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Abstract: In this paper, we introduce generalized Wardowski type quasi-contractions called
α-(ϕ, Ω)-contractions for a pair of multi-valued mappings and prove the existence of the common fixed
point for such mappings. An illustrative example and an application are given to show the usability of
our results.
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1. Introduction

For a metric space (Λ, d), let CB(Λ) be the class of all nonempty closed and bounded subsets of
Λ and K(Λ) be the class of all nonempty compact subsets of Λ (it is well known that K(Λ) ⊆ CB(Λ)).
The mapping H : CB(Λ)× CB(Λ)→ R+ ∪ {0} defined by

H(P, Q) = max{sup
p∈P

d(p, Q), sup
q∈Q

d(q, P)}, f or any P, Q ∈ CB(Λ)

is called the Pompeiu–Hausdorff metric induced by d, where d(p, Q) = inf{d(p, q) : q ∈ Q}
is the distance from p to Q ⊆ Λ. For example, if we consider the set of real numbers with
the usual metric d(η, $) = |η − $|, then, for any two closed intervals [a, b] and [c, d], we have
H([a, b], [c, d]) = max{|a− c|, |b− d|}.

In 1969, Nadler [1] extended the Banach contraction principle as follows:

Theorem 1 ([1]). Let (Λ, d) be a complete metric space and Υ : Λ → CB(Λ) be a multi-valued mapping
such that

H(Υη, Υ$) ≤ kd(η, $) (1)

for all η, $ ∈ Λ, where k ∈ [0, 1). Then, Υ has at least one fixed point.

Recently, Wardowski [2] gave a new generalization of Banach contraction to show the existence
of the fixed point for such contraction by a more simple method of proof than the Banach’s one.
After that, several authors studied different variations of Wardowski contraction for single-valued
and multivalued mappings—for example, see [3–8]. On the other hand, Aydi et al. [9] studied a
common fixed point for generalized multi-valued contractions. In this paper, we introduce the concept
of α-(ϕ, Ω)-contraction for a pair of multi-valued mappings and prove the existence of common fixed
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point for such mappings. Our results generalize and improve many existing results in the literature
(for instance, [7,9]). In addition, an illustrative example and an application to the system of
Volterra-type integral inclusions are given.

2. Preliminaries

In the sequel, we recall some definitions and results which will be used in this article. Following [2],
denote by Ξ the collection of all functions Ω : R+ → R satisfying the following conditions :

(Ω1) Ω is strictly increasing,
(Ω2) For each sequence {σn} in (0,+∞), lim

n→∞
σn = 0 if and only if lim

n→∞
Ω(σn) = −∞,

(Ω3) There exists k ∈ (0, 1) such that limσ→0+ σkΩ(σ) = 0.

Definition 1 ([2]). Let (Λ, d) be a metric space. A mapping Υ : Λ→ Λ is said to be an Ω-contraction if there
exist τ ∈ R+ and Ω ∈ Ξ such that for all η, $ ∈ Λ,

d(Υη, Υ$) > 0 =⇒ τ + Ω(d(Υη, Υ$)) ≤ Ω(d(η, $)). (2)

It should be noted that any contraction is an Ω-contraction. To see this, suppose that Υ is
a contraction on a metric space (Λ, d) with constant k ∈ [0, 1) that is, d(Υη, Υ$) ≤ kd(η, $), for all
η, $ ∈ Λ. If k = 0, d(Υη, Υ$) = 0 and we have nothing to prove. In the case where k ∈ (0, 1), taking ln
on both sides of the contraction, we get

− lnk + ln(d(Υη, Υ$)) ≤ ln(d(η, $)) (3)

for all η, $ ∈ Λ with d(Υη, Υ$) > 0. Putting τ = −lnk and Ω(t) = lnt in the above inequality, we have
an Ω-contraction.

Example 1 ([2]). The functions Ω : R+ → R defined by

(1) Ω(σ) = ln σ,
(2) Ω(σ) = ln σ + σ,
(3) Ω(σ) = −1√

σ
,

(4) Ω(σ) = ln(σ2 + σ),

belong to Ξ.

Theorem 2 ([2]). Let (Λ, d) be a complete metric space and Υ : Λ → Λ be an Ω-contraction. Then, Υ has
a unique fixed point µ in Λ and for any point η ∈ Λ the sequence {Υnη} converges to µ.

In 2012, Samet et al. [10] introduced the notion of α-admissible mapping as follows:
Let Λ be a nonempty set. The selfmap Υ on Λ is called α-admissible whenever there exists a map

α : Λ×Λ→ [0, ∞) such that α(η, $) ≥ 1 implies α(Υη, Υ$) ≥ 1, for all η, $ ∈ Λ. In addition, it is well
known that Λ is called α-regular, if for any sequence {ηn} in Λ that ηn → η and α(ηn, ηn+1) ≥ 1 for all
n, then α(ηn, η) ≥ 1 for all n. In 2013, Mohammadi et al. introduced the notion of α-admissiblity for
multi-valued mappings as follows:

Definition 2 ([11]). Let Λ be a nonempty set and 2Λ is the set of all nonempty subsets of Λ. A multi-valued
mapping Υ : Λ→ 2Λ is called α-admissible, if there exists a function α : Λ×Λ→ [0, ∞) such that, for each
η ∈ Λ and $ ∈ Υη with α(η, $) ≥ 1, then α($, µ) ≥ 1 for all µ ∈ Υ$.
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3. Main Results

Let Φ denote the set of all the functions ϕ : R→ R satisfying:

(ϕ1) limn→∞
ϕn(t)

n < 0 for all t > 0;
(ϕ2) ϕ(t) < t for all t ≥ 0.
(ϕ3) ϕ is nondecreasing and upper semi-continuous.

Example 2. The functions ϕ : R→ R defined by

(1) ϕ1(t) = t− τ where τ > 0,

(2) ϕ2(t) =

{
t3 − 1, t < 1,√

t− 1, t > 1.

belong to Φ.

It is easy to see that any function ϕ satisfying (ϕ1) has the property that lim
n→∞

ϕn(t) = −∞ for all
t > 0.

Definition 3. Let Λ be a nonempty set. We say that a pair (Υ, Γ) of multi-valued mappings Υ, Γ : Λ → 2Λ

is α-admissible, if there exists a function α : Λ×Λ→ [0, ∞) such that

(α1) for each η ∈ Λ and $ ∈ Υη with α(η, $) ≥ 1, then α($, µ) ≥ 1 for all µ ∈ Γ$,
(α2) for each η ∈ Λ and $ ∈ Γη with α(η, $) ≥ 1, then α($, µ) ≥ 1 for all µ ∈ Υ$.

It is well known that a function α : Λ× Λ → [0, ∞) is called symmetric if α(η, $) ≥ 1 implies
α($, η) ≥ 1 for all η, $ ∈ Λ. We say that a pair (Υ, Γ) of multi-valued mappings Υ, Γ : Λ → 2Λ

is symmetric α-admissible if there exists a symmetric function α : Λ× Λ → [0, ∞) such that (Υ, Γ)
is α-admissible.

Definition 4. We say that a pair of mappings Υ, Γ : Λ → CB(Λ) is α-(ϕ, Ω)-contraction whenever there
exist α : Λ×Λ→ [0, ∞), ϕ ∈ Φ and Ω ∈ Ξ such that

Ω(H(Υη, Γ$)) ≤ ϕ(Ω(M(η, $))), (4)

for all η, $ ∈ Λ with α(η, $) ≥ 1 and H(Υη, Γ$) > 0 where

M(η, $) = max{d(η, $), d(η, Υη), d($, Γ$),
d(η, Γ$) + d($, Υη)

2
}.

Theorem 3. Let (Λ, d) be a complete metric space and Υ, Γ : Λ → K(Λ) be two mappings such that (Υ, Γ)
is an α-(ϕ, Ω)-contraction. Assume that the following assertions hold:

(i) There exists η0 ∈ Λ and η1 ∈ Υη0 such that α(η0, η1) ≥ 1,
(ii) (Υ, Γ) is a symmetric α-admissible pair.

Then, Υ and Γ have a common fixed point provided that one of the following holds:

(C1) Υ and Γ are continuous,
(C2) Ω is continuous and Λ is α-regular.

Proof. It is easy to check that, if M(η, $) = 0, then η = $ and it is a common fixed point of Υ
and Γ. Let η0, η1 be as in the assumption (i) that is, η0 ∈ Λ and η1 ∈ Υη0 be such that α(η0, η1) ≥ 1.
We consider the following steps:
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Step 1: If M(η0, η1) = 0, then η0 = η1 is a common fixed point of Υ and Γ. Thus, we may assume
that M(η0, η1) > 0. Now, we have

M(η0, η1) = max{d(η0, η1), d(η0, Υη0), d(η1, Γη1),
d(η0, Γη1) + d(η1, Υη0)

2
}

= max{d(η0, η1), d(η1, Γη1)}.

Consider the following two cases:

(Case a): d(η1, Γη1) = 0, that is, η1 ∈ Γη1. In this case, since (Υ, Γ) is symmetric α-admissible pair,
η1 ∈ Υη0 and α(η0, η1) ≥ 1, by (α1), we have α(η1, η1) ≥ 1. If d(η1, Υη1) > 0, then by
α-(ϕ, Ω)-contractivity of the pair (Υ, Γ), we have

Ω(d(η1, Υη1)) ≤ Ω(H(Γη1, Υη1))

≤ ϕ(Ω(M(η1, η1)))

= Ω(d(η1, Υη1)),

which is a contradiction. Hence, η1 ∈ Υη1 and so η1 is a common fixed point of Υ and Γ.
(Case b): d(η1, Γη1) > 0. In this case, we have H(Υη0, Γη1) ≥ d(η1, Γη1) > 0. Since α(η0, η1) ≥ 1 and

the pair (Υ, Γ) is α-(ϕ, Ω)-contraction, we have

Ω(d(η1, Γη1)) ≤ Ω(H(Υη0, Γη1))

≤ ϕ(Ω(M(η0, η1)))

= ϕ(Ω(max{d(η0, η1), d(η1, Γη1)})). (5)

In the case max{d(η0, η1), d(η1, Γη1)} = d(η1, Γη1), we have Ω(d(η1, Γη1)) ≤
ϕ(Ω(d(η1, Γη1)), which contradicts with (ϕ2). Hence, max{d(η0, η1), d(η1, Γη1)} = d(η0, η1)

and then we have
Ω(d(η1, Γη1)) ≤ ϕ(Ω(d(η0, η1))). (6)

On the other hand, since Γη1 is compact, there exists η2 ∈ Γη1 such that d(η1, η2) =

d(η1, Γη1). Substituting in (6), we get

Ω(d(η1, η2)) ≤ ϕ(Ω(d(η0, η1))). (7)

Note that, since (Υ, Γ) is symmetric α-admissible pair, we have α(η1, η2) ≥ 1.

Step 2: If M(η2, η1) = 0, then η1 = η2 is a common fixed point of Υ and Γ. Thus, we may assume
that M(η2, η1) > 0. Now, we have

M(η2, η1) = max{d(η1, η2), d(η2, Υη2), d(η1, Γη1),
d(η1, Υη2) + d(η2, Γη1)

2
}

= max{d(η1, η2), d(η2, Υη2)}.

Consider two cases:

(Case c): d(η2, Υη2) = 0 that is, η2 ∈ Υη2. In this case, since (Υ, Γ) is symmetric α-admissible pair,
η2 ∈ Γη1 and α(η1, η2) ≥ 1, by (α2), we have α(η2, η2) ≥ 1. If d(η2, Γη2) > 0, then, by
α-(ϕ, Ω)-contractivity of the pair (Υ, Γ), we have

Ω(d(η2, Γη2)) ≤ Ω(H(Υη2, Γη2))

≤ ϕ(Ω(M(η2, η2)))

= Ω(d(η2, Γη2)),
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which is a contradiction. Hence, η2 ∈ Γη2 and so η2 is a common fixed point of Υ and Γ.
(Case d): d(η2, Υη2) > 0. In this case, we have H(Υη2, Γη1) ≥ d(η2, Υη2) > 0. Since α(η1, η2) ≥ 1 and

the pair (Υ, Γ) is α-(ϕ, Ω)-contraction, we have

Ω(d(η2, Υη2)) ≤ Ω(H(Υη2, Γη1))

≤ ϕ(Ω(M(η2, η1)))

= ϕ(Ω(max{d(η1, η2), d(η2, Υη2)})). (8)

In the case max{d(η1, η2), d(η2, Υη2)} = d(η2, Υη2), we have Ω(d(η2, Υη2)) ≤
ϕ(Ω(d(η2, Υη2)), which contradicts with (ϕ2). Hence, max{d(η1, η2), d(η2, Υη2)} =

d(η1, η2), and so
Ω(d(η2, Υη2)) ≤ ϕ(Ω(d(η1, η2))). (9)

On the other hand, since Υη2 is compact, there exists η3 ∈ Υη2 such that d(η2, η3) =

d(η2, Υη2). Substituting in (9), we get

Ω(d(η2, η3)) ≤ ϕ(Ω(d(η1, η2))). (10)

Substituting (7) in (10), we get

Ω(d(η2, η3)) ≤ ϕ2(Ω(d(η0, η1))). (11)

Continuing this process, either we find a common fixed point of Υ and Γ or we can construct
a sequence {ηn} in Λ such that η2n+1 ∈ Υη2n, η2n+2 ∈ Γη2n+1, d(ηn, ηn+1) > 0, α(ηn, ηn+1) ≥ 1 for all
n ∈ N∪ {0} and

Ω(d(ηn, ηn+1)) ≤ ϕn(Ω(d(η0, η1))) (12)

for all n ∈ N.
Put γn = d(ηn, ηn+1). Then, from (12), we have

Ω(γn) ≤ ϕn(Ω(γ0))→ −∞,

as n→ ∞. Thus, limn→∞ Ω(γn) = −∞. From (Ω2), limn→∞ γn = 0. Then, for any n ∈ N, we have

γn
k(Ω(γn)) ≤ γn

k ϕn(Ω(γ0)).

Taking the limit on both sides of the above inequality, we obtain limn→∞ γn
k ϕn(Ω(γ0)) = 0. In

addition, from (ϕ1), there exists λ > 0 such that | ϕ
n(Ω(γ0))

n | > λ. Now, we have

nγk
nλ ≤ nγk

n|
ϕn(Ω(γ0))

n
| = |γk

n ϕn(Ω(γ0))|.

Taking the limit on both sides of the above inequality, we obtain limn→∞ nγk
nλ = 0, and so

limn→∞ nγk
n = 0. Therefore, there exists N ∈ N such that γn ≤ 1

n
1
k

for all n ≥ N. Now, for any

m, n ∈ N with m > n, we have

d(ηn, ηm) ≤
m−1

∑
i=n

γi ≤
m−1

∑
i=n

1

i
1
k
≤

∞

∑
i=n

1

i
1
k

.

From the above and from the convergence of the series ∑∞
i=1 1/i

1
k , we receive that {ηn} is a Cauchy

sequence. From the completeness of Λ, there exists µ ∈ Λ such that limn→∞ ηn = µ.
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Suppose that the condition (C1) is satisfied. Then,

d(µ, Υµ) = lim
n→∞

d(η2n+1, Υµ) ≤ limH(Υη2n, Υµ) = 0

and
d(µ, Γµ) = lim

n→∞
d(η2n+2, Γµ) ≤ lim

n→∞
H(Γη2n+1, Γµ) = 0.

Thus, µ is a common fixed point of Υ and Γ.
Now, suppose that (C2) holds. Since Λ is α-regular, we have α(ηn, µ) ≥ 1. Then, we consider

two cases:

(i) There exists N ∈ N such that for all n ≥ N one has Υη2n = Γµ. Then, η2n+1 ∈ Υη2n = Γµ.
Since η2n+1 → µ and Γµ is closed we get µ ∈ Γµ.

(ii) There exists a subsequence {η2ni} of {η2n} such that Υη2ni 6= Γµ. In this case, suppose, on
the contrary, that d(µ, Γµ) > 0. Then,

Ω(d(η2ni+1, Γµ)) ≤ Ω(H(Υη2ni , Γµ))

≤ ϕ(Ω(M(η2ni , µ)))

= ϕ(Ω(max{d(η2ni , µ), d(η2ni , Υη2ni ), d(µ, Γµ),
d(η2ni , Γµ) + d(µ, Υη2ni )

2
})).

Taking the limit on both sides of the above inequality, we obtain Ω(d(µ, Γµ)) ≤ ϕ(Ωd(µ, Γµ)),
a contradiction. Thus, d(µ, Γµ) = 0 and so µ ∈ Γµ.

A similar technique can be used to show that µ ∈ Υµ.

Taking ϕ(t) = t− τ in Theorem 3, we obtain the following result.

Corollary 1. Let (Λ, d) be a complete metric space and Υ, Γ : Λ→ K(Λ) be two mappings satisfying

τ + Ω(H(Υη, Γ$)) ≤ Ω(M(η, $))

for all η, $ ∈ Λ with α(η, $) ≥ 1 and H(Υη, Γ$) > 0, where τ > 0, Ω ∈ Ξ and

M(η, $) = max{d(η, $), d(η, Υη), d($, Γ$),
d(η, Γ$) + d($, Υη)

2
}.

Assume that the following assertions hold:

(i) There exists η0 ∈ Λ and η1 ∈ Υη0 such that α(η0, η1) ≥ 1,
(ii) (Υ, Γ) is a symmetric α-admissible pair.

Then, Υ and Γ have a common fixed point provided that one of (C1) and (C2) holds.

Taking Ω(t) = ln t + t in Corollary 1, we obtain the following result.

Corollary 2. Let (Λ, d) be a complete metric space and Υ, Γ : Λ→ K(Λ) be two mappings satisfying

H(Υη, Γ$)

M(η, $)
eH(Υη,Γ$)−M(η,$) ≤ e−1,

for all η, $ ∈ Λ with α(η, $) ≥ 1 and H(Υη, Υ$) > 0, where

M(η, $) = max{d(η, $), d(η, Υη), d(v, Υ$),
d(η, Υ$) + d($, Υη)

2
}.

Assume that the following assertions hold:
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(i) There exists η0 ∈ Λ and η1 ∈ Υη0 such that α(η0, η1) ≥ 1,
(ii) (Υ, Γ) is a symmetric α-admissible pair.

Then, Υ and Γ have a common fixed point provided that one of (C1) and (C2) holds.

Example 3. Let Λ = {κn = n(n+1)
2 : n = 1, 2, . . .} ∪ {0} and d(η, $) = |η − $|. Define Υ, Γ : Λ →

K(Λ) by

Υη =


{0}, η = 0,
{κ1}, η = κ1, κ2,
{κ1, κ2, . . . , κn−1}, η = κn, n ≥ 3,

and

Γη =


{0}, η = 0,
{κ1}, η = κ1, κ2,
{κ2, κ3, . . . , κn−1}, η = κn, n ≥ 3.

Define a function α : Λ×Λ→ [0, ∞) by α(η, $) = 1 if η, $ ∈ {κn : n = 1, 2, . . .} and α(η, $) = 0, otherwise.
Then, for any (η, $) ∈ Λ with α(η, $) ≥ 1 and H(Υη, Γ$) 6= 0, we have the following cases:

Case 1: η = κ1 and $ = κn, n ≥ 3. Then,

H(Υη, Γ$) = H({κ1}, {κ2, ..., κn−1}) = |κn−1 − 1|

and M(η, $) = |κn − 1|. Hence, we have

H(Υκ1, Γκn)

M(κ1, κn)
eH(Υκ1,Γκn)−M(κ1,κn) =

κn−1 − 1
κn − 1

eκn−1−κn

=
n(n−1)

2 − 1
n(n+1)

2 − 1
e−n

< e−1.

Case 2: η = κn, n ≥ 3 and $ = κ1. Then,

H(Υη, Γ$) = H({κ1, κ2, ..., κn−1}, {κ1}) = |κn−1 − 1|

and M(η, $) = |κn − 1|. Hence, we have

H(Υκn, Γκ1)

M(κn, κ1)
eH(Υκn ,Γκ1)−M(κn ,κ1) =

κn−1 − 1
κn − 1

eκn−1−κn

=
n(n−1)

2 − 1
n(n+1)

2 − 1
e−n

< e−1.

Case 3: η = κ2 and $ = κn, n ≥ 3. Then,

H(Υη, Γ$) = H({κ1}, {κ2, ..., κn−1}) = |κn−1 − κ1|
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and M(η, $) = |κn − κ2|. Hence, we have

H(Υκ2, Γκn)

M(κ2, κn)
eH(Υκ2,Γκn)−M(κ2,κn) =

κn−1 − 1
κn − 3

eκn−1−κn+2

=
n(n−1)

2 − 1
n(n+1)

2 − 3
e−n+2

≤ e−1.

Case 4: η = κn, n ≥ 3 and $ = κ2. Then,

H(Υη, Γ$) = H({κ1, κ2, ..., κn−1}, {κ1}) = |κn−1 − 1|

and M(η, $) = |κn − κ2|. Hence, we have

H(Υκn, Γκ2)

M(κn, κ2)
eH(Υκn ,Γκ2)−M(κn ,κ2) =

κn−1 − 1
κn − 3

eκn−1−κn+2

=
n(n−1)

2 − 1
n(n+1)

2 − 3
e−n+2

≤ e−1.

Case 5: η = κn and $ = κm, n > m. Then,

H(Υη, Γ$) = H({κ1, κ2, ..., κn−1}, {κ2, ..., κm−1}) = κn−1 − κm−1

=
n(n− 1)

2
− m(m− 1)

2
=

(n−m)(n + m− 1)
2

and

M(η, $) ≥ |κn − κm| =
n(n + 1)

2
− m(m + 1)

2
=

(n−m)(n + m + 1)
2

.

Hence, we have

H(Υκn, Γκm)

M(κn, κm)
eH(Υκn ,Γκm)−M(κn ,κm) ≤ n + m− 1

n + m + 1
e−(n−m) < e−1.

Case 6: η = κm and $ = κn, n > m. Then,

H(Υη, Γ$) = H({κ1, κ2, ..., κm−1}, {κ2, ..., κn−1}) = κn−1 − κm−1

=
n(n− 1)

2
− m(m− 1)

2
=

(n−m)(n + m− 1)
2

and

M(η, $) ≥ |κn − κm| =
n(n + 1)

2
− m(m + 1)

2
=

(n−m)(n + m + 1)
2

.

Hence, we have

H(Υκm, Γκn)

M(κn, κm)
eH(Υκm ,Γκn)−M(κm ,κn) ≤ n + m− 1

n + m + 1
e−(n−m) < e−1.

On the other hand, it is easy to see that (Υ, Γ) is a symmetric α-admissible pair. In addition, if we take
η0 = κ2, η1 = κ1, then η1 ∈ Υη0 and α(η0, η1) ≥ 1. Thus, by Corollary 2, Υ and Γ have a common
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fixed point. Here, 0 is a common fixed point of Υ and Γ. Note that Υ and Γ are not a generalized
contraction. Since

sup
n≥3

H(Υκn, Γκ1)

M(κn, κ1)
= sup

n≥3

κn−1 − 1
κn − 1

= sup
n≥3

n(n−1)
2 − 1

n(n+1)
2 − 1

= 1,

Theorem 2.2 in [9] can not apply to this example.

Defining α : Λ × Λ → [0, ∞) by α(η, $) = 1, for all η, $ ∈ Λ in Theorem 3, we have
the following result.

Theorem 4. Let (Λ, d) be a complete metric space and Υ, Γ : Λ→ K(Λ) be two mappings satisfying

Ω(H(Υη, Γ$)) ≤ ϕ(Ω(M(η, $))) (13)

for all η, $ ∈ Λ with H(Υη, Γ$) > 0, where ϕ ∈ Φ and Ω ∈ Ξ. If Υ, Γ or Ω be continuous, then Υ and Γ have
a common fixed point.

Taking ϕ(t) = t− τ in Theorem 4, we obtain the following corollary.

Corollary 3. Let (Λ, d) be a complete metric space and Υ, Γ : Λ→ K(Λ) be two mappings satisfying

τ + Ω(H(Υη, Γ$)) ≤ Ω(M(η, $))

for all η, $ ∈ Λ with H(Υη, Γ$) > 0, where τ > 0, Ω ∈ Ξ and

M(η, $) = max{d(η, $), d(η, Υη), d($, Γ$),
d(η, Γ$) + d($, Υη)

2
}.

If Υ, Γ or Ω is continuous, then Υ and Γ have a common fixed point.

Taking Ω(t) = ln t + t in the Corollary 3, we obtain the following corollary.

Corollary 4. Let (Λ, d) be a complete metric space and Υ, Γ : Λ→ K(Λ) be two mappings satisfying

H(Υη, Γ$)

M(η, $)
eH(Υη,Γ$)−M(η,$) ≤ e−1

for all η, $ ∈ Λ with H(Υη, Γ$) > 0, where

M(η, $) = max{d(η, $), d(η, Υη), d($, Γ$),
d(η, Γ$) + d($, Υη)

2
}.

If Υ, Γ are continuous, then Υ and Γ have a common fixed point.

4. An Application to Volterra-Type Integral Inclusions

Let Λ := C(J ,R) (J = [a, b]) be the set of all real valued continuous functions with domain
J and let

d(η, $) = sup
t∈J

(|η(t)− $(t)|) = ||η − $||, for all η, $ ∈ Λ.
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Consider the system of Volterra-type integral inclusions:
η(t) ∈ p(t) +

t∫
a

K(t, s, η(s))ds, t ∈ [a, b],

η(t) ∈ p(t) +
t∫

a
G(t, s, η(s))ds, t ∈ [a, b],

(14)

where p : J → R and K, G : J ×J ×R→ CB(R) are continuous.

Theorem 5. Assume that there exist τ > 0 and a continuous function q : J → R+ with
∫ b

a q(t)dt ≤ 1
such that

H(K(t, s, η(s))− G(t, s, $(s))) ≤ q(s)|η(s)− $(s)|
τ2||η − $||+ 2τ

√
||η − $||+ 1

, (15)

for each s, t ∈ J and η, $ ∈ Λ. Then, the system of integral inclusions (14) has a solution in Λ.

Proof. Define Υ, Γ : Λ→ K(Λ) as

Υη(t) = {u ∈ Λ : u ∈ p(t) +
∫ t

a
K(t, s, η(s))ds}, t ∈ [a, b]

and

Γη(t) = {u ∈ Λ : u ∈ p(t) +
∫ t

a
G(t, s, η(s))ds}, t ∈ [a, b].

As in [12], it is easy to show that Υη and Γη are nonempty, for all η ∈ Λ. Now, let η, $ ∈ Λ and u ∈ Υη.
Then, there exists kη(t, s) ∈ Kη(t, s) for each t, s ∈ J such that u(t) = p(t) +

∫ t
a kη(t, s)ds, for all t ∈ J .

From (15) and as in [12], it is easily seen that there exists v(t, s) = g$(t, s) ∈ G$(t, s) satisfying

|kη(t, s)− v(t, s)| ≤ q(s)|η(s)− $(s)|
τ2||η − $||+ 2τ

√
||η − $||+ 1

. (16)

Taking r(t) = p(t) +
∫ t

a g$(t, s)ds, we have r(t) ∈ Γ$ and

|u(t)− r(t)| = |
t∫

a

kη(t, s)ds−
t∫

a

g$(t, s)ds|

≤
t∫

a

|kη(t, s)− g$(t, s)|ds

≤
b∫

a

q(s)|η(s)− $(s)|
τ2||η − $||+ 2τ

√
||η − $||+ 1

≤ (

b∫
a

q(s)ds)
||η − $||

τ2||η − $||+ 2τ
√
||η − $||+ 1

≤ d(η, $)

τ2d(η, $) + 2τ
√

d(η, $) + 1
. (17)

Taking sup as t ∈ J , we obtain

||u− r|| ≤ d(η, $)

τ2d(η, $) + 2τ
√

d(η, $) + 1
.
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Interchanging the rule of η, $ in the above argument yields that

H(Υη, Γ$) ≤ d(η, $)

τ2d(η, $) + 2τ
√

d(η, $) + 1
. (18)

Therefore, √
H(Υη, Γ$) ≤

√
d(η, $)

τ
√

d(η, $) + 1
(19)

for all η, $ ∈ Λ with Υη 6= Γ$ (and subsequently η 6= $). Inverting the above inequality and performing
some algebra actions, we get

τ +
−1√

H(Υη, Γ$)
≤ −1√

d(η, $)
(20)

for all η, $ ∈ Λ with Υη 6= Γ$. Now taking Ω(t) = −1√
t
, we obtain

τ + Ω(H(Υη, Γ$)) ≤ Ω(d(η, $)) ≤ Ω(M(η, $)), (21)

for all η, $ ∈ Λ with Υη 6= Γ$, where M(η, $) is as in Corollary 3. We see that the conditions of
Corollary 3 are satisfied. Thus, Υ and Γ have a common fixed point. Hence, there is a solution
for (14).

5. Conclusions

In this paper, we introduced a new generalization of Wardowski type contractions and established
common fixed point theorems for such multi-valued contractions. The new contraction will be
a powerful tool for the existence solution of the systems of integral inclusions and fractional differential
inclusions. We think that different versions of this new contraction can be considered in abstract spaces.
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