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Abstract: We consider a non-instantaneous system represented by a second order nonlinear
differential equation in a Banach space E. We use the family of linear bounded operators introduced by
Kozak, Darbo fixed point method and Kuratowski measure of noncompactness. A new set of sufficient
conditions is formulated which guarantees the existence of the solution of the non-instantaneous
system. An example is also discussed to illustrate the efficiency of the obtained results.
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1. Introduction

The aim of this paper is to establish a result of the existence of mild solution for a class of
the non-autonomous second order nonlinear differential equation with non-instantaneous impulses
described in the form

vI(1) = ARy () + f (t,ym, / tg(tay(s))ds) b (bl i=0,- N,

]/(t) :r)’i(t/y(t;)), te (t,',Si], i=1---,N, 1)
v () =gtyt), te(ts)], i=1,---,N,
y(0) = yo, ¥'(0) = y1,

In this text, E is a reflexive Banach space endowed withanorm |- |, ] =[0,4],0 =59 < t; < 1 <
ty, -+, tN < sy < tN4+1 = a < co. We consider in problem (1) thaty € C((s;, ti+1),E), i =0,1,--- ,N.
The functions ;(t,y(t;")) and {;(t,y(t;)) represent noninstantaneous impulses during the intervals
(tisi], i = 1,---,N, so impulses at t; have some duration, namely on intervals (t;,s;]. Further,
A(t) : D(A(t)) C E — Eisaclosed linear operator which generates a evolution system {S(t,5) } ;¢)cp
of linear bounded operators, f : J X EXE — E, g€ C(D X E,E),D ={(t,s) € ] x J: s <t} and yp,
y1 are given elements of E.

The theory and application of integrodifferential equations are important subjects in applied
mathematics, see, for example [1-8] and recent development of the topic, see the monographs of [9].
In recent times there have been an increasing interest in studying the abstract autonomous second
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order, see for example [10-14]. Useful for the study of abstract second order equations is the existence
of an evolution system S(t,s) for the homogenous equation

y'(t) = A(t)y(t), for t > 0. )

For this purpose there are many techniques to show the existence of S(¢, s) which has been developed
by Kozak [15]. In many problems, such as the transverse motion of an extensible beam, the vibration of
hinged bars and many other physical phenomena, we deal with the second-order abstract differential
equations in the infinite dimensional spaces. On the other hand, recently there exists an extensive literature
for the non-autonomous second order see, for example, [16-22].

The dynamics of many evolving processes are subject to abrupt changes such as shocks, harvesting,
and natural disaster. These phenomena involve short term perturbations from continuous and smooth
dynamics, whose duration is negligible in comparison with the duration of an entire evolution.
Particularly, the theory of instantaneous impulsive equations have wide applications in control,
mechanics, electrical engineering, biological and medical fields. Recently, Hernandez et al. [23]
use first time not instantaneous impulsive condition for semi-linear abstract differential equation of
the form

y(£) = Ay(t) + f(ty(H), t € (si,tital i=0,--- N,
y(t) = gi(ty(t)), te(tisili=1---,N, ®)
Y (O) = Yo,

and introduced the concepts of mild and classical solution. Wang and Feckan have changed the
conditions y(t) = g;(t,y(t)) in (3) as follows

y(t) = gi(ty(t])), te (tysii=1,--- N.

Of course then y(t;") = g;(t,y(t; ), where y(t.") and y(t; ) represent respectively the right and
left limits of y(t) at t = t;. Motivated by above remark, Wang and Fetkan [24] have shown existence,
uniqueness and stability of solutions of such general class of impulsive differential equations. To learn
more about this kind of problems, we refer [25-34].

To deal with the above mentioned issues, we investigate necessary and sufficient conditions for
the existence of a mild solution of system (1). By virtue of the theory of measure of noncompactness
associated with Darbo’s and Darbo-Sadovskii’s fixed point theorem. This technique was considered by
Banas and Goebel [35] and subsequently used in many papers; see, for example, [33,36-39].

A brief outline of this paper is given:. Some preliminaries are presented in Section 2. Section 3,
we obtain necessary and sufficient conditions for System (1). An Appropriate example is given to
illustrate our results.

2. Basic Definitions and Preliminaries

In this section, we review some basic concepts, notations, and properties needed to establish our
main results.

Denote by C(J, E) the space of all continuous E-valued functions on interval | which is a Banach
space with the norm

[yl = sup [y(£)]-
te]
To treat the impulsive conditions, we define the space of piecewise continuous functions

PCULE) = {y: ] — E:y € C0,h]U (b se] U (s teal ) k=1,...,N
and there exist y(t, ), y(t}),y(s; Jand y(s] ) k=1,..., N with y(t, ) = y(&)
and y(s; ) = y(si)}-

It can be easily proved that PC(], E) is a Banach space endowed with
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lyllpc = sup |y(t)].

te]

For a positive number R, let

={y € PC(],E) : [lyllpc < R}.

be a bounded set in PC(]J, E).
L’(], E) denotes the space of E-valued Bochner functions on [0, 4] with the norm

1
a i
|y|u—(/0 |y<t>|fdt) s

B(E) the Banach space of bounded linear operators from E into E.
First we recall the concept of the evolution operator S(t,s) for problem (2), introduced by Kozak
in [15] and recently used by Henriquez, Poblete and Pozo in [20].

Definition 1. Let S : D — B(E). The family is said to be an evolution operator generated by the family
{A(t) : t € J} if the following conditions are satisfied [15]:

(e1) Foreachy € E the function S(-,-)y : ] x | — E is of class C* and

(i) foreacht € J,S(t,t) =0,
(ii) forall (t,s) € D and for each y€E,

d 9
Sl =y, Syl _ =y

(e2) Foreach (t,s) € D, ify € D(A(t)), then — J

3 S(t,s)y € D(A(t)), the map (t,s) — S(t,s)y is of class

C? and

82
@) 5S(ts)y = AWS(E )y,

(D) 55 5(t,s)y = S(t,5)As)y,
(iii) a—S t,s)yl,_, = 0.

dsot
3
(e3) Forall (t,s) € D, ify € D(A(t)), then %S(t,s)y € D(A(t)). Moreover, there exist aiaSS(t,s)y,
3
5291 S(t,s)y and
.0 d
@) 529s S(t,s)y = A(t )aSS(t,s)y,

G 2 S(t,5)y = 28(t,5)A(5)
) 558y = 5;5(s)AlS)y,

and for all y € D(A) the function (t,s) — A(t)3

asS(t,s)y is continuous in D.

Definition 2. A function f : | x E x E — E is said to be a Carathéodory function if it satisfies:

(i) t — f(t,u,v) is measurable for each u,v € E X E,
(ii) (u,v) — f(t,u,v) is continuous for almost each t € .

For W, a nonempty subset of E, we denote by W and ConvW the closure and the closed convex
hull of W, respectively. Finally, the standard algebraic operations on sets are denoted by aW and
Y + W, respectively. Now, we recall some basic definitions and properties about Kuratowski measure
of noncompactness that will be used in the proof of our main results.
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Definition 3. [35] The Kuratowski measure of noncompactness ag(-) defined on bounded set W of Banach
space E is
ap(W) =inf{e > 0: W = UL, W, and diam(W;) < efori=1,2,---n}.

Some basic properties of af(-) are given in the following lemma.

Lemma 1. Let Y and W be bounded sets of E and a be a real number [35]. The Kuratowski measure of
noncompactness satisfies some properties:

1) W is pre-compact if and only if ap (W) =0,

(p1)
(p2) ae(W) = ag(W),

(p3) ap(Y) < ap(W)whenY C W,
(pa) ap(Y+W) < ap(Y) +ap(W),
(ps) ap(a

(pe) ak(

QR

5 W) = |a|lag (W) forany a € R,
6) ap(ConvW) = ag(W).

The map Q : X C E — E is said to be a a-contraction if there exists a positive constant A < 1 such
that ag (Q(W)) < Aag(W) for any bounded closed subset W C E.

Lemma 2. [40] Let E be a Banach space, W C E be bounded. Then there exists a countable set Wy C W,
such that
ap(W) < 2ap(Wo).

Lemma 3. [41] Let E be a Banach space, —oco < ay < ap < oo for constants, and let W = {y,} C
PC([ay,a3], E), be a bounded and countable set. Then ap (W (t)) is Lebesgue integral on [aq, az], and

ap ap
,xE({/ yn(t)dt:neN}) < 2/ ap (W(E))dt.
a a1
Denote by apc the Kuratowski measure of noncompactness of PC(J, E). Before proving the
existence results, we need the following Lemmas.

Lemma 4. [35] If W C PC(J;E) is bounded, then ag(W(t)) < apc(W), for all t € J; here W(t) =
{y(t);y € W C E}. Furthermore if W is equicontinuous on |, then ag(W(t)) is continuous on | and

apc(W) = Stlé]? ap(W(t)).

Lemma 5. [42] Let E, F be Banach spaces. If the map ¥ : D(Y) C E — F is Lipschitz continuous with
constant k, then ag (¥ (W)) < kag (W) for any bounded subset W C D(¥).

Theorem 1. (Darbo) [43] Assume that W is a non-empty, closed and convex subset of a Banach space E and
0 € W.Let Q: W — W be a continuous mapping and ag-contraction. If the set {y € W : y = AQy} is
bounded for 0 < A < 1, then the map Q has at least one fixed point in W.

Theorem 2. (Darbo-Sadovskii) [35] Assume that W is a non-empty, closed, bounded, and convex subset of a
Banach space E. Let Q : W — W be a continuous mapping and ag-contraction. Then the map Q has at least
one fixed point in W.

3. Existence Results

In this section, we discuss the existence of mild solutions for system (1). Firstly, let us propose the
definition of the mild solution of system (1).
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Definition 4. A functiony € PC(], E) is said to be a mild solution to the system (1), if it satisfies the following relations:

y(0) =yo, ¥'(0) = y1,
the non-instantaneous conditions
y(t) =1t y(t7), ¥'(t) =Gby(t)), te (ts],

and y is the solution of the following integral equations

=2 5(t,00y0 + 51,0y,
—|—/ (t,s)f <s y(s), / g(s,’r,y(r))d’r) ds, te€][0,t],
i(si,y(t7)) + S(t,s:)Cilsi,y(t;7))

~2S(ts)y
—i—/ (t,s)f <sy )/g(s,T,y(T))dT) ds, t€(sitiy1)-

ds

In this manuscript, we list the following hypotheses:
(Hp) There exist a pair of constants M > 1 and é > 0, such that
IS(t,5)[Ip(g) < Me°"=%) forany (t,s) € D.

(Hy) There exists a constant M > 0 such that:

0 ~ st
I555(E8)lla(e) < Me ), (t,5) € D.

(H3) f:] x E x E — Eis of Carathéodory type and satisfies:

(a) Thereexist ®¢ € L'(J,R*), r € [1,00) and a continuous nondecreasing function ¢ : [0,0) —
(0, 00) such that:

If(ty,z)| < Op(t)p(ly| +|z]) foraat € Jand each y,z € E.

(b) There exist integrable functions ¢, ¢ :] — R, such that:

ap(f(t, W1, Wa)) < o(t)ap(Wi) + o(t)ap(Wa)

fora.at e Jand Wy, W, C E.

(Hy) g:D x E — E is a continuous function that satisfies:

(a) There exist ®; € L!(J,R"), and a continuous nondecreasing function ¢ : [0,00) — (0, 00)
such that:

1g(t,s,v)| < O4(t)@(|y|) fora.a (t,s) € Dand eachy € E.
(b) There exists constant K* > 0, such that

ap(g(t,s,W)) < K*ag(W) fora.a (t,s) € Dand W C E.

(Hs) The functions v; : (t;,s{] x E— E,i=1,---,N, are continuous, and they satisfy the following
conditions:

(a) there exist positive constants c;,i = 1, - - - , N such that

|’)/i(t,y2) - 'Yi(tryl)‘ < |y2 — y1| fora.at € (ti,Sl‘] and each Y1, Y2 € E.
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(b) there exist positive constants d;, such that

di = sup v;(t,0).
tE[ti,S,‘]

(Hg) The functions ; : (t;,s;] x E — E,i=1,---,N, are continuous, and satisfy the following conditions:

(a) There exist constants ¢;,1; > 0,i = 1,-- -, N such that

ICi(t,y)| <eily|+I;fora.at € (t;s;] and eachy € E.
(b) There exists constants ki>0,i=1,---,N such that
wp(Zi(t,W)) < kjag(W) fora.a t € (t;,s;] and anyW C E.
(Hy)
o (k1) (ma (41k; + ME) + 2M (o + 2K allel) ) < 1.

Remark 1. From Lemma 5 and (Hs), there exist constants k; > 0, such that

ap(vi(t, W)) < kjag (W) fora.a t € (t;,s;] and eachy € E.

Theorem 3. Under the assumptions (Hy)—(Hy), the system (1) has at least one mild solution on |, provided that

/Oa max(MO(s), Oy (s))ds < : lp(s)‘_iiq)@),i —2,3.--N @)
with . M M Me,
:zré‘%’if{l—Ll’l—L,-’l—Lm}’
and
mi =7 _dii + 2r<r1ax {M lvol + M |y1], MdLll 1Ai[li1, 1Afd£i 1Aiﬂzix iw_czi:i 1M_Cl£ll:11 } ,
where

L= MCi—I—MEi <1

Proof. Define the mapping A : PC(],E) — PC(],E) by

%(t,—js< o)1 (51 1,y (b)) S5 )51 (51, y(67 )

+ / ( (s),/0 g(s,r,y(r))dr) ds) , te(t,si],
(t 0)yo + S(t,0)y,
(Ay)(t) = +/ (t,5) (sy )/g(s,r,y(r))d’r) ds, tel0,h], ©)
- S( l(sl/y( i)+ S(ts)Ci(siy ( i)

9s i)Y
—|—/ (t,s) (s y(s), / g(s,r,y(r))d’c) ds, te€(s;tii].

It is obvious that the fixed point of A is the mild solution of (1). We shall show that A satisfies the
assumptions of Theorem 1. The proof will be given in four steps.
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Step 1. A priori bounds.

Let A € (0,1) and let y € Y be a possible solution of y = AA(y) for some 0 < A < 1. Thus,

Case 1. For each t € [0,t;], we get

y(t) = —/\ES(t,O)yo + AS(t,0)y + /\/Ot S(t,s)f(s,y(s),/osg(s, 7,y(7))dT)ds.

ds

9
0s

s<t,o>H ol + 15(4,0) (e, 1
B(E)

= L1569l 0500 (16)1+ [ u(opv(nic ) ds
< Mlyole™® +Mlys| e

+ /Me ts)G)f ( |+/ O¢(T)o(ly(T)])d )ds.
(Mlyol + M [y1])e

+/Me—“5®f ( |+/®g |)d>ds.

Case 2. For each t € (s;,t;11], we have

IN

Y = —ASs(ts)mlsi y(si)) + AS( )G (s y(s:))

b A [ 8691 y(o), [ sl Ty@)ans,

then
3
ly(t)| < Hass(t,Si) o) [7i(si,y(si))| + [IS(E i) | gy [Gi(si,y(s0))|
= [ 183y 059 (1991 + [ Oc(rra () ir ) ds
< Mo ly(si)|e U + Mde=*(s1)
+  Me; |y(s;)| e 0(t=si) | Mlie*‘s(tfsi)
! —4(t—s) s
+ / Me Of(s)y <Iy(s)+/0 ®g(r)¢(|y(r)|)dT> i,
< Mei|y(si)| + Mdge=ot=s)
+ Me; |y(s;)| + Mle=0Ut=si)
! —4(t—s) s
AL @f@‘/’(ly(sH I ®g<r>qo<|y<r>|>d~r) s,

It is easy to see that

Mdiesi Mliesi _ 5t
sup [ys)| < (T 1o )e
welor] 1-L 1-1
+ / e ey )lP(sup ly(s)] + ®g Jo(sup |y(s))|dt
s€[0,4] s€(0,4]

Case 3. For each t € (s;, t;], we have,

)ds

7 of 20
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) _
Ol = Apri(t =St si)via (v ,) + S si)Eioa (s ()
t; s
dt|d
+ [ s )af< (o), [ st mytea ) ds)|
< Ari(t =55t s)mio iy () + St sim)Eim (sim1,y ()
ti s
+ [ seor (s, g(s,r,ym)dr) ds—7(1,0)),
+ /\|%‘(t,g)|
< /\Ci‘—gs(frsi)% 108i—1,y(t_1)) + S(tsi-1)8i—1(si—1, y(t_ 1))
t; s
+ /SHS(t,s)f (s,y(s),/o g(s,’r,y(r))d’r) ds’
A
This implies
Mcid,',lesi—l Mcililesi—l) 5t d;
se[ol?t]|y()| B ( 1-Li,4 1—-Liq 1-L;i4
i Mcei )
+ e Q) su + [ Og( su ds.
T o) | sup Iv(o) JACX Il sup [y(a) e
Then, for all t € |, we have
Ol < Mret 4
y — 1 1_Li—1
st [t 0
e /Me *Of(s)y | sup |y(7)|+ @8 Jo( sup |y(z)|)dt | ds.
0 T€[0,5] z€[0,7]

where

M — 2r<na<x {M ol + M [y1], Md1€ Mljes Mdiesi Ml;ei Mcidi,lesifl Mc;l;_qe%-1 } '
i

—I, "1-L;’1-L; "1-L;” 1-L; 4 1-L;, 4

Let us take the right-hand side of the above inequality as y(t). Then

* di
u(0) = M* + 1T-L,
sup [y(s)| < u(t),
s€(0,t]
and
WO < —ou(t) + M0y (o) + [ Ox(s)o(u(s)ds
< MOy (u<t>+ t%(s)qo(u(s))ds)
Let y
B(t) = (1) + [ ©g(5)g(u(s))ds

Then

B(t) = W(t)+0Og(t)e(u(t)
< MOg()p(B(t) + O () @(B(t))-
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This implies that
B(t) ds a _ 400 ds
- < max(MO,(s),0Oq(s))ds < —_—.
Sy T 59 < ™05 O5(eds < [ et

This above inequality implies that there exists a constant L such that [S(t) < L,t € |, and hence
u(t) < L,t € J. Since for every t € ], [y(t)| < u(t), we have ||y|pc < L.

Step 2. A is continuous.

Suppose that (v, ),cn is a sequence in Bg which converges to i in Bg as n — co. By the continuity
of nonlinear term -y and { with respect to the second argument, for each s € J, we have

sup [7i(s,yn(s)) = 7i(s,y(s))| =0 as 1 — oo, (6)
se

surflé(s,yn(S))—é(s,y(5)>| —0 as n— oo @)
se

By the Carathéodory character of nonlinear term f, for each s € J, we have

— 0 as n — oo. (8)

7 (@), [ st mumnar) = (svo), [ s myenar)

Case 1. For the interval (s;, t;], we obtain
| (Ayn)(t) —B(A}/)(f)\
<7 (=81 im0, () 8051 (im0, ()
t; s
+ [ st (s,yn<s>, / g(s,r,ynm)dr) ds)

Si—1

—%(t, 2 St 50 (si1 (8 1))+ S50, (E; )

+/ (t,s) (sys)/ STy())dT>d>

Since the function v; is continuous and

’— 2 )Yic1(sic,yn(ti_1)) +S(tsi1)Gi1(8i—1,yn(t_1))

/ <s yn(s), /Osg<5, r,yn(r))dr) ds + %S(t, $i)Yi-1(si—1,y(t;_))
#8(0s) (s + [ S6f (s,y<s>, [ 56, w(r))dr) as
SM|’Yti—1(5i—1,]/n(si—1)s)—7i—1(5i,]/(5i))\+M|Ci— Si— 1,5_1/;1(51 1) = Cica1(sic1,y(sic1))]
M [ 17 (s, [[sts v ) £ (560, [ ,y<r>> ) s

—0, as n— oo.

We can conclude that Ay, — Ay, asn — +oo.

Case 2. For the interval [0, 1], we obtain

(Aw)(1) = (O] 5
<m [ |f (sm(s) [ sts,mmmtenie) = 1 (s6s), [ sts,muoic)

—0, as n— oo.

ds




Mathematics 2019, 7, 1134

Case 3. For the interval (s;, t; 1], we have

[ (Ayn) (£) = (Ay) ()]
= M'?f(si’y” (s:)) = 'Yé(si'y(sim + M[Ci(si,yn(si)) — gi.(ssi/y(si)”
i [ ]f (s,yn<s), | g<s,~f,yn<~c>>dr) _f (s,y(s),./o o, T,ym)dT)

—0 as n— oo.

ds

As a consequence of Case 1-3, Ay, — Ay, as n — +o0. Hence the A is continuous.

Step 3. A is equicontinuous.

Case 1. For the interval [0,#],0 < f; <, < t;, any y € Bg, we have

(A )( 2) — (Ay )é 1)|
< ||* (F2,0) = 5=5(F1, 0) | 5(£) [vol
+||5(f2/ ) — (f1/ M) lval

| [ 8025) = S0 (550, [ myter ) as
+ /tz (52, 7) ( y(s), /Osg(s,r,y(r))dr> ds
< [ 15(R27) = 50, Dllge) O (Iv(s)l + [ ©(TIplly(rlhar ) ds
i 5
0 [ 0661 (o) + [ @x(hp(ly() ) .

1

It follows from the Holder’s inequality that

|(Ay(%(fz) - (Ay)gﬁﬂ

< ||£5(52,0) — 555 t1,0) 15k lyol

+11S(f2,0) — S(F1,0) | (k) y1 |

+¢ (R+ ¢(R)[Og]11) /0 1S(f2,7) — S(F1, 7)) @f(T)dT

X _1
+M||®f||L”P (R1+1(P(R)H®g”L1) (67%@42) —e*%(t’fl))l T
T

Case 2. For the interval (s, ti11],s; <t < F < t;;1,any y € Bg, then we get

(AN ()~ (AP E) < 25 (Eas0) — e (Er,59) ey (s y(si)
+ IS(F2,5i) — S(F1,80) ls(e) 1Gi(50, ¥ (51)) |

/551(5(52,5) —S(k,9))f <S,y(s),/os q(s, T,y(T))dT) ds

i

n /;2 $(02,1)f (5009, [ st y(oae) s

IN

= M [ oo (Ivls) + [ Ou(llu(e) i) s

It follows from the Holder’s inequality that

10 of 20

/ 15(k2, 7) — (b1, Tl ae) O (1) (y I+ [ esmely(a )ds
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(ADE) ~ (@) < |25 59) — oS 5)llace) s y(si)|

+  [IS(F2, 1) — S(F1, )1 B(E) Ci (50, y(50)|
§ (R + 9 (R) @) [ 152 7) ~ S( Dl ple)ee

MIOr® (R + 9 UNOsI) (- ) _ o)
51—% .

+

Case 3. For the interval (s, t;], s; < f; <, < t; any y € Bg, we have
)|
8 _
( 2~ S (Ea i)y (i1, (85 )+ (P sia)is (511,405 )

+ /t S(t,9)f (s,y<s>, [ stsmenar ) as)

1 (B =520 50m1 (509 (2)) + 8B io0) i (50,0,

+ [ st (s065) [ (s, (e ) as) |

i—1

)(F2)

’-H

then

[(Ay)(F2) — (Ay) ()]
—%5(52,5‘)%'— (si—1,y(t 1)) + S(F2,5i-1)Ci1(si—1, y(t;_ 1))

+/ ( (s),/osg(s,'r,y(r))d'r> ds

+ass(f1/ si)Vi-1(si-1,Y(t_1)) — S(F1,8i-1)Ci—1(si-1,¥(t_1))

_ /Sfl S(F,8)f (S,y(s),/osg(S,r,y(r))dT> ds’.

i—1

<

Similarly, one can easily see that

(AR ()~ (AN < el 2 8(5i-1) — oS (Esi0) e i (s, v(E5 )]
+ cillS(Fasi-1) — S(F,si-1)llp(e)|Gima (sic1, y(t_1))]

h - -
+ CilP(R+<P(R)H®g|IL1)/ 15(k2,7) = $(b1, T)|p(E) O (T)dT

Si—1

MCiH@fHL”P (R + (P(R)H®g||L1) (e_%(t_fz) B e—%(f—ﬁ))l_%
s+ '

In view of Case 1-3, as a result, ||(Ay)(f2) — (Ay)(f)|| — 0 as f, — f;, which meansthat A
is equicontinuous.

Step 4. A is a apc-contraction operator.
For every bounded subset B C PC(], E), then we know that there exists a countable set By =
{y}$_; C B (see Lemma 2), such that for any t € |, we have

ap(A(B)(1)) < 20p(A(B1)(1)). ©)
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Note that B and AB are equicontinuous, we can get from Lemma 2, Lemma 3, Lemma 4 and
using the assumptions (H;)—(Hg), we obtain
Case 1. For the interval (¢;, s;], we have

ap(ABy(t))

Then

N+ IN + + A

+

+

IN

IN +

N+ IN +

+

ININ

oo

Mk; {IXE <'Yi—1(5i—1fyn(ti:1)))}
Mk; {“E (gifl(sifllyn(tiil))) }n=0

boe ({ [ ste)fts.n(0), | stsun(oinas) )
Wkik; 1 e (yn (1)) b 0>+Mkkz Haent )] )
2Mk; s]l{ F(s,yu(s) sr,yn(r))dr)ds))} ds
Nikiki_y {oe (v (7)) )50 >+Mkkz ael(t,))
Mk [ o1(5) (s (51 7o

0i(s) { (/0 g(s, T, yn(T ))dr) }:)_o) ds

Mkik; 1 {“E(Vn(tf))}:):o) + Mkiki—1 {a(y"(til))}nzo)
t
2Mk; /s - 0i(s) {ag(yn(s)) o)

2k0(o) { [ netuneac) )

(Mk kz 1+Mkkz 1)“E(B( ))
omt; [ (o) (B >>+21<*ei<s>/

0
(Mk;k;_4 —i—kkl 1) SUPse 1, 5i) ¥E(B(t))

2Mk; / < s)ag(By(s)) +2K*o(s)s sup vcE(Bl(T)> ds.
7€(0,8]

(Mkiki—1 + Mkiki—1) supge s, 1, ) @£ (B(t))

&:0

DéE(Bl(T)dT) ds.

2M/t (0(5) sup wap(Bi(s)) +2K*o(s)s sup ag(Bq(7)

~ S%(si/tiﬁ»l] TE(ti,S,‘]
(Mkik; 1 + Mkik; 1) SUPc (4,51 ap(B(t))
2Mk; / ) +2K"so(s)) sup ap(Bi(s))ds
s€(tissi]

) s

ki(Mki—y + Mki 1 +2M([lo[2 +2K"si o]l 1)) supye g, o, #£(B(t))

ki(Mki_1 + Mki—y +2M([le |11 + 2K allel| 1) supycq, o & (B(£))-

ag(N(B(t))) < ki (Mki_y + MK;_1 +2M([|e]| 1 +2K"allo| 1) apc (B(t)).

Case 2. For the interval [0, 1], we have

weabi(0) < s ({ [ SC s, [ s mm@unas) )

(10)



Mathematics 2019, 7, 1134

Then

IN

IN

IN

IN

IN

IN

IN

IN

IN

ZM/ {ag< f(s,yn(s / g(s,T,yn(T))dT)ds)>}:o_ods

oM /0 01(5) o (yu ()} g ds

+ale) (o ([[stsmmmopar) ) Y

2M [ ai(5) fae () o)

w2 { [ortmopar) Y

zm/ 03(s)aug (Ba () + 2K* 03 )/S (XE(Bl(T)dT> ds

T€(0,s]

ZM/ < Jag(Bi(s)) +2K*o(s)s sup ocE(Bl(T)> ds

) sup ap(Bi(s)) +2K*o(s)s sup ocE(Bl(T)> ds
SG[O t1] TE[0;t1]

2M(||UHL1 +2K*t1f|el[1) sup ap(B(t))
te[O;tl]

2M(leflpr +2K"ajef|1) sup ag(B(t)).
tG[O,‘fl]

ap(A(B(t))) <2M(|lof|11 + 2K al[e][11))apc (B(#))-

Case 3. For the interval (s;, t; 1], we have

ap(ABy(t))

IN

M {ag (7i(s,yn(t;))) boeo + MA{ae (Gi(s,yn ()}

+

IN

Mik; {ack (ya (7)) Y og) + ME: {ae(yn(£)) }o)

+

IN

Mk; {ag(yn(t; }n:O ) + Mk; {aE(yn(t;))}n:O)

+ 2M/st 0’1(5) {DCE(]/n(S))}ZO:O ds

+  0i(s) {“E (/Osg(s, T,yn(r))dr> }n—O) ds

- ({ /sta (s, [ g yn(s>)dT)ds}j O)_
2M/ {oc;;( f(s,yn(s /g(S/Tr]/n( 7))dT)ds) }:oods

13 of 20

(11)
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IN

Wtk fare (7))} ) + M {ee (0 (1)) 1)
+ oM [ 6i(s) fwera(9))30)

+ 2kqls) { [[astn(onac) )

(Mk; + Mk;)ag (B (t7))

Ja
+2M/ < (s)ag(By(s ))—l—ZK*Q(s)/OS aE(Bl(T)dT> ds
(Nk; + MK;)

IN

IN

sup ag(Bi(s))

se(sl 1+1]

+ ZM/ ( Jag(B1(s)) +2K*o(s)s sup ocE(Bl(T)> ds

T€(0,3]

IN

(Mk; + Mk;) sup ag(B(s))

s€(sitiy1]

+ 2M/< sup ap(By(s)) +2K*o(s)s sup [XE(Bl(T)> ds

s€(si iyl TE(si tiv1]

(Mk; + Mk;)ag(By(t;))

IN

+ 21\4/ s) +2K*s0(s)) sup ag(Bi(s))ds.
S€(sitit]
(Mk; + Mk; +2M([|o]| 11 + 2Kt 1]lellp1))  sup  ap(B(t))
te(sitipa]
(Mk; + Mk; +2M([|o || 2 + 2K al[o]l ;1)) sup  ag(B(t)).

tE(sitit]

IN

IN

Then
ap(A(B(t))) < (Mk; + Mk; + 2M([|o|| 11 +2K*al|o][ 1)) apc (B(t))- (12)

From the above cases (10)—(12), for all t € |, we obtain

apc(A(B)) < max (k;, 1) <ma>< (Mk; + Mk;) +2M([|o | 12 +2K*HI|QIIL1))) apc(B).
1<i<N 1<i<N

Thus, we find that A is apc-contraction operator. Applying now theorem 1, we conclude that A
has a fixed point which is an solution of the system (1). [

Next, we present another existence result for the mild solution of the system (1).
Theorem 4. Assume that hypotheses (Hy)—(Hg) are fulfilled and

R G RNIO¢| r
L R [O9(R)Of])
R—+oc0 R

:p<00[

and

MPH®f”L’

Mei + Mej + ———— < Li=1,--,N. (13)
5

r

Then, there exists a mild solution of system (1).

Proof. Following the proof of Theorem 3 we conclude that the map A : Bx — B given by Equation (5)
is continuous. Next, we show that there exists R > 0 such that A(Bg) C Bg. In fact, if it is not true,



Mathematics 2019, 7, 1134 15 of 20

then for each positive number R , there exists a function € Bg and { € ] such that R < |(Ay)()|.
Therefore for
Case 1. For f € (s;,t;], and § € Bg, we have,

e d .. .
A0 < [Sstsn| i)
B(E)
+ || si-0)]lpg) 12i(si-1,7(si-1))]
i
o [ 18 06y (196)]+ [ Ocrrp(ieic ) ds
< Mejq [y(si1)| + Md; 4
+ Mel 1[7(si-1) [ + Ml
+ / Me 0= (s) < |+/®g 7))t )ds.
Then
| (Ay) (f) | < Mci_lR + Mdi—l
+ Mei,lR—i-Mli 1
+ Me—0(t=9) (Iy |+/ Og( |)dT) ds.
5i-1
< (Mci_y + Me;_1)R + Ml;_y + Ml;_4

f
+MP(R+[Ogllnp(R)) [ et 05(s)ds
It follows from the Holder’s inequality that
[(Ay) ()] < (Mejq + Mei )R+ Md; 1 + Ml;_

Mip(R + [|Og]l119(R)) O -
o1+ '

Case 2. For f € [0;t1], and i/ € Bg, we get,

|(Ay)(H)

509
< ||=S5(¢t0
5o,

+ HS(t s)|Ie) 1]
" i
< Mlyi| + Mlyo| + Mp(R + [|Og][119(R ))/0 e =)@ (s)ds.

It follows from the Holder’s inequality that

Myp(R + ||®gHL11(P(R))H®f||U (1 ¢~ iy}
o=

Mp(R + ||Ogl119(R)) O L
o1+ '

|(Ay)(D)

< Mlyol + Mly1| +

IN

Mlyol + Mly1| +
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Case 3. For f € (s;,t;11],and § € Bg, we have,

| (Ay)(D)

[ I5E s 05w () + [ Otz ) s
< MCiR+Mdj+M€iR+Mli

Y
n Ml/J(R+||®gHL1q0(R))/S e 290 (s)ds.

i

It follows from the Holder’s inequality that

[(Ay)(H)] < Md;+ Ml

(MCZ'—FMEl‘)R

My (R +[|Og] 119 (R) O |-
o1+ '

_|_

_|_

Therefore for all f € ], we have

R<|[(Ay)(H)] < (Mc;+ Me;)R
+  max(Md; + Ml;, M|yo| + M|y1])
N My(R+ O 1¢(R))[©f]|r

1
s+

Dividing both sides by R and taking the liminf as R — +co, we have

Mp||©F||rr
1

Mci+Mei+ >1,i=0,---,N.
which contradicts (13). Hence, the operator A transforms the set By into itself.

The proof of A : Bg — Bpg is ag-contraction is similar to those in Theorem 3. Therefore, we omit
the details. By the Darbo-Sadovskii fixed point theorem 2 we deduce that A has a fixed point which is
a mild solution of system (1). [

4. An Example

In this section, we give an example to illustrate the above theoretical result.

Set E = L%(]0, 7], R) be the space of all square integrable functions from [0, 7t] into R. We denote
by H2([0, ], R) the Sobolev space of functions u : [0, 7] — R, such that u” € L?([0, 7], R). Define the
operator A : D(A) — E by

Au(t) =u"(7),

with domain

D(A) = {w € E: w,w are absolutely continuous, w” € E, w(0) = w(r) =0}.

It is well known that A is the infinitesimal generator of a Cyp-semigroup and of a strongly
continuous cosine function on E, which will be denoted by (C(t)). From [14], for all x €
H2([0, ], R), t € R, [C(H)]Ig(g) < 1. Define also the operator BB : H'([0, ],R) — E by

where a : [0,1] — R is a Holder continuous function.
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Consider the closed linear operator A(t) = B(t) + A. It has been proved by Henriquez in [44]
that the family {.A(f) : t € ]} generates an evolution operator {S(t,s) } (; s)cp- Moreover, S(-, -) is well
defined and satisfies the conditions (H1) and (H2), withM = M =1land 6 = 1.

We consider the following system:

g—;u(t,r) = %u(t,r) +a(t)%u(t,r)
u(t,7)
(\/+1)(1+\u£ Iy Jus,)
e u(s,
(ﬁ+1)(t+1)/ s+ (1t '€ (0.3 v (H1].
u(t,t) = ﬁcos 7Tt u (%ir) , te (%,%] ,T €07, (14)
Su(t,7) :%smntu(%_,r), te (%,%],TG [0, 7],
u(t,0) = u(t,m)=0, te[0,1],
u(0,7) = yo, T€ 0,7,
0,1) =1, T € 0,7
Takea=t, =1,tg=5s0=0,11 = \[, = % The system (14) can be written in the abstract form:
y'(t) = A(t)y(t) + f (t,y (), [ g(t,;sy(s ))ds), te (siti]i=1,2
y(t) ’Yz(t y(t ))/ te (tzf 51] i=1, (15)
vyt =Gty(t)), telts] i=1
y(0) = yo, ¥'(0) = y1,
where y(t) = u(t,-), thatis y(t)(t) = u(t,t), T € [0, 7.
The function f : | x E x E — E, is given by
y(6)(7)] e
t ’ t 7
P A = s wom) T virnern
The function g : D x E — E, is given by
Viy(t)(7)
s = g @ na s 200
Functions
ty(ty ! t L 16
e y(6)(0) = gyeosmty (= ) (x), (16)
and
t,y(t; ! t L 17
Gt y()(E) = gysinmty (2 ) () a7
represent noninstantaneous impulses during interval ( Vel \[} We have
f(ty,2)(7)] < 1:\/E¢(|y(t)(f)| +2(6)(0))), (18)

and

8590 < S ) (19
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From the above discussion, we obtain

Y(t) =t e(t) =t, ®f(t) _ : +1\/? Oyt) = 8\+ﬁ8t

Foreacht € J,and Wi, W, C E, we get

1 e
ap (f(t, Wy, Wa)) < mﬂ%(wﬂ + Vit (E+1)

We shall show that condition (H3) holds with

ap(Wa),

1 et

U= nwviry YT i nern

Moreover
1
Il < 350 llpll < 1.

By (19), forany t € ] and W C E, we get

then

Hence (Hs) is satisfied with K* = —.
Next, let us observe that, in view of (16) and (17), the mapping 77 and {; fulfil the hypothes (Hs)
and (Hg) withc; = ey =k = k; = 11—2 and d; = I; = 0. Furthermore, we have
242

max(ky, 1) (Mky + Mky + 2M(||o|| 1 4+ 2K*aljo]| 1)) = e < 1.

Clearly all the conditions of theorem 3 are satisfied. Hence by the conclusion of Theorem 3,
it follows that problem (14) has a solution.
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