k+1
x2,k+1

...
xn,k+1

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann




x1,k
x2,k

...
xn,k

+


b1

b2
...

bn

uk,

yk = [c1, c2, · · · , cn]


x1,k
x2,k

...
xn,k

+ vk,

where yk is the system output, uk is the system input, vk is the random noise, and xi,k is the
unmeasurable internal state, which establishes the link between system internal information and
external measurements is presented. However, state estimation brings difficulty to the parameter
estimation [29]. For linear Gaussian systems, the Kalman filter can achieve optimal estimation
performance with a small amount of computational load, which is usually the preferred method
of the state estimation for state-space models [30–32].
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Based on the previous iterative identification schemes [33–36], this paper concerns a VB-based
iterative estimation algorithm for difference equation models with unknown measurement noise.
Different from the work studied in [37], which used an open-loop state observer to roughly calculate
the system states without considering the effect of measurement noise in the procedure of states
estimation, this paper considers the problem of state estimation by using the Kalman filter. The main
contributions of this paper are as follows.

• By defining internal state variables, the difference equation model is rewritten in the form of the
state-space model.

• A Kalman filter based VB (VB-KF) estimation algorithm is provided to estimate both the model
states and parameters interactively. Based on the estimated states, the VB algorithm calculates the
system parameters and the noise variance. Then the states are updated by means of the Kalman
filter with new obtained parameters and noise variance.

• Different from the existing point parameter estimation methods, the proposed algorithm can
give the distributions of the system parameters and noise variance to reflect the uncertainties of
their estimates.

The remainder of this paper is organized as follows. Section 2 introduces the state-space model.
Section 3 derives a VB iterative algorithm to estimate the unknown parameters of the systems by using
the Kalman filter. The simulation is presented in Section 4 to verify the proposed method. Section 5
gives some conclusions.

2. Transformation of the Difference Equation

Reconsidering a general nth-order difference equation in Equation (2), in order to transform the
difference equation to the state-space model, n state variables are needed. The choices of the state
variables are not unique; they can be measurable or unmeasurable. Usually, the state variables which
can help to convert the state equation into a standard form are selected as the intermediate states. Here,
we introduce n state variables as follows:

x1,k = yk,
x2,k = yk+1 − b1uk,
x3,k = yk+2 − b1uk+1 − b2uk,
x4,k = yk+3 − b1uk+2 − b2uk+1 − b3uk,

...
xn−1,k = yk+n−2 − b1uk+n−3 − b2uk+n−4 − · · · − bn−2uk,
xn,k = −anyk−1 − an−1(yk − b1uk−1)− an−2(yk+1 − b1uk − b2uk−1) + · · ·

−a1(yk+n−2 − b1uk+n−3 − b2uk+n−4 − · · · − bn−2uk − bn−1uk−1) + bnuk.

(3)

Further, replacing the time variable k with k + 1 on both sides of Equation (3) gives the
following equations:

x1,k+1 = yk+1 = x2,k + b1uk,
x2,k+1 = yk+2 − b1uk+1 = x3,k + b2uk,

...
xj,k+1 = yk+j − b1uk+j−1 − · · · − bj−1uk+1 = xj+1,k + bjuk,

...
xn−1,k+1 = xn,k + bn−1uk,
xn,k+1 = −anx1,k − an−1x2,k − · · · − a1xn,k + bnuk.

(4)
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Define the state vector xk := [x1,k, x2,k, · · · , xn,k]
T ∈ Rn. Rewrite the state equation for each state

variable in Equation (4) by matrix representation; the observability canonical form state-space model
of the difference Equation (2) can be described as

x1,k+1
x2,k+1

...
xn−1,k+1

xn,k+1

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1




x1,k
x2,k

...
xn−1,k

xn,k

+


b1

b2
...

bn−1

bn

uk, (5)

yk = [1 0 0 · · · 0]


x1,k
x2,k

...
xn−1,k

xn,k

. (6)

Further, we rewrite (5) and (6) as

xk+1 = Axk + Buk, (7)

yk = Cxk, (8)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

 , B =


b1

b2
...

bn−1

bn

,

C = [1, 0, 0, · · · , 0].

The matrix A ∈ Rn×n is called the system matrix, the vector B ∈ Rn×1 is the system input
vector, and the vector C ∈ R1×n is the system output vector. Equation (7) is called the state equation,
and Equation (8) is called the output equation. Specially, for the multi-input multi-output systems,
the input and output vectors will be extended to matrices. It is easy to find that those unknown
parameters are in the system matrix and input vector. In order to estimate the unknown parameters
of the system, the output equation needs to be redescribed to include all unknown parameters.
Transforming the state equation, the output equation in Equation (8) can be further written as

yk = x1,k
= x2,k−1 + b1uk−1
= x3,k−2 + b2uk−2 + b1uk−1
= x4,k−3 + b3uk−3 + b2uk−2 + b1uk−1
...
= −anx1,k−n − an−1x2,k−n − · · · − a1xn,k−n + bnuk−n + · · ·+ b2uk−2 + b1uk−1.

(9)

Define the parameter vector θ, the information vector ψk as

θ : = [an, an−1, · · · , a1, bn, bn−1, · · · , b1]
T ∈ R2n,

ψk : = [−x1,k−n,−x2,k−n, · · · ,−xn,k−n, uk−n, uk−n+1, · · · , uk−1]
T ∈ R2n.
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Considering that there will be some disturbance in the actual systems, introduce a noise term vk
to the output equation. Then the output in Equation (9) can be simplified into a vector form

yk = ψT
kθ+ vk, (10)

where vk is the random disturbance, which can be the white noise or colored noise. For practical
systems, the effects of noise should be considered when dealing with the problem of
parameter estimation.

Remark 1. By introducing internal state variables, higher-order difference equations are transformed into
first-order difference equations, which simplify the forms of the output equations of the models.

This paper develops a combined parameters, intermediate states, and noise variance estimation
algorithm for linear difference equation systems. On the basis of the model shown in Equation (10),
the next section will drive a VB-KF iterative algorithm to get the solution for the problem of the
parameter estimation.

3. The Kalman Filter-Based Variational Bayesian Iterative Estimation Algorithm

3.1. The Variational Bayesian Parameter Estimation Algorithm

The VB algorithm is formed by introducing the variational approximation theory. It is difficult to
deal with the integrations involved in the general posterior probability solution. The VB algorithm
introduces a cluster of free factored distribution to approximate the complicated posterior probability,
which avoids the direct multiple integrations on marginal distribution [38,39]. In this paper,
the parameter vector together with the corresponding estimated error covariance matrix and noise
variance are inferred by using the VB approach.

The unknown parameters that need to be estimated include the system model parameter vector θ,
the variance of parameter estimates ζ−1 I, and the system noise variance σ−1. Assuming their priors
follow Gaussian, Gamma, and Gamma distributions, respectively,

p(θ) = N(0, ζ−1I),

p(ζ) = Gamma(ζ; d0, e0),

p(σ) = Gamma(σ; f0, h0).

The VB algorithm introduces a free distribution q(·) as the approximate distribution of parameter
to simplify the calculation of logarithmic likelihood function of the measurement data. Then the
probability distribution of observation can be expressed as

log p(y1:k) = log p(θ, ζ, σ, y1:k)− log p(θ, ζ, σ|y1:k)

=
∫

q(θ, ζ, σ)× log
p(θ, ζ, σ, y1:k)

q(θ, ζ, σ)
dθdζdσ +

∫
q(θ, ζ, σ)× log

q(θ, ζ, σ)

p(θ, ζ, σ|y1:k)
dθdζdσ

= F
[
q(θ, ζ, σ)

]
+ KL

[
q(θ, ζ, σ)||p(θ, ζ, σ, y1:k)

]
,

where F
[
q(θ, ζ, σ)

]
is the lower bound of log p(y1:k) (referring to the Jensen inequality [38]), that is

log p(y1:k) >
∫

q(θ, ζ, σ)× log
p(θ, ζ, σ, y1:k)

q(θ, ζ, σ)
dθdζdσ. (11)

KL
[
(q(θ, ζ, σ)||p(θ, ζ, σ|y1:k)

]
is the Kullback–Leibler divergence between the factored

approximation q(θ, ζ, σ) and the true posterior distribution p(θ, ζ, σ|y1:k), which demonstrates the
similarity between the two probability distributions.



Mathematics 2019, 7, 1143 7 of 16

We assume that the joint probability distribution is decomposable:

q(θ, ζ, σ) = q(θ)q(ζ)q(σ).

We can find that when q(θ)q(ζ)q(σ) and p(θ, ζ, σ|y1:k) are identically distributed, the KL
divergence between them can reach minimum. Therefore, these independent distributions
q(θ), q(ζ), q(σ) can be solved by minimizing

KL [q(θ)q(ζ)q(σ)||p(θ, ζ, σ|y1:k)]

=
∫

q(θ, ζ, σ)× log p(θ,ζ,σ|y1:k)
q(θ)q(ζ)q(σ)dθdζdσ.

(12)

Using the theorems from the calculus of variation [31], the optimal solutions for the parameter
distributions satisfy the following equations

logq(θ) =
∫∫

logp(θ, ζ, σ, y1:k)q(ζ)q(σ)dζdσ + cθ, (13)

logq(ζ) =
∫∫

logp(θ, ζ, σ, y1:k)q(θ)q(σ)dθdσ + cζ , (14)

logq(σ) =
∫∫

logp(θ, ζ, σ, y1:k)q(θ)q(ζ)dθdζ + cσ, (15)

where cθ, cζ , cσ denote the terms which are independent of θ, ζ, σ, respectively.
The initial joint probability p(θ, ζ, σ, y1:k) can be factored as

p(θ, ζ, σ, y1:k) = N(0, ζ−1I)Gamma(ζ; c0, d0)Gamma(σ; e0, f0)
N

∏
k=1

N(yk; ψT
kθ, σ−1). (16)

Using Equation (16) into Equation (13) and ignoring items which are unrelated to θ gives

logq(s+1)(θ) =
∫∫

q(ζ)q(σ)
[
− 1

2 θTζθ− 1
2 ∑N

k=1(yk −ψT
kθ)Tσ(yk −ψT

kθ)
]
dζdσ + cθ

= − 1
2

{
θT
[
ζ(s)I + ∑N

k=1 ψkσ(s)ψT
k
]
θ+ ∑N

k=1 y2
k −∑N

k=1 θTψkσ(s)yk −∑N
k=1 ykσ(s)ψT

kθ

}
+cθ,

(17)

where q(s+1)(·) denotes the approximation of q(·) at the (s + 1)th iteration. From Equation (17) we
can find that q(s+1)(θ) is the probability density function of a Gaussian distribution, and the system
parameter θ can be updated as

θ̄(s+1) = var
[
θ(s+1)] N

∑
k=1

ψkσ(s)yk, (18)

var
[
θ(s+1)] =

[
ζ(s)I +

N

∑
k=1

ψkσ(s)ψT
k
]−1. (19)

Furthermore, we can calculate the mathematical expectation of θθT

E(s+1)(θθT) = var(θ(s+1)) + θ(s+1)(θ(s+1))T. (20)

According to Equation (14), we have

logq(s+1)(ζ) =
∫∫

q(θ)q(σ)
[

1
2

logζ − 1
2
(θ)ζθ+ (d0 − 1)logζ − e0ζ

]
dθdσ + cζ

= −
[

1
2

E(s+1)(θTθ) + e0

]
ζ + (

1
2
+ d0 − 1)logζ + cζ
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= −
{

1
2

tr
[

var(θ(s+1)) + θ(s+1)(θ(s+1))T

]
+ e0

}
ζ + (

1
2
+ d0 − 1)logζ + cζ ,

which yields

q(s+1)(ζ) = Gamma(ζ; d(s+1), e(s+1)),

where d(s+1) and e(s+1) are the two parameters of the Gamma distribution and are given by

d(s+1) =
1
2
+ d0,

e(s+1) = e0 +
1
2

tr
[

var(θ(s+1)) + θ(s+1)(θ(s+1))T

]
.

Then, update the expectation of ζ at iteration s + 1 by

ζ̄(s+1) =
d(s+1)

e(s+1)
. (21)

Similarly, the variational form for q(s+1)(σ) obeys

logq(s+1)(σ) =
∫∫

q(θ)q(ζ)
(
( f0 − 1)logσ− h0σ + N

2 logσ− 1
2 ∑N

k=1(yk −ψT
kθ)Tσ(yk −ψT

kθ)

)
dθdζ + cσ

= ( f0 +
N
2 − 1)logσ− 1

2

[
h0 + ∑N

k=1(y
2
k − 2ykψT

kθ(s+1) + ψT
kE(s+1)(θθT)ψk)

]
σ + cσ,

which yields

q(s+1)(σ) = Gamma(σ; f (s+1), h(s+1)),

where f (s+1) and h(s+1) are given by

f (s+1) =
N
2
+ f0,

h(s+1) = h0 +
N

∑
k=1

{
y2

k − 2ykψT
kθ(s+1) + ψT

ktr
[

var(θ(s+1)) + θ(s+1)(θ(s+1))T

]
ψk

}
.

Then σ̄ can be computed as

σ̄(s+1) =
f (s+1)

h(s+1)
. (22)

3.2. The State Estimation Algorithm

Above all, we obtain the posterior probability distribution or optimal solution of system
parameters and the noise variance. However, the state-space model contains both unknown system
parameters and unavailable system states, which brings a difficulty to obtaining the parameter
estimates. The Kalman filter is usually used to estimate the intermediate states for linear state-space
systems with Gaussian noise. The state observer is a deterministic state estimation algorithm, which
is simpler in structure but only obtains an approximate estimation of the system states. To improve
the estimation accuracy, this paper adopts a modified Kalman filter to obtain state estimates under
the Bayesian framework. According to the considered state-space model, the following Kalman filter
algorithm [40] is designed to generate the state estimates

x̂k+1 = Âx̂k + b̂ūk + Lk(yk − cx̂k), x̂1 = 1n/p0, (23)
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Lk = ÂPkcT(σ̂k + cPkcT)−1, (24)

Pk+1 = ÂPk ÂT − LkcPk ÂT, P1 = In. (25)

Since the system parameters are unknown, we have to utilize the estimated parameters to
construct the system parameter vector and matrix

Â :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ân −ân−1 −ân−2 · · · −â1

 ∈ Rn×n, b̂ :=


b̂1,k
b̂2,k

...
b̂n−1,k

b̂n,k

 ∈ Rn.

The flowchart of executing the proposed VB-KF iterative algorithm is shown in Figure 1.

Start
�� �

?
Initialize: set s = 1, give ε
give θ̄(0), x̂(0)k , d0, e0, f0, h0

?
Collect {uk, yk : k = 1, 2, . . . , N}

?
Construct ψk

?

Compute θ̄(s+1) and var[θ(s+1)]

?

Compute E(s+1)(θθT), ζ̄(s+1), σ̄(s+1)

?

Update x̂(s+1)
k

?��������

XXXXXXXX

XXX
XXX

XX

���
���

��‖θ̄(s+1) − θ̄(s)‖ > ε?

No

Yes

�s := s + 1

?

Obtain the estimate θ̄(s+1)

?�� �End

Figure 1. The flowchart of the proposed variational Bayesian Kalman filter (VB-KF) iterative algorithm for
computing parameters and states.

The iterative steps for calculating parameter and state estimates are summarized as follows:

1. Initialization: set s = 1, x(0)k = 1n, θ̄
(0)

= 1n2 , and give a group of random positive values to
parameters d0, e0, f0, h0 and a small positive value to ε.

2. Collect input-output data (uk, yk : k = 1, 2, · · · , N), and contract information vector ψk
with Equation (10).

3. Update θ̄(s+1), var[θ(s+1)], E(s+1)(θθT), and ζ̄(s+1) with Equations (18)–(21), respectively.

4. Update noise variance σ̄(s+1) with Equation (22).
5. Use the new obtained parameter estimates and noise variance to update states with Kalman filter

algorithm in Equation (23)–(25).
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6. Evaluate the relative change between θ̄
(s+1) and θ̄

(s), if ||θ̄(s+1)− θ̄
(s)|| 6 ε (|| · ||means L2-norm),

for a very small positive number ε, then stop the iteration procedure and get the parameter
estimates θ̄

(s+1); or else, let s = s + 1 and go to Step 3.

The proposed methods can combine other estimation algorithms [41–45] and the mathematical
tools [46–49] to study the parameter identification problems of other linear and nonlinear systems with
colored noise [50–52] and can be applied to other literatures [53–56].

4. Simulation Example

Consider the following 3rd-order difference equation:

yk + 0.50yk−1 + 0.32yk−2 + 0.18yk−3 = 1.00uk−1 + 0.55uk−2 + 0.97uk−3 + vk.

Taking into account the interference of noise, transform the difference equation into the
state-space model: x1,k+1

x2,k+1
x3,k+1

 =

 0 1 0
0 0 1
−0.18 −0.32 −0.50


 x1,k

x2,k
x3,k

+

 1.00
0.55
0.97

 uk,

yk = [1 0 0]

 x1,k
x2,k
x3,k

+ vk.

The parameter vector to be estimated is

θ = [0.18, 0.32, 0.50, 1.00 , 0.55, 0.97] .

In this simulation example, the input is selected as a persistent excitation signal sequence with zero
mean and unit variance, vk is Gaussian noise sequence with zero mean and variance σ2. Of the collected
data length N = 2000, the first 1000 sets of data (N1) are used for the training set and the rest of
the (N2) sets are used for the testing set. Design different noise variances to simulate the noise
interferences on the output signal. Use the proposed VB-KF iterative estimation algorithm to estimate
the parameter vector.

Taking the calculated mean values of the Gaussian distributions for the parameters as the
estimates of the unknown parameters, the proposed VB-KF parameter estimates and estimation
error δ = ||θ̄(s) − θ||/||θ|| with the increasing of the iteration s under different noise variances are
presented in Table 1 and Figure 2. The curves of parameter estimates against s are plotted in Figure 3.
The estimated noise variances are shown in Table 2.

Table 1. The parameter estimates and estimation errors versus s under the proposed VB-KF algorithm.

σ2 s a1 a2 κ1 κ2 κ3 b2 δ (%)

0.102

1 0.01016 −0.02289 −0.03700 1.00397 0.53194 0.97784 40.69214
2 −0.07361 0.00728 0.89702 0.94687 0.52043 0.96392 35.08236
5 0.17474 0.30156 0.49471 0.97522 0.55029 0.99253 2.40308
10 0.17243 0.31521 0.49920 0.97571 0.54883 0.99432 2.19306
20 0.17246 0.31520 0.49918 0.97571 0.54883 0.99432 2.19278
40 0.17246 0.31520 0.49918 0.97571 0.54883 0.99432 2.19278

0.502

1 −0.05182 −0.05809 0.04132 1.00842 0.54880 0.99711 39.39494
2 −0.11574 0.04963 0.90089 0.93849 0.52609 0.97003 35.19921
5 0.17688 0.31997 0.49349 0.96759 0.56015 1.00064 2.85674
10 0.17674 0.32778 0.49767 0.96774 0.55874 1.00189 2.90030
20 0.17676 0.32777 0.49764 0.96774 0.55874 1.00189 2.90017
40 0.17676 0.32777 0.49764 0.96774 0.55874 1.00189 2.90017

1.002

1 −0.01785 0.06661 −0.15694 0.98365 0.51835 1.01729 45.26212
2 −0.01462 −0.04935 0.75665 0.89482 0.48419 0.96419 31.18481
5 0.17291 0.28867 0.46187 0.91682 0.50836 0.98695 6.59330
10 0.17082 0.29553 0.46557 0.91739 0.50776 0.98825 6.41325
20 0.17083 0.29553 0.46556 0.91739 0.50776 0.98825 6.41343
40 0.17083 0.29553 0.46556 0.91739 0.50776 0.98825 6.41343

true values 0.18000 0.32000 0.50000 1.00000 0.55000 0.97000
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Figure 2. The VB parameter estimation error under different noise variance.
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Figure 3. The VB parameter estimates against s with noise variance σ2 = 0.502.

When the noise variance is σ2 = 0.102, use the estimated parameters to construct the approximate
difference equation:

yk + 0.49918yk−1 + 0.31520yk−2 + 0.17246yk−3 = 0.97571uk−1 + 0.54883uk−2 + 0.99432uk−3 + vk.

The computed prediction ŷk and the true output yk are compared in Figure 4. From Figure 4, we
can see that the predictions are very close to the true outputs.

For comparison, we also use the open-loop state observer to generate the estimates of unknown
states [37]. Here, we combine the proposed VB parameter estimation method with state observer to
form the state observer-based variational Bayesian (VB-SO) iterative estimation algorithm. In [57],
the KF-based least squares iterative algorithm is used to identify the state space system, where the
unknown process noise variance is set to one (R = 1.00) in the Kalman filter. Here, we use this KF
based-variational Bayesian algorithm (VB-KF2) and the proposed method (VB-KF1), where the noise
variance is accurately computed, to estimate system parameters and states under different noises.
Furthermore, the parameter estimation errors of the three different algorithms are compared in Figure 5
with σ2 = 0.502.
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Figure 4. The true outputs and predictions with noise variance σ2 = 0.102.

Table 2. The estimates of noise variance versus s under the proposed VB algorithm.

σ2/s 1 2 3 5 10 15 40

0.102 0.2000 0.7509 0.0356 0.0280 0.0108 0.0108 0.0108
0.502 0.2000 0.9935 0.3010 0.2748 0.2664 0.2664 0.2664
1.002 0.2000 1.6252 1.0241 1.0097 0.9950 0.9950 0.9950

In addition, we adopt the other batch of data set for model validation. The parameter estimates
with the least estimation error are chosen for the verification test. The root mean square errors (RMSE)
of the three estimate models are computed as

RMSE1 =

√√√√ 1
N2

2000

∑
i=1001

[yi − ŷvbkf1 ]
2 = 0.2833,

RMSE2 =

√√√√ 1
N2

2000

∑
i=1001

[yi − ŷvbso] = 0.3007,

RMSE3 =

√√√√ 1
N2

2000

∑
i=1001

[yi − ŷvbkf2 ]
2 = 0.2930.

From the calculated results, it can be seen that the proposed VB-KF algorithm has the smallest
root mean square error.
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VB-KF
1

VB-KF
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Figure 5. Comparison of estimation errors δ versus s under different algorithms (σ2 = 0.502).
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5. Conclusions

In this paper, a Kalman filter-based variational Bayesian iterative algorithm is proposed to estimate
the unknown parameters for linear difference equation systems. The main advantage of the presented
method is that it can give the distribution of the parameter rather than a point estimate. Besides,
the proposed algorithm obtains the noise statistics and state estimation. From the simulation results
shown in Tables 1 and 2 and Figures 2–5, it is easy to find the following conclusions.

• The parameter estimation errors are generally becoming smaller with iteration s increasing and
with the noise variance decreasing. The estimated parameters are very close to the real values.

• The estimated noise variances in Table 2 show that variance estimates are relatively large in the
previous period because of the inaccurate parameters and states, but with the increasing of the
iteration s, the noise variance estimates can converge to their true value.

• Under the same batch of date and noise variance, the estimation accuracy of the proposed VB
algorithm is higher than that of VB-SO and VB-KF2 algorithms.

• The predicted outputs fit well with true outputs, which indicates the effectiveness of the
proposed algorithm.

The proposed variational Bayesian iterative estimation algorithm in this paper for state space
models from the observation data can combine some mathematical strategies [58–61] to study the
parameter estimation algorithms of other stochastic systems with colored noise and can be applied to
other fields [62–66].
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