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Abstract: In this article, we consider two inverse problems with a generalized fractional derivative.
The first problem, IP1, is to reconstruct the function u based on its value and the value of its fractional
derivative in the neighborhood of the final time. We prove the uniqueness of the solution to this
problem. Afterwards, we investigate the IP2, which is to reconstruct a source term in an equation
that generalizes fractional diffusion and wave equations, given measurements in a neighborhood of
final time. The source to be determined depends on time and all space variables. The uniqueness is
proved based on the results for IP1. Finally, we derive the explicit solution formulas to the IP1 and
IP2 for some particular cases of the generalized fractional derivative.
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1. Introduction

Fractional derivatives are increasingly used in modeling various processes in physics, biology,
economics, engineering sciences, etc. [1]. In addition to classical fractional derivatives, several
generalizations have been introduced to better match the models to the reality in different situations.
In this paper, we work with generalized fractional derivatives of Riemann–Liouville and Caputo type
where the power-type kernel (fractional derivative case) is replaced by an arbitrary function k. Such
a generalization was previously used in [2–5] and covers many specific cases that are important in
applications (see Section 2.1).

Fractional derivatives of Riemann–Liouville and Caputo type are non-local: the derivative of
a function u(t) at t = T depends on values of u at t < T. We consider an inverse problem (IP1) to
recover a history of a function u at 0 < t < T by means of measurements of u(t) and its generalized
fractional derivative in a left neighborhood of T. To the authors’ knowledge, such a problem has not
yet been considered in the literature.

We use the results obtained for IP1 in order to investigate an inverse problem of reconstruction of
a history of a source in a general PDE that includes as particular cases fractional diffusion and wave
equations from the measurements in a left neighborhood of final time T (IP2).

Quite often in the inverse source problem, the goal is to determine a source that is either a space-
or time-dependent function. The space-dependent source term is usually reconstructed based on the
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final time overdetermination condition [6–11]. The time-dependent source term can be recovered
from additional boundary measurements [7] or from integral conditions [12,13]. In this paper [14], the
source term dependent on time and part of the space variables has been determined. In this paper, we
assume that the overdetermination condition is given not only at the final moment of time T, but in
its neighborhood. This enables us to reconstruct the source term that depends on both time and all
space variables.

In Section 2, we explain the concept of generalized fractional derivative with examples. Next, we
formulate the inverse problems and give hints to their physical applications. In Section 3, we prove
the uniqueness for a general class of kernels k and reduce IP1 to an integral equation that is further
used to derive the solution formulas. Finally, in Section 4, we derive the solution formulas in some
particular cases of k based on the expansion with the Legendre polynomials.

2. Problem Formulation

2.1. Generalized Fractional Derivatives

In this paper, Lp(0, T) and Wn
p (0, T) stand for real Lebesgue and Sobolev spaces.

We are solving problems with a generalized fractional derivative. This concept has been used
in [2–5]. We utilize D{k},na as a unified notation that stands for the generalized fractional derivatives in
Riemann–Liouville RD{k},na and Caputo sense CD{k},na :

(RD{k},na v)(t) =
dn

dtn

∫ t

a
k(t− τ)v(τ)dτ, (CD{k},na v)(t) =

∫ t

a
k(t− τ)v(n)(τ)dτ,

t > a, n ∈ {0} ∪N, k ∈ L1,loc(0, ∞).

The notation of generalized fractional derivative incorporates the following possibilities.
The basic case is

(k1) k(t) = t−β

Γ(1−β)
, β ∈ (0, 1). Then, RD{k},na and CD{k},na are the Riemann–Liouville and Caputo

fractional derivatives of the order n + β− 1, i.e.,

(RD{k},na v)(t) = (RDn+β−1
a v)(t) =

dn

dtn

∫ t

a

(t− τ)−β

Γ(1− β)
v(τ)dτ,

(CD{k},na v)(t) = (CDn+β−1
a v)(t) =

∫ t

a

(t− τ)−β

Γ(1− β)
v(n)(τ)dτ.

Moreover, in case k(t) = tβ−1

Γ(β)
, RD{k},0a is the Riemann–Liouville fractional integral of the order

β > 0, i.e.,

(RD{k},0a v)(t) = (Iβ
a v)(t) =

∫ t

a

(t− τ)β−1

Γ(β)
v(τ)dτ.

Often a memory is not of power-type. A direct generalization of (k1) leads to multiterm and
distributed order fractional derivatives [15–17]. These derivatives have the following kernels:

(k2) k(t) = ∑m
j=1 pj

t−βj

Γ(1−β j)
, β j ∈ (0, 1), pj 6= 0, and

(k3) k(t) =
∫ 1

0 p(β) t−β

Γ(1−β)
dβ, p ∈ L1(0, 1), respectively.

Distributed order and multiterm derivatives enable to model accelerating and retarding sub(super)
diffusion, since different powers of t dominate as t→ 0+ and t→ ∞ in the kernel. A proper choice of
p in (k3) allows modelling ultraslow diffusion [16].

The cases (k2) and (k3) can be unified to a form of Lebesque–Stiltjes integral k(t) =
∫ 1

0
t−β

Γ(1−β)
dµ(β),

but we will treat them separately.
Tempered fractional derivatives are used to describe slow transition of anomalous diffusion to

a normal one. There are two models of this type in the literature that differ in their mathematical
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derivations. The corresponding kernels are:
(k4) k(t) = e−λtt−β

Γ(1−β)
+ λ

∫ t
0

e−λττ−β

Γ(1−β)
dτ, 0 < β < 1, λ > 0 [18,19]; and

(k5) k(t) = e−λttβ−1Eβ,β(λ
βtβ), 0 < β < 1, λ > 0 [19,20].

We will call derivatives with kernels (k4) and (k5) tempered fractional derivatives of type I and
II, respectively.

Removing the singularity of kernels at t = 0 allows to highlight memory effects better [21]. In this
paper, we consider the following bounded kernels:

(k6) k(t) = 1
1−β e−

β
1−β t, 0 < β < 1 is the kernel of Caputo-Fabrizio derivative [21,22];

(k7) k(t) = 1
1−β Eβ

(
− βtβ

1−β

)
, 0 < β < 1 is a kernel of Atangana–Baleanu fractional derivative [23,24].

Here, Eβ and Eβ,β are one-parametric and two-parametric Mittag-Leffler functions, respectively, given
by the formulas:

Eα(t) =
∞

∑
n=0

tn

Γ(αn + 1)
, Re α > 0,

Eα,β(t) =
∞

∑
n=0

tn

Γ(αn + β)
, Re α > 0, Re β > 0.

2.2. Formulation of Inverse Problems

Let 0 < t0 < T < ∞. Our basic inverse problem consists in a reconstruction of a function in (0, t0)

provided that this function and its derivative are given in (t0, T).

IP1. Given ϕ, g : (t0, T)→ R, find u : (0, T)→ R such that

u|(t0,T) = ϕ and D{k},n0 u|(t0,T) = g . (1)

An example of IP1 is the reconstruction of physical quantities in constitutive relations involving
fractional derivatives. In the Scott–Blair model of viscoelasticity, the stress is proportional to a time
fractional derivative of the strain [25]. In this context, IP1 means the reconstruction of a history of the
strain of a body by means of the measurement of strain and stress in a left neighborhood of a time
value T. A similar meaning for IP1 can be given in the subdiffusion where the flux is proportional to a
time fractional derivative of the concentration (temperature) gradient [26].

Next, we formulate IP2 that is an inverse source problem that can be reduced to IP1:

IP2. Given ϕ, Φ : Ω× (t0, T)→ R, find u, F : Ω× (0, T)→ R, such that

(D{k},n0 Bu)(x, t) + Dlu(x, t)− Au(x, t) = F(x, t), x ∈ Ω, t ∈ (0, T) (2)

is fulfilled and

u|Ω×(t0,T) = ϕ, F|Ω×(t0,T) = Φ.

Here, Ω ⊆ RN with some N ∈ N, Dl =
l

∑
j=1

qj
∂j

∂tj with some l ∈ N, qj ∈ R, and A and B are

operators that act on functions depending on x. Throughout the paper, assume that A and B with their
domains D(A) and D(B) are such that A : D(A) ⊆ C(Ω)→ C(Ω), B : D(B) ⊆ C(Ω)→ C(Ω). We
also assume that B is invertible.

Equation (2) generalizes the fractional wave equation CDβ
0 u+λ(−∆)αu = F, β ∈ (1, 2), α ∈ [0.5, 1],

λ > 0 [13,27,28], the attenuated wave equation ∂2

∂t2 u + µ RDβ
0 u− λ∆u = F, β ∈ (0, 1) ∪ (1, 2) [29,30]

and different subdiffusion equations CD{k},10 u− λ∆u = F and ∂
∂t u− λ RD{k},10 ∆u = F, where k has
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one of the above forms (k1)–(k7) [16–18,20,23,26,31]. In the latter equation, B = −λ∆ and, in order to
guarantee the invertibility of B, proper boundary conditions must be specified in the domain D(B).

We point out that the operators A and B in (2) are not necessarily linear.
In case if Φ = 0, IP2 means a reconstruction of a source that was active in the past using a

measurement of the state of u in a left neighborhood of T. Such an inverse problem may occur in
seismology, ground water pollution, etc.

Now, we reduce IP2 to IP1. Let (u, F) solve IP2. Then, Equation (2) restricted to Ω× (t0, T) has
the form (D{k},n0 Bu)(x, t) + Dl ϕ(x, t)− Aϕ(x, t) = Φ(x, t). Therefore, Bu is a solution of the following
family of IP1:

Bu|Ω×(t0,T) = Bϕ and D{k},n0 Bu|Ω×(t0,T) = g, (3)

where

g(x, t) = Φ(x, t) + Aϕ(x, t)− Dl ϕ(x, t), x ∈ Ω, t ∈ (t0, T). (4)

The solution of IP2 is expressed by means of Bu explicitly: u = B−1Bu, F = D{k},n0 Bu + Dlu− Au.

3. Results in Case of General k

3.1. Uniqueness Results

Lemma 1. Let k be real analytic in (0, ∞) and v ∈ L1(0, t0). Then, w(t) =
∫ t0

0 k(t− τ)v(τ)dτ is real analytic
in (t0, ∞).

Proof. The function k can be extended as a complex analytic function kC in an open domain
D ⊂ C containing the positive part of the real axis. Let us define wC(z) =

∫ t0
0 kC(z− τ)v(τ)dτ for

z ∈ Dt0 = {z : z = ξ + t0, ξ ∈ D}. Using the analyticity of kC, it is possible to show that functions u
and v involved in the formula wC(t + is) = u(t, s) + iv(t, s), are continuously differentiable and satisfy
Cauchy-Riemann equations in {(t, s) : t + is ∈ Dt0}. This implies that wC is complex analytic in Dt0 .
On the other hand, its restriction to the subset {z = t + i0 : t ∈ (t0, ∞)} is the function w. Therefore, w
is real analytic in (t0, ∞).

We will denote the Laplace transform of a function f : (0, ∞)→ R by

f̂ (s) = (Lt→s f )(s) =
∫ ∞

0
e−st f (t)dt.

The symbol ∗ will stand for the time convolution, i.e., ( f1 ∗ f2)(t) =
∫ t

0 f1(t− τ) f2(τ)dτ.

We prove a uniqueness theorem for IP1.

Theorem 1. Assume that k satisfies the following conditions:

∃µ ∈ R :
∫ ∞

0
e−µt|k(t)|dt < ∞, (5)

k is real analytic in (0, ∞), (6)

k̂(s) cannot be meromorphically extended to the whole complex plane C. (7)

Then, the following assertions hold.

(i) If u ∈ L1(0, T), k ∗ u ∈Wn
1 (0, T) and u|(t0,T) =

RD{k},n0 u|(t0,T) = 0, then u = 0.

(ii) If u ∈Wn
1 (0, T) and u|(t0,T) =

CD{k},n0 u|(t0,T) = 0, then u = 0.
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Proof. (i) Let us extend u(t) by zero for t > T and define the function f : (0, ∞)→ R:

f = RD{k},n0 u.

Since u(t) = 0, t > t0, it holds that

f (t) =
dn

dtn

∫ t0

0
k(t− τ)u(τ)dτ =

∫ t0

0
k(n)(t− τ)u(τ)dτ, t > t0.

The function k is real analytic, therefore, k(n) is also real analytic. Hence, Lemma 1 implies that f is
real analytic in (t0, ∞). Since f (t) = 0, t ∈ (t0, T), and f is real analytic, we obtain that f (t) = 0, t > t0.

Due to (5) the k̂(s) exists and is holomorphic for Res > µ. Moreover, in view the properties of f ,
the f̂ (s) also exists and is expressed by the formula

f̂ (s) = sn k̂(s)û(s)− p0sn−1 − ...− pn−1, pj =
dj

dtj (k ∗ u)(t)
∣∣∣
t=0

, Res > µ.

Therefore,

k̂(s) =
f̂ (s) + p0sn−1 + ... + pn−1

snû(s)
for any s such that Res > µ and snû(s) 6= 0.

Since the values f (t) and u(t) vanish for t > t0, f̂ and û are entire functions. Thus, the function
f̂ (s) + p0sn−1 + ...+ pn−1 is also entire. Assume that û does not vanish on C. Then, by Identity theorem
and the fact that û is entire the set of zeros of û does not contain accumulation points. This implies
that the extension of k̂ is meromorphic on C. This contradicts to the assumption (7) of the theorem.
Therefore, the assumption û 6≡ 0 is invalid, which implies u = 0 in L1(0, T).

(ii) At this part of the proof, let us use the notation v := u(n). Then, v|(t0,T) =
RD{k},00 v|(t0,T) = 0

and v, k ∗ v ∈ L1(0, T). Therefore, by the assertion (i) of this theorem v = 0. Consequently, u(n) = 0
and u|(t0,T) = 0 imply that u = 0 in Wn

1 (0, T).

Let us compute the Laplace transform for the kernels from Section 1 to see if they satisfy the
conditions of Theorem 1.

(k1) In the basic case k(t) = t−β

Γ(1−β)
, β ∈ (0, 1), it holds k̂(s) = 1

s1−β .

(k2) Similarly for k(t) = ∑m
j=1 pj

t−βj

Γ(1−β j)
, 0 < β j < 1, pj 6= 0, we have k̂(s) = ∑m

j=1 pj
1

s1−βj
.

(k3) For the distributed fractional derivative k(t) =
∫ 1

0 p(β) t−β

Γ(1−β)
dβ, p ∈ L1(0, 1), the Laplace

transform is k̂(s) =
∫ 1

0 p(β) 1
s1−β dβ.

(k4) For the tempered fractional derivative of type I k(t) = e−λtt−β

Γ(1−β)
+ λ

∫ t
0

e−λττ−β

Γ(1−β)
dτ, 0 < β <

1, λ > 0, it holds k̂(s) = (s+λ)β

s .
(k5) For the tempered fractional derivative of type II k(t) = e−λttβ−1Eβ,β(λ

βtβ), 0 < β < 1, λ > 0,
we have that k̂(s) = 1

(s+λ)β−λβ [19].

(k6) The kernel of Caputo-Fabrizio fractional derivative k(t) = 1
1−β e−

β
1−β t, 0 < β < 1, has a

Laplace transform k̂(s) = 1
(1−β)s+β

.

(k7) In case of Atangana–Baleanu fractional derivative k(t) = 1
1−β Eβ

(
− βtβ

1−β

)
,

0 < β < 1, it follows from [32] that k̂(s) = sβ−1

(1−β)sβ+β
.
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The kernels (k1)–(k7) satisfy (5),(6). Moreover, it is evident that the kernels (k1), (k2), (k4), (k5),
(k7) satisfy (7), because Laplace transforms of these functions have branch points. To guarantee that
(k3) also satisfies (7) we assume additionally that p 6= 0, p ≥ 0. Then,

lim
Arg s→±π,
|s|=1

Im k̂(s) =
∫ 1

0
p(β) sin((β− 1)× (±π))dβ

<

>
0.

This shows that k̂(s) has a jump at s = −1, hence (7) holds.
Summing up, the solution of IP1 for a derivative containing a kernel (k1)–(k5) or (k7) is unique.
The kernel of Caputo-Fabrizio fractional derivative (k6) does not satisfy (7) because it has the

meromorphic in C Laplace transform. IP1 with this kernel has infinitely many solutions. Any function

such that
∫ t0

0 e
β

1−β τu(τ)dτ = 0, u|(t0,T) = 0 satisfies the homogeneous IP1 in case D{k},n0 = RD{k},n0

and any function such that
∫ t0

0 e
β

1−β τu(n)(τ)dτ = 0, u|(t0,T) = 0 satisfies the homogeneous IP1 in case

D{k},n0 = CD{k},n0 .

Now, we proceed to IP2. We define the following set related to operators A, B and Dl :

U = {u : Ω× (0, T)→ R : u(·, t) ∈ D(A) ∩D(B) ∀t ∈ (0, T),

u, Au, Bu ∈ C(Ω× (0, T)) and qj
∂j

∂tj u ∈ C(Ω× (0, T)), j = 1, . . . , l}.

From Theorem 1, we can immediately deduce a uniqueness statement for IP2.

Corollary 1. Let k satisfy (5)–(7). Then, the following assertions hold.

(i) If (uj, Fj) ∈ {u ∈ U : (k ∗ Bu)(x, ·) ∈ Wn
1 (0, T) ∀x ∈ Ω} × C(Ω× (0, T)), j = 1, 2, solve (2) with

D{k},n0 = RD{k},n0 and (u1, F1)|Ω×(t0,T) = (u2, F2)|Ω×(t0,T), then (u1, F1) = (u2, F2).
(ii) If (uj, Fj) ∈ {u ∈ U : Bu(x, ·) ∈ Wn

1 (0, T) ∀x ∈ Ω} × C(Ω × (0, T)), j = 1, 2, solve (2) with

D{k},n0 = CD{k},n0 and (u1, F1)|Ω×(t0,T) = (u2, F2)|Ω×(t0,T), then (u1, F1) = (u2, F2).

Proof. Proof is technically the same in cases (i) and (ii). After considering the formulation of IP2 in
terms of IP1 (3) and subtracting the corresponding equations for (u1, F1) and (u2, F2), we obtain that

(Bu1 − Bu2)|Ω×(t0,T) = 0 and D{k},n0 (Bu1 − Bu2)|Ω×(t0,T) = 0.

Then, it follows from Theorem 1 that (Bu1 − Bu2)|Ω×(0,T) = 0 and, consequently, since the
operator B is invertible it holds u1(x, t) = u2(x, t), (x, t) ∈ Ω× (0, T). Finally, the Equation (2) implies
F1(x, t) = F2(x, t), (x, t) ∈ Ω× (0, T).

3.2. Reduction to Integral Equations

In this subsection, we reduce IP1 to integral equations. Let us assume that k satisfies (6).
Firstly, we consider the case D{k},n0 = RD{k},n0 . Assume that u ∈ L1(0, T) solves IP1 and

k ∗ u ∈Wn
1 (0, T). Then,

∫ t

0
k(t− τ)u(τ)dτ =

∫ t0

0
k(t− τ)u(τ)dτ +

∫ t

t0

k(t− τ)ϕ(τ)dτ (8)

for t ∈ (t0, T), where the left hand side belongs to Wn
1 (t0, T) and the first addend in the right-hand

side belongs to C∞(t0, T]. Thus, the data ϕ necessarily satisfies
∫ t

t0
k(t− τ)ϕ(τ)dτ ∈ Wn

1 (t0 + δ, T),
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∀δ ∈ (t0, T). Applying dn

dtn to (8), using the second condition in (1) and rearranging the terms, we
obtain the following integral equation of the first kind for u|(0,t0)

:

∫ t0

0
k(n)(t− τ)u(τ)dτ = f (t), t ∈ (t0, T), where f = g− RD{k},nt0

ϕ. (9)

Secondly, let us consider the case D{k},n0 = CD{k},n0 , n ≥ 1. If u ∈ Wn
1 (0, T) solves IP1, then

u(n)|(0,t0)
is a solution of the integral equation

∫ t0

0
k(t− τ)u(n)(τ)dτ = f (t), t ∈ (t0, T), where f = g− CD{k},nt0

ϕ. (10)

Since lim
τ→t−0

u(j)(τ) = lim
τ→t+0

ϕ(j)(τ), j = 0, . . . , n− 1, the function u|(0,t0)
is obtained from u(n)|(0,t0)

by

the integration:

u(t) =
∫ t

t0

(t− τ)n−1

(n− 1)!
u(n)(τ)dτ +

n−1

∑
j=0

lim
τ→t+0

ϕ(j)(τ)
(t− t0)

j

j!
, t ∈ (0, t0).

Due to Lemma 1, the integral operators involved in (9),(10) map L1(0, t0) into the space of
functions that are real analytic in t > t0. This means that IP1 is severely ill-posed and necessarily, f
is real analytic in (t0, T). In the next section, we will derive solution formulas for IP1 that contain
the quantities

f (m)(t1), m ∈ {0} ∪N,

where t1 is an arbitrary point in (t0, T).

4. Solution Formulas in Particular Cases of k

4.1. A Basic Theorem

Theorem 2. Let α ∈ R \ Z, t1 > t0 > 0 and f ∈ C∞(t0, ∞). Let us introduce the following family of sums
that depend on a variable t ∈ (0, t0) and parameters α, f , t1, t0:

VN(α, f , t1, t0)(t) = (t1 − t)−α−2
N

∑
n=0

AnPn

(
2t1(t1 − t0)

t0(t1 − t)
− 2t1 − t0

t0

)
.

Here, N ∈ {0} ∪N∪ {∞}, Pn are normalized in L2(−1, 1) Legendre polynomials

Pn(t) =
b n

2 c

∑
l=0

cn,ltn−2l , where cn,l =

√
2n + 1

2
1
2n (−1)l

(
n
l

)(
2n− 2l

n

)
,

and

An = An(α, f , t1, t0) =
b n

2 c

∑
l=0

cn,l

n−2l

∑
m=0

(
n− 2l

m

)(
t0 − 2t1

t0

)n−2l−m

×
(

2t1(t1 − t0)

t0

)m
Γ(α−m + 1) f (m)(t1).

Assume that v ∈ L2(0, t0) and f is given by f (t) =
∫ t0

0
(t−τ)α

Γ(α+1)v(τ)dτ, t > t0. Then, the series
V∞(α, f , t1, t0)(t) converges almost everywhere in (0, t0) and

v(t) = V∞(α, f , t1, t0)(t), a.e. t ∈ (0, t0). (11)
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Moreover, VN(α, f , t1, t0) → v in L2(0, t0) as N → ∞. If in addition, v ∈ BV[0, t0], then
V∞(α, f , t1, t0)(t) converges pointwise in (0, t0) and the estimate is valid:

|v(t)−VN(α, f , t1, t0)(t)| ≤
c(t)
N

, t ∈ (0, t0),

where c(t) is a positive constant depending on t.

Proof. For t1 > t0 we have

1
Γ(α− n + 1)

∫ t0

0
(t1 − τ)α−nv(τ)dτ = f (n)(t1) , n ∈ {0} ∪N. (12)

The substitution s = 1
t1−τ under the integral takes (12) to the form

∫ 1
t1−t0

1
t1

snw(s)ds = Γ(α− n + 1) f (n)(t1), n ∈ {0} ∪N, (13)

where w(s) = s−α−2v
(

t1 − 1
s

)
.

We would like to expand our function into series by means of orthonormal Legendre polynomials;
thus, we apply a linear substitution that takes us from [ 1

t1
, 1

t1−t0
] to the interval [−1, 1], where such an

expansion can be applied:

s̃ = as + b, where a =
2t1(t1 − t0)

t0
, b = −2t1 − t0

t0
.

We also denote w̃(s̃) = w(s). Since the performed changes of variables under the integrals
are diffeomorphic, v ∈ L2(0, t0) implies w ∈ L2(

1
t1

, 1
t1−t0

) and w̃ ∈ L2(−1, 1) (cf. [33] Section 16.4).
Similarly, v ∈ BV[0, t0] implies w̃ ∈ BV[−1, 1].

Since w̃ ∈ L2(−1, 1), it can be expanded into the Fourier-Legendre series. It follows from (13) that
for n ∈ {0} ∪N

∫ 1

−1

1
an+1 (s̃− b)n w̃(s̃)ds̃ = Γ(α− n + 1) f (n)(t1)

and, therefore,∫ 1

−1
s̃nw̃(s̃)ds̃ =

∫ 1

−1
((s̃− b) + b)nw̃(s̃)d˜s

=
n

∑
m=0

(
n
m

)
bn−m

∫ 1

−1
(s̃− b)m w̃(s̃)ds̃ =

n

∑
m=0

(
n
m

)
bn−mamΓ(α−m + 1) f (m)(t1).

It implies that for the normalized Legendre polynomials

∫ 1

−1
Pn(s̃)w̃(s̃)ds̃ =

b n
2 c

∑
l=0

cn,l

∫ 1

−1
s̃n−2lw̃(s̃)ds̃ =

b n
2 c

∑
l=0

cn,l

n−2l

∑
m=0

(
n− 2l

m

)
×bn−2l−mamΓ(α−m + 1) f (m)(t1) = An.

Then, w̃(s̃) = ∑∞
n=0 AnPn(s̃). This series converges in L2(−1, 1) and for almost every

s̃ ∈ (−1, 1) [34].
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For w̃ ∈ BV[−1, 1], the series for w̃ is convergent pointwise for s̃ ∈ (−1, 1) and according to
Theorem 1 [35]

|w̃(s̃)−
N

∑
n=0

AnPn(s̃)| ≤
c1(s̃)

N
, s̃ ∈ (−1, 1),

where c1(s̃) is a positive constant.
Since the change of variables s̃ = a

t1−t + b, t ∈ [0, t0], is diffeomorphic and v(t) = (t1 −
t)−α−2w̃( a

t1−t + b), all assertions of the theorem follow from the proved properties of the series
w̃(s̃) = ∑∞

n=0 AnPn(s̃).

Remark 1. It follows from (11) that for f of form f (t) =
∫ t0

0
(t−τ)α

Γ(α+1)v(τ)dτ, t > t0, where v ∈ L2(0, t0),
the sum of series V∞(α, f , t1, t0)(t) is independent of t1 > t0. The partial sums VN(α, f , t1, t0)(t), N < ∞,
however, still may depend on t1 in case of such f . For example, if v = 1, then V0(α, f , t1, t0)(t) =

√
0.5

α+1 (t1 −
t)−α−2

[
tα+1
1 − (t1 − t0)

α+1
]
.

4.2. Solution Formulas in Case of Usual Fractional Derivatives

In this subsection, we consider the case k(t) = t−β

Γ(1−β)
, β ∈ (0, 1), n ≥ 1. Then, RD{k},n0 and CD{k},n0

are the Riemann–Liouville and Caputo fractional derivatives of the order n + β− 1, respectively.

Theorem 3. Let k(t) = t−β

Γ(1−β)
, 0 < β < 1 . Then, the following assertions hold.

(i) If u ∈ L2(0, T), k ∗ u ∈Wn
1 (0, T) and u solves IP1 with D{k},n0 = RD{k},n0 , then

u(t) = F β,n
R,t1

(g− RD{k},nt0
ϕ)(t), a.e. t ∈ (0, t0), (14)

where the operator F β,n
R,t1

is given by the rule

F β,n
R,t1

( f )(t) = V∞(−n− β, f , t1, t0)(t). (15)

(ii) If u ∈Wn
2 (0, T), n ≥ 1, solves IP1 with D{k},n0 = CD{k},n0 , then

u(t) = F β,n
C,t1

(ϕ; g− CD{k},nt0
ϕ)(t), t ∈ (0, t0), (16)

where

F β,n
C,t1

(ϕ; f )(t) =
n−1

∑
j=0

lim
τ→t+0

ϕ(j)(τ)
(t− t0)

j

j!
+
∫ t

t0

(t− τ)n−1

Γ(n)
V∞(−β, f , t1, t0)(τ)dτ. (17)

The Formulas (14), (16) are valid for any t1 ∈ (t0, T).

Proof. (i) Firstly, we represent the IP1 in form (9) with k(t) = t−β

Γ(1−β)
. That is identical to

f (t) =
∫ t0

0
(t−τ)α

Γ(α+1)v(τ)dτ with α = −n − β, v(t) = u(t) and f (t) = g(t) − RDt0 ϕ(t) and Theorem
2 implies (14).

(ii) Similarly to the previous case we start from representing the problem in a form (10) with
k(t) = t−β

Γ(1−β)
. This gives us the relation f (t) =

∫ t0
0

(t−τ)α

Γ(α+1)v(τ)dτ with α = −β, v(t) = u(n)(t) and

f (t) = g(t)− CDβ,n
t0

ϕ(n)(t). By applying Theorem 2 to it, we obtain

u(n)(t) = V∞(−β, f , t1, t0)(t), a.e. t ∈ (0, t0), f = g− CD{k},nt0
u.
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Since the condition u|(t0,T) = ϕ implies u(j)(t0) = limτ→t+0
ϕ(j)(τ), j = 0 . . . n− 1, the solution

Formula (16) is valid.

Remark 2. Let us consider the approximations of the exact solutions defined by uN,t1(t) = VN(−n −

β, f , t1, t0)(t), t ∈ (0, t0), N < ∞, in case (i) and uN,t1(t) =
n−1
∑

j=0
lim

τ→t+0
ϕ(j)(τ) (t−t0)

j

j! +∫ t
t0

(t−τ)n−1

Γ(n) VN(−β, f , t1, t0)(τ)dτ, t ∈ (0, t0), N < ∞, in case (ii). Then, Theorem 2 can be used to compare
uN,t1 with u in the process N → ∞. In case (i), uN,t1 |(0,t0)

→ u|(0,t0)
in L2(0, t0) and uN,t1(t) → u(t) a.e.

t ∈ (0, t0). Similarly, in case (ii), uN,t1 |(0,t0)
→ u|(0,t0)

in Wn
2 (0, t0) and u(n)

N,t1
(t) → u(n)(t) a.e. t ∈ (0, t0).

If in addition to the assumptions of (i), u|(0,t0)
∈ BV[0, t0] holds, then |uN,t1(t)− u(t)| is of the order 1/N

for every t ∈ (0, t0). Similarly, if in addition to the assumptions of (ii), u(n)|(0,t0)
∈ BV[0, t0] is valid, then

|u(n)
N,t1

(t)− u(n)(t)| is of the order 1/N for every t ∈ (0, t0).

Corollary 2. Let k(t) = t−β

Γ(1−β)
, 0 < β < 1. Then, the following assertions hold.

(i) If (u, F) ∈ {u ∈ U : (k ∗ Bu)(x, ·) ∈ Wn
1 (0, T) ∀x ∈ Ω} × C(Ω× (0, T)) solves IP2 with D{k},n0 =

RD{k},n0 , then

u(x, t) =
[

B−1F β,n
R,t1

(g(x, ·)− RD{k},nt0
ϕ(x, ·))

]
(t), a.e. (x, t) ∈ Ω× (0, t0).

(ii) If (u, F) ∈ {u ∈ U : Bu(x, ·) ∈ Wn
2 (0, T) ∀x ∈ Ω} × C(Ω × (0, T)), n ≥ 1, solves IP2 with

D{k},n0 = CD{k},n0 , then

u(x, t) =
[

B−1F β,n
C,t1

(ϕ(x, ·); g(x, ·)− RD{k},nt0
ϕ(x, ·))

]
(t), (x, t) ∈ Ω× (0, t0).

In both cases g is given by (4), t1 is an arbitrary number in (t0, T) and F|Ω×(0,t0)
=[

D{k},n0 Bu + Dlu− Au
] ∣∣∣

Ω×(0,t0)
.

Proof. The proof follows from Theorem 3 and the relations, (3), (4), that describe the transition from
IP2 to IP1.

4.3. Solution Formulas in Case of Tempered and Atangana–Baleanu Derivatives

In this subsection, we derive the solution formulas for particular subcases of the generalized
fractional derivative of the order n = 1. They are based on solution formulas derived for the usual
fractional derivative and involve the operators F β,1

R,t1
, F β,1

C,t1
. Again, we assume that t1 is an arbitrary

number in the interval (t0, T).
Firstly, let us consider the tempered fractional derivatives of type I.

Theorem 4. Let k(t) = e−λtt−β

Γ(1−β)
+ λ

∫ t
0

e−λττ−β

Γ(1−β)
dτ, 0 < β < 1, λ > 0. Then, the following assertions hold.

(i) If u ∈ L2(0, T), k ∗ u ∈W1
1 (0, T) and u solves IP1 with D{k},10 = RD{k},10 , then

u(t) = e−λtF β,1
R,t1

(eλtg− eλtRD{k},1t0
ϕ)(t), a.e. t ∈ (0, t0). (18)

(ii) If u ∈W1
2 (0, T) solves IP1 with D{k},10 = CD{k},10 , then

u(t) = lim
τ→t+0

ϕ(τ)−
∫ t0

t
e−λτF β,1

R,t1

(
e−λτ(g− RD{k},1t0

ϕ)′
)
(τ)dτ,

t ∈ (0, t0). (19)
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Proof. Before starting the proof, let us point out that k′(t) = e−λtt−1−β

Γ(−β)
. Hence, for t ∈ (t0, T) and

v ∈ L1(0, t0): ∫ t0

0
k′(t− τ)v(τ)dτ = e−λt

∫ t0

0

(t− τ)−1−β

Γ(−β)
eλτv(τ)dτ. (20)

(i) Firstly, the IP1 can be rewritten by means of (9), and then Formula (20) leads us to the equation
with the unknown term eλtu(t)

∫ t0

0

(t− τ)−1−β

Γ(−β)
eλτu(τ)dτ = eλtg(t)− eλtRD{k},1t0

ϕ(t), t ∈ (t0, T).

Thus, by applying Theorem 2 and using the notation (15), we obtain (18).
(ii) Let us write IP1 in the form (10), differentiate it and obtain for t ∈ (t0, T)

∫ t0

0
k′(t− τ)u′(τ)dτ =

d
dt
(g(t)− CD{k},1t0

ϕ(t)).

Then, due to (20) we have
∫ t0

0
(t−τ)−1−β

Γ(−β)
eλτu′(τ)dτ = eλt d

dt (g(t)− CD{k},1t0
ϕ(t)) and similarly to

(i) we deduce Formula (19) using the notation (17).

To handle IP1 for derivatives that contain Mittag-Leffler functions, we need the following lemma.

Lemma 2. Let 0 < β < 1, λ ∈ R and f ∈ W1
1 (0, T). Then, the function p(t) =

∫ t
0 (t− τ)β−1Eβ,β(λ(t−

τ)β) f (τ)dτ is a solution of the equation CDβ
0 p(t) − λp(t) = f (t), t ∈ (0, T), and the function q(t) =∫ t

0 Eβ(λ(t− τ)β) f (τ)dτ is a solution of the equation CDβ
0 q(t)− λq(t) = I1−β

0 f (t), t ∈ (0, T).

Proof. The proof of the first assertion can be found e.g., in [32], p. 174, and the second assertion
follows from the first one because [tβ−1Eβ,β(λtβ)] ∗ I1−β

0 f = Eβ(λtβ) ∗ f [6].

Next, we consider the case of a tempered fractional derivative of type II.

Theorem 5. Let k(t) = e−λttβ−1Eβ,β(λ
βtβ), 1

2 < β < 1, λ > 0. Then, the following assertions are valid:

(i) If u ∈W1
1 (0, T) and u solves IP1 with D{k},10 = RD{k},10 , then

u(t) =
∫ t

t0

e−λτ(RDβ
0 − λβI)F β,1

R,t1

(
eλτ(ϕ′ + λβg)− RDβ

t0
eλτ g

)
(τ)dτ

+ lim
τ→t0

ϕ(τ), t ∈ (0, t0). (21)

(ii) If u ∈W2
1 (0, T) and u solves IP1 with D{k},10 = CD{k},10 , then

u(t) =
∫ t

t0

e−λτ(CDβ
0 − λβI)F β,1

C,t1

(
eλτ g; eλτ(ϕ′ + λβg)− CDβ

t0
eλτ g

)
(τ)dτ

+ lim
τ→t0

ϕ(τ), t ∈ (0, t0). (22)

Here, I is the unity operator.

Proof. Firstly, we prove (ii). Let us define the function w as

w(t) = eλt CD{k},1u(t) =
∫ t

0
(t− τ)β−1Eβ,β(λ

β(t− τ)β)(eλτu′(τ))dτ.
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Due to Lemma 2, this function solves the equation

CDβ
0 w(t)− λβw(t) = eλtu′(t), t ∈ (0, T). (23)

Therefore, CDβ
0 w = eλtu′ + λβw and, in view of the condition (1), we have the IP1 with usual

fractional derivative:

w|(t0,T) = eλtg, CDβ
0 w|(t0,T) = eλt ϕ′ + λβeλtg. (24)

In order to apply Theorem 3 (ii) to this problem, we must verify that w ∈W1
2 (0, T) is valid. Let

us compute:

w′(t) = tβ−1Eβ,β(λ
βtβ)u′(0) + [tβ−1Eβ,β(λ

βtβ)] ∗ (eλtu′)′(t).

Due to the assumptions 1
2 < β < 1 and u ∈ W2

1 (0, T) we have tβ−1Eβ,β(λ
βtβ) ∈ L2(0, T) and

(eλtu′)′ ∈ L1(0, T). Using the Young’s theorem for convolutions, we deduce w′ ∈ L2(0, T). Thus,
w ∈W1

2 (0, T).
By applying Theorem 3 (ii) to (24), we obtain

w(t) = F β,1
C,t1

(eλtg; eλt ϕ′ + λβeλtg− CDβ
t0

eλtg)(t), t ∈ (0, t0).

Since by (23), u′ = e−λt(CDβ
0 − λβI)w, this implies Formula (22).

Secondly we prove (i). Let us define w(t) = eλtRD{k},10 u(t). Then, w(t) = ( d
dt − λ)z(t), where

z(t) =
∫ t

0
(t− τ)β−1Eβ,β(λ

β(t− τ)β)(eλτu(τ))dτ.

By Lemma 2, z solves the equation

CDβ
0 z(t)− λβz(t) = eλtu(t), t ∈ (0, T). (25)

Let us differentiate Equation (25) to derive the equation for w:

RDβ
0 (z
′ − λz)(t) + RDβ

0 (λz)(t)− λβz′(t) = λeλtu(t) + eλtu′(t), a.e. t ∈ (0, T).

That is

RDβ
0 w(t)− λβw(t) + λ(RDβ

0 (z)(t)− λβz(t)) = λeλtu(t) + eλtu′(t), a.e. t ∈ (0, T).

Since z(0) = 0, we have that RDβ
0 z = CDβ

0 z and using (25) again, we obtain

RDβ
0 w(t) = λβw(t) + eλtu′(t), a.e. t ∈ (0, T). (26)

Based on (1),(26), we formulate IP1 for w:

w|(t0,T) = eλtg, RDβ
0 w|(t0,T) = eλτ(ϕ′ + λβg). (27)
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To apply Theorem 3 (i), we should prove that w ∈ L2(0, T), and
(

t−β

Γ(1−β)

)
∗ w = I1−β

0 w ∈

W1
1 (0, T), that is RDβ

0 w ∈ L1(0, T). Let us investigate

w(t) =
(

d
dt
− λ

)(
tβ−1Eβ,β(λ

βtβ)
)
∗ (eλtu(t)) = u(0)

(
tβ−1Eβ,β(λ

βtβ)
)

+
(

tβ−1Eβ,β(λ
βtβ)

)
∗ ((eλtu(t))′ − λeλtu(t)), t ∈ (0, T).

Since tβ−1Eβ,β(λ
βtβ) ∈ L2(0, T) for β ∈ (1/2, 1) and eλtu(t) ∈ W1

1 (0, T), we obtain that(
tβ−1Eβ,β(λ

βtβ)
)
∗ ((eλtu(t))′ − λeλtu(t)) ∈ L2(0, T); thus, w ∈ L2(0, T). Due to the (26) RDβ

0 w ∈
L1(0, T), because w ∈ L2(0, T) and u ∈W1

1 (0, T).
That enables us to apply Theorem 3 (i) to (27):

w(t) = F β,1
R,t1

(
eλt(ϕ′ + λβg)− RDβ

t0
eλtg

)
(t), a.e. t ∈ (0, t0).

This in view of (26) implies Formula (21).

Remark 3. It is possible to extend the range of β to 0 < β < 1 in Theorem 5 assuming more regularity of u
and the conditions u(0) = 0 and u′(0) = 0 in cases (i) and (ii), respectively.

Finally, we consider the case of Atangana–Baleanu fractional derivative.

Theorem 6. Let k(t) = 1
1−β Eβ

(
− βtβ

1−β

)
, 0 < β < 1. Then, the following assertions hold:

(i) If u ∈W1
1 (0, T) and u solves IP1 with D{k},10 = RD{k},10 , then

u(t) =
(

1− β

β
RDβ

0 + I
)
F β,1

R,t1

(
βg− RDβ

t0
(ϕ− (1− β)g)

)
(t),

a.e. t ∈ (0, t0). (28)

(ii) If u ∈W2
1 (0, T) and u solves IP1 with D{k},10 = CD{k},10 , then

u(t) =
(

1− β

β
CDβ

0 + I
)
F β,1

C,t1

(
ϕ− (1− β)g; βg− CDβ

t0
(ϕ− (1− β)g)

)
(t),

t ∈ (0, t0). (29)

Proof. (ii) Let us denote w = (1− β)CD{k},10 u. For this particular kernel type the relation holds:

w(t) =
∫ t

0
Eβ

(
− β(t− τ)β

1− β

)
u′(τ)dτ.

By Lemma 2 and the identity I1−β
0 u′ = CDβ

0 u, w solves the equation

CD
β
0 w(t) +

β

1− β
w(t) = CD

β
0 u(t), t ∈ (0, T). (30)

Since the relation (1) is valid, w|(t0,T) = (1− β)g. It follows from (30) that CDβ
0 (u− w) = β

1−β w.
Thus, we have the IP1 with usual fractional derivative

(u− w)|(t0,T) = ϕ− (1− β)g, CDβ
0 (u− w)|(t0,T) = βg.
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To apply Theorem 3 (ii), we have to show that u−w ∈W1
2 (0, T). Since E′β = 1

β Eβ,β and Eβ(0) = 1,

we obtain (u − w)′ = − 1
1−β [t

β−1Eβ,β(−
βtβ

1−β )] ∗ u′. Due to the assumptions of (ii), this belongs to

L2(0, T), hence u− w ∈W1
2 (0, T). According to Theorem 3 (ii)

(u− w)|(0,t0)
= F β,1

C,t1

(
ϕ− (1− β)g; βg− CD

β
t0
(ϕ− (1− β)g)

)
. (31)

The relation (30) implies w = 1−β
β

CDβ
0 (u− w). Therefore,

w|(0,t0)
=

1− β

β
CD

β
0F

β,1
C,t1

(
ϕ− (1− β)g; βg− CDβ

t0
(ϕ− (1− β)g)

)
.

Hence, from (31), we obtain (29).
(i) Let us denote w = (1− β)RD{k},10 u. Then

w =
d
dt

z, where z(t) =
∫ t

0
Eβ

(
− β(t− τ)β

1− β

)
u(τ)dτ.

The function z solves the equation

CD
β
0 z(t) +

β

1− β
z(t) = I1−β

0 u(t), t ∈ (0, T). (32)

Next, we differentiate Equation (32) and obtain

RD
β
0 w(t) +

β

1− β
w(t) = RD

β
0 u(t), a.e. t ∈ (0, T). (33)

Therefore, RDβ
0 (u− w)(t) = β

1−β w(t) that leads us to the IP1 with a usual fractional derivative

(u− w)|(t0,T) = ϕ− (1− β)g, RDβ
0 (u− w)|(t0,T) = βg.

Now, we have to show that u− w ∈ L2(0, T) and RDβ
0 (u− w)(t) ∈ L1(0, T). Firstly,

w(t) =
d
dt

(
Eβ

(
− β

1− β
tβ
)
∗u(t)

)
= u(0)Eβ

(
− β

1− β
tβ
)
+Eβ

(
− β

1− β
tβ
)
∗u′(t)

Since Eβ

(
− β

1−β tβ
)
∈ L2(0, T) for any β ∈ (0, 1), we obtain that w ∈ L2(0, T). Due to the Sobolev

embedding Theorem u ∈ W1
1 (0, T) ⊂ L2(0, T). Thus, u− w ∈ L2(0, T). Secondly, RDβ

0 (u− w)(t) =
β

1−β w(t) ∈ L2(0, T).
We continue the proof by applying Theorem 3 (i) to the IP1 for u− w:

(u− w)|(0,t0)
= F β,1

R,t1

(
βg− RDβ

t0
(ϕ− (1− β)g)

)
.

It follows from (33) that w = 1−β
β

RDβ
0 (u− w); thus, the Formula (28) holds.

Similarly to Corollary 2, formulas of solutions of IP2 can be derived in cases of tempered and
Atangana–Baleanu derivatives.

5. Conclusions

In this paper, two inverse problems were considered . The goal of IP1 was to reconstruct the
history of a function based on its value and the value of its generalized fractional derivative on a final



Mathematics 2019, 7, 1138 15 of 16

time subinterval. Afterwards, the obtained results were applied to IP2 that includes reconstruction
of a source term in a fractional PDE based on the final time subinterval measurements. Defining the
overdetermination condition on a final time subinterval, not pointwise, enabled us to treat the problem
of the reconstruction of a source term (IP2) in a different manner than usual.

In this article, we have proved the uniqueness of the solution to IP1 and IP2 in case the
derivative contains general kernel k and derived the solution formulas for some particular cases
of k. Namely, these are the cases of usual fractional derivative, tempered, and Atangana–Baleanu
fractional derivatives.

In the case of multiterm and distributed fractional derivatives, solution formulas cannot be
derived by means of the method presented in this paper. The problem of reconstruction of explicit
representations for solutions in these cases remains open.

Since the IP1 and IP2 are severely ill-posed the solution formulas cannot be applied to the real-life
applications without prior regularization. Thus, the numerical analysis of the problems is another
non-trivial open question to be considered.
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