
mathematics

Article

A Nonparametric Approach to Bond
Portfolio Immunization

Victor Lapshin

Faculty of Economic Sciences ,National Research University Higher School of Economics, Myasnitskaya Street,
Moscow 119017, Russia; vlapshin@hse.ru

Received: 16 October 2019; Accepted: 14 November 2019; Published: 16 November 2019 ����������
�������

Abstract: We consider the problem of short term immunization of a bond-like obligation with
respect to changes in interest rates using a portfolio of bonds. In the case that the zero-coupon
yield curve belongs to a fixed low-dimensional manifold, the problem is widely known as
parametric immunization. Parametric immunization seeks to make the sensitivities of the hedged
portfolio price with respect to all model parameters equal to zero. However, within a popular
approach of nonparametric (smoothing spline) term structure estimation, parametric hedging is
not applicable right away. We present a nonparametric approach to hedging a bond-like obligation
allowing for a general form of the term structure estimator with possible smoothing. We show that
our approach yields the standard duration based immunization in the limit when the amount of
smoothing goes to infinity. We also recover the industry best practice approach of hedging based on
key rate durations as another particular case. The hedging portfolio is straightforward to calculate
using only basic linear algebra operations.
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1. Introduction

Hedging a bond-like obligation with a bond portfolio is a classical topic in finance, first presented
in [1]. We only give several references here to sketch the research context. Fisher and Weil [2]
introduced the duration based immunization against parallel shifts in the term structure of interest
rates. Cooper [3] proposed to use a parametric function to estimate the term structure and considered
partial derivatives with respect to function parameters; however, his choice of parametrization was not
particularly helpful. Other authors [4–6] used the Nelson–Siegel parametric model [7] to estimate the
term structure and considered partial derivatives with respect to Nelson–Siegel parameters. Almeida
and Lund [8] considered a richer parametric model for the term structure. Barber and Copper [9]
estimated the dominant term structure change patterns via principal component analysis for the
purpose of bond portfolio immunization.

Another branch of research, which is non-parametric by nature, started with Fong and Vasicek [10]
and was continued by Nawalkha et al. [11,12]. They considered a Taylor approximation to the change
in the portfolio price in terms of the interest rate term structure changes.

Research in this area has been concentrated on testing and comparing various methods in various
settings since then.

In contrast to developed markets where it is customary to estimate interest rate term structure
from derivative instruments such as interest rate swaps (IRS) or overnight indexed swaps (OIS),
in many developing markets, these instruments are unavailable or relatively illiquid. This leaves
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government bonds as the only viable source of interest rate term structure information. Furthermore,
even in developed markets, bonds can have much longer maturities than swaps. Finally, when the
obligation is itself bond-like, it makes sense to price it using the bond-implied term structure to avoid
the necessity to estimate the basis between swap and bond zero-coupon rates.

This makes the term structure endogenous and the problem of hedging an obligation with bonds
different from what was studied in the literature.

To overcome this problem, we adopt a different approach. We assume that the interest rate term
structure for pricing the portfolio is estimated from prices of a set of benchmark bonds via a nonparametric
term structure estimation method with smoothing, i.e., by solving some variational problem. We derive
the necessary hedging equations from this variational problem formulation.

To gain some intuition about the result, we also investigate some particular cases, in which
we recover existing hedging approaches like the conventional duration based and convexity based
hedging and the key rate duration approach introduced by Ho [13].

The remainder of the paper is structured as follows. We present the problem and its mathematical
formulation in Section 2. Then, we provide the solution in Section 3. Section 4 shows that several
conventional immunization methods (duration based, convexity based, and key rate durations) can be
considered special cases of our general approach. Section 5 concludes.

2. The Hedging Problem

We consider the following hedging problem. An obligation to be hedged is described by its cash
flow amounts row vector F0 ∈ R1×N corresponding to the cash flow moments vector t ∈ RN , i.e.,
the cash flow at time ti is [F0]i. The obligation is supposed to be regularly repriced by marking to
model, by using a pricing operator PV(F0; r), where r ∈ RN is the estimated market term structure of
interest rates to be defined later, i.e., a vector of market zero-coupon rates for the corresponding terms
to maturity t. We consider a relatively short term hedge, until the next repricing. For simplicity, ignore
the time related features of investing in a bond portfolio such as changes in durations, receiving cash
coupon payments and bond redemptions, etc. These only matter for a long term hedge.

The pricing operator is assumed to be linear in F0 to allow hedging. This assumption is shown
to be not restrictive even for risky coupon bearing bonds [14]. Thus, the pricing operator can be
represented as:

PV(F0; r) = F0 · d(r), (1)

where d(r) ∈ RN is the vector of discount factors for the corresponding terms to maturity t. We assume
that [d(r)]i is a function of ri and ti only; however, the exact formula depends on the interest rate
compounding convention chosen. In a more general framework, the discount factor could also be a
function of credit quality, liquidity, eligibility for repo operations with the centralized counterparty, etc.
However, all these parameters can be assumed constant in the short run and thus not sources of
additional risks. For a long term hedge, they could be important.

Example 1. Assuming continuously compounded interest rates, we get [d(r)]i = e−riti .

As for the term structure r, we assume that it is estimated from a set of K benchmark risk-free
(e.g., government) bonds with the cash flow matrix F ∈ RK×N , where Fk,i is the cash flow for bond k at
term ti. Note that the vector of payment terms t can be considered common for the obligation and all
the benchmark bonds. We can always introduce zero cash flows where necessary without any loss
of generality.

The estimation procedure is assumed to be nonparametric, fitting the benchmark bond model
prices PV(F; r) ∈ RK to their observed market prices P ∈ RK while requiring some sort of smoothness
as follows:
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‖PV(F; r(·))− P‖2 + α · ‖E[r]‖2
H′ → min

r(·)∈H
, (2)

where r(·) is a function to be estimated belonging to some functional space H, e.g., Sobolev–Hilbert space
H1[0, T], E is a linear functional from H to some H′, and α is the smoothing (regularization) parameter.
The most popular nonparametric methods of estimating the term structure of interest rates assume
problems of this form [15–18].

Example 2. Two common choices for E are the differentiation operator D (with H being H1[0, T]) and D2

(with H = H2[0, T]); however, more elaborate choices might be appropriate in developing markets, as discussed
in [19]. It is well known that D yields a piecewise linear term structure, while D2 yields a smoothing cubic
spline as solutions of (2).

A hedging portfolio is chosen from among the same set of benchmark bonds; let w ∈ RK be the
corresponding investment amounts. To simplify the exposition, we assume no trading restrictions.

The hedging problem can be formulated as follows. Given F0, P, F, find w so that the sensitivities
of the hedged obligation price to price changes should be zero, which corresponds to minimizing the
risk associated with the zero-coupon yield curve changes:

∂PV(−F0 + wT F; r)
∂P

= 0. (3)

Here and in what follows, we use the notation AT for the transpose of A, A+ for the
Moore–Penrose inverse of A, ker A for the null space of A, im A for the range of A, V⊥ for the
orthogonal complement of the subspace V, and PV A for the orthogonal projection of A onto the
subspace V.

3. Results

We now present the main result regarding the solution of the hedging problem (3). It gives the
explicit expression for the hedging coefficients w.

Theorem 1. The hedging coefficients w can be found via weighted least squares regression by regressing the

vector of the obligation point sensitivities B0 =
(

∂PV(F0; r)
∂r

)T
onto the corresponding point sensitivities of the

benchmark bonds B =
(

∂PV(F; r)
∂r

)T
:

B0 = Bw + ε (4)

with the error covariance matrix of ε equal to Ω = BBT + A + αJT J, where:

A =
K

∑
i=1

(PV(Fi; r)− Pi)
∂2PV(Fi; r)

∂r2 , JT J =
1
2

∂2G(r)
∂r2 , G(r) = min

f∈H| f (ti)=ri
‖E[ f ]‖2

H′ . (5)

Alternatively, the hedging coefficients w solve MT Bw = MT B0, where columns of the matrix M = Ω−1B
are the elementary term structure perturbations against which we hedge.

Note that the covariance matrix Ω is not singular if the solution of (2) is unique; this will be proven
later. We cannot guarantee that this is indeed the case as it depends on the choice of the regularization
functional E[ f ]; but since the overall idea of regularization includes guaranteeing the uniqueness of the
solution, this can be safely assumed. We also assume that F has full rank, which means that benchmark
bond payment schedules are linearly independent.
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Example 3. For E = D, it is always not singular because ker D only consists of constant functions r(t) = r,
and ‖BTr‖2 = ‖Fd′(r)r‖2 6= 0 for constant r > 0, where d′(r) = ∂d(r)

∂r is a diagonal matrix. For the
continuously compounded interest rates, d′(r) is given by [d′(r)]i,i = −tie−riti .

Proof of Theorem 1. Note that even though the problem (2) is infinite-dimensional, the first term only
depends on the finite-dimensional projection of r(·), namely on the values r(ti). Therefore, we can
consider the following hierarchical optimization problem:

min
r∈RN

[
min

f (·)∈H| f (ti)=ri

(
‖PV(F; r)− P‖2 + α · E[ f ]

)]
, (6)

which can be written in a more compact way as:

‖PV(F; r)− P‖2 + α · G(r)→ min
r∈RN

, (7)

where r is a vector of zero-coupon rates at corresponding terms t, and G(r) = min
f∈H| f (ti)=ri

‖E[ f ]‖2
H′ .

Example 4. When E[ f ] = D f = f ′, the optimal f is actually a piecewise linear function connecting the known

values ri at points ti; therefore, G(r) = ∑N
i=1

(ri−ri−1)
2

ti−ti−1
. Similar reasoning applies for higher derivatives with

G(r) also being a quadratic form in r.

A first order condition for an extremum in (7) is:

2(PV(F; r)− P)T ∂PV(F; r)
∂r

+ α
∂G(r)

∂r
= 0. (8)

Now, differentiate this with respect to P:

2
(

∂PV(F; r)
∂r

)T ( ∂PV(F; r)
∂r

∂r
∂P
− I
)
+ 2

K

∑
i=1

(PV(Fi ; r)− Pi)
∂2PV(Fi ; r)

∂r2
∂r
∂P

+ α
∂2G(r)

∂r2
∂r
∂P

= 0, (9)

2B
(

BT ∂r
∂P
− I
)
+
(

2A + 2αJT J
) ∂r

∂P
= 0, (10)

where:

BT =
∂PV(F; r)

∂r
= F · d′(r), A =

K

∑
i=1

(PV(Fi; r)− Pi)
∂2PV(Fi; r)

∂r2 , JT J =
1
2

∂2G(r)
∂r2 . (11)

Therefore,

∂r
∂P

=
[

BBT + A + αJT J
]−1

B = Ω−1B (12)

for Ω = BBT + A + αJT J.
Let us prove that Ω is not singular, i.e., ker J ∩ ker(BBT + A) = {0}. Assume that this is

not the case and there is a nonzero f ∈ ker J ∩ ker(BBT + A). Note that f ∈ ker J would mean
that the regularization term G(r) is invariant to the perturbation by f : G(r + f ) = G(r) for any r.
Furthermore, f ∈ ker(BBT + A) would mean that fi = 0 for every i for which there is nonzero cash
flow for at least one benchmark bond (this easily follows from the structure of A), which in turn implies
that PV(F; r + f ) = PV(F; r). Thus, adding f to the optimal solution r∗ of (7) would not change the
functional as PV(F; r∗ + f ) = PV(F; r∗) and G(r∗ + f ) = G(r∗). Therefore, the existence of such f
immediately implies the non-uniqueness of the solution of (7) or equivalently of the solution of (2),
which we assumed to be unique.
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In what follows, we denote the matrix Ω−1B as M or Mα if the dependence on α is important.
Using the linearity of the pricing operator, we can rewrite (3) as:

∂PV(F0; r)
∂P

= wT ∂PV(F; r)
∂P

= wT BT ∂r
∂P

; (13)

or in terms of M,

MT B0 = MT Bw (14)

In what follows, we assume that F has full row rank, i.e., there are no bonds with linearly
dependent payoff schedules. This is always the case in practice. Then, ∂PV(F; r)

∂P is invertible because
Ω has full rank, B = d′(r)FT , where d′(r) is diagonal and not singular regardless of the chosen
discounting convention.

Therefore, we can solve for w:

w =

(
∂PV(F; r)

∂P

)−T (∂PV(F0; r)
∂P

)T
=
(

BTΩ−1B
)−1

BTΩ−1B0, (15)

where B0 =
(

∂PV(F0; r)
∂r

)T
.

The expression (15) is exactly the weighted least squares estimator for the linear regression:

B0 = Bw + ε (16)

with the error covariance matrix of ε given by Ω [20].
Note that the elements of B0 and B can be thought of as point sensitivities of the corresponding

bond prices with respect to the spot rate ri for the respective term to maturity ti:

[B0]i =
∂PV(F0; r)

∂ri
. (17)

Thus, the hedging coefficients can be found by regressing the vector of the obligation point
sensitivities B0 onto the corresponding point sensitivities of the benchmark bonds B. The error
covariance matrix depends on both the set of benchmark bonds and the smoothing functional.

As we show in Section 4, this result can be seen as a generalization of duration based, convexity
based, and key rate duration hedging.

4. Special Cases

To develop some intuition about the solution, we now consider two special cases, as the amount
of smoothing α goes to zero and to infinity. We show that in these special cases, we can recover
the conventional duration based and convexity based immunization approaches, as well as key rate
duration hedging.

4.1. Infinite Smoothing: α→ ∞

First, let us show that with a suitable choice of regularization functional E[ f ], we can recover
conventional duration based and convexity based approaches.

Theorem 2. Let wα be the vector of hedging coefficients for the smoothing parameter α. Then:

lim
α→∞

wα = w∞, (18)

where w∞ satisfies:
ε∞ = B0 − Bw∞ ∈ ker J. (19)
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Example 5. If E[ f ] = D f is the first derivative operator, then the hedging coefficients w∞ provide a duration
based hedge assuming continuous compounding, i.e.,

Dur0 = Dur · w∞, (20)

where:

Dur0 =
N

∑
i=1

∂PV(F0; r)
∂ri

∣∣∣∣
r=r∞

= PV(F0; r∞)

(
N

∑
i=1

ti ·
[F0]ie−tir∞

PV(F0; r∞)

)
(21)

is the dollar Fisher–Weil duration of the obligation and Dur is the row vector of the corresponding benchmark
bond dollar Fisher–Weil durations.

Example 6. If E[ f ] = D2 f is the second derivative operator, then the hedging coefficients w∞ provide a hedge
based on duration and convexity assuming continuous compounding, i.e.,

Dur0 = Dur · w∞, C0 = C · w∞, (22)

where in addition:

C0 =
N

∑
i=1

∂2PV(F0; r)
∂ri

2

∣∣∣∣
r=r∞

= PV(F0; r∞)

(
N

∑
i=1

t2
i ·

[F0]ie−tir∞

PV(F0; r∞)

)
(23)

is the dollar convexity of the obligation and C is the row vector of the corresponding bond dollar convexities.

Proof. It is known [21] that for any matrices M and L of suitable dimensions,

lim
α→∞

[
MT M + αLT L

]+
M = [M Pker L]

+, (24)

where Pker L = I − L+L is the orthogonal projector onto ker L. However, in the expression for Ω (12),
we have an additional convexity term A inside the brackets, which is symmetric, but not nonnegative
definite; thus, a separate proof is in order.

Factor BBT + A onto ker J ⊗ im JT :

BBT + A = Pker J(BBT + A) + P im JT (BBT + A) = Pker J(BBT + A) + JTX. (25)

Now, let Ω = VT + UT , where V = (BBT + A)Pker J , U = (αJT + XT)J and UVT = 0. Therefore,
by Theorem 2 of [22],

Ω−1 = (U + V)−T =
{

U+ + (I −U+V)[C+ + (I − C+C)KVTU+TU+(I −VC+)]
}T

, (26)

where C = (I −UU+)V and K = [I + (I − C+C)VTU+TU+(I − C+C)]−1. Note that limα→∞ U+ = 0
and limα→∞ U+V = 0, both because J has full column rank and thus ker U = ker J.
Therefore, limα→∞ K = I and:

M = lim
α→∞

Ω−1B = C+T B = [Pker U V]+T = [Pker J(BBT + A)Pker J ]
+B. (27)

Since ker J ∪ ker(BBT + A) = {0}, C+T
∣∣
ker J has full rank as a mapping ker J → ker J and is zero

otherwise. Therefore, ker MT = ker C+T = (ker J)⊥.
Finally, (15) can be written as MT

α (Bwα− B0) = 0, where Mα = (BBT + A+ αJT J)−1B. For α→ ∞,
we have:

MT(Bw− B0) = MTε = 0. (28)
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To observe the particular cases, note that for E[ f ], ker J = {x|x = k · 1}, where 1 is a vector of
ones and k ∈ R. Therefore, the condition ε ∈ (ker J)⊥ reduces to 1Tε = 0.

In terms of our regression, this means that:

1T B0 = 1T Bw. (29)

Now,

1T B0 =
N

∑
i=1

∂PV(F0; r)
∂ri

=
∂PV(F0; r + ξ · 1)

∂ξ
= D0, (30)

exactly equal to the dollar Fisher–Weil duration of the obligation, while by the same logic, 1T B is the
row vector of dollar Fisher–Weil durations of the benchmark bonds. The condition (29) thus requires
us to equate the dollar Fisher–Weil durations of the hedge and the obligation.

For E[ f ] = D2, we similarly have ker J = {x|x = a · t + b · 1}. Thus, in addition to (30), we have:

tT B0 =
N

∑
i=1

ti
∂PV(F0; r)

∂ri
= −

N

∑
i=1

t2
i e−r·ti [F0]i = −

1
2

N

∑
i=1

∂2PV(F0; r + ξ · 1)
∂ξ2 = −1

2
C0, (31)

where C0 is the dollar Fisher–Weil convexity of the obligation, while by the same logic, tT B is the
row vector of dollar Fisher–Weil convexities of the benchmark bonds times − 1

2 . The condition (29)
thus requires us to equate both dollar Fisher–Weil durations and convexities of the hedge and
the obligation.

4.2. Virtually No Smoothing: α→ 0

Now, we establish the limit of the hedging portfolio composition as α→ 0, which corresponds to
estimating the term structure with non-smoothing splines.

Proposition 1. As α→ 0, α−1 A→ A′, where A′ is a constant diagonal matrix.

Proof. From (8) and from the fact that B has full column rank, we have PV(F; r)− P = − α
2 B+

(
∂G(r)

∂r

)T
.

First note that it follows from (2) that r → r0 as α→ 0, where:

r0 = arg min
r: PV(F;r)=P0

G(r). (32)

Then:

α−1 A =
K

∑
i=1

α−1 (PV(Fi; r)− Pi)
∂2PV(Fi; r)

∂r2 → A0 = −
K

∑
i=1

(
B+ JT Jr0

)
i

∂2PV(Fi; r)
∂r2

∣∣∣∣∣
r=r0

, (33)

because the convergence can easily be shown to be uniform with respect to the vector r.

Thus, A ∼ α as α→ 0.

Theorem 3. As α→ 0, the optimal hedging coefficients wα → w0, where:

w0 = (M0B)−1M0B0, M0 =
(

I − [P (im B)T A0 P (im B)⊥ ]
+ P (im B)⊥ A0

)
B+T . (34)

Proof. The following could be perceived as overly complicated. If we could assert that α−1 A + JT J
is not only symmetric, but also non-negative definite (and therefore could be represented as LT L),
a much simpler proof would follow right away along the lines of Section 4.3.
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To deal with the general case, we apply the same matrix inversion approach to Ω−1, but with:

U = BBT + α(α−1 A + JT J)P im B, V = α(α−1 A + JT J)P (im B)⊥ . (35)

Note that as α → 0, V → 0, U → BBT , and U+ → B+ since U does not change its rank in the
limit.

Ω−1 = (U + V)−1 = U+ + (I −U+V)[C+ + (I − C+C)KVTU+TU+(I −VC+)], (36)

where C = (I −UU+)V and K = [I + (I − C+C)VTU+TU+(I − C+C)]−1. One can easily see that
K → I, and thus, (I − C+C)KVTU+TU+(I − VC+) → 0. We now demonstrate that the limit of
C+B exists.

C+B = α−1[P (im U)⊥ (α
−1 A + JT J)P (im B)⊥ ]

+B = α−1[P (im U)⊥ (α
−1 A + JT J)P (im B)⊥ ]

+ P (im U)⊥ B. (37)

Let us calculate P (im U)⊥ B as α→ 0. First of all, note that since B has full rank,

im U = im(BBT + α(α−1 A + JT J)P im B) == im((I + αÃ(BBT))+(BBT)) = im((I + αÃ(BBT)+)B) = im Ũ, (38)

where Ã = (α−1 A + JT J).

P (im U)⊥ = P (im Ũ)⊥ = I − Ũ(ŨTŨ)−1ŨT = I − (I + αÃ(BBT)+)B(ŨTŨ)−1BT(I + α(BBT)+ Ã), (39)

where:

(ŨTŨ)−1 =
{

BT(I + α(BBT)+ Ã)(I + αÃ(BBT)+)B
}−1

={
BT B + α[BT(BBT)+ ÃB + BT Ã(BBT)+B] + o(α)

}−1
={

I − α(BT B)−1[BT(BBT)+ ÃB + BT Ã(BBT)+B]
}
(BT B)−1 + o(α) =

(BT B)−1 − α(BT B)−1[BT(BBT)+ ÃB + BT Ã(BBT)+B](BT B)−1 + o(α). (40)

Now, plug this into P (im U)⊥ , and using B(BT B)−1BT = P im B:

P (im U)⊥ = I −
{
P im B +α

[
Ã(BBT)+ P im B +P im B(BBT)+ Ã

−P im B Ã(BBT)+ P im B−P im B(BBT)+ ÃP im B

]}
+ o(α) =

P (im B)⊥ −α
[
P (im B)⊥ Ã(BBT)+ P im B +P im B(BBT)+ ÃP (im B)⊥

]
+ o(α). (41)

Thus,

P (im U)⊥ B = −αP (im B)⊥ Ã(BBT)+B + o(α) = −αP (im B)⊥ ÃB+T + o(α). (42)

Now,

C+B = −[P (im U)⊥ ÃP (im B)⊥ ]
+ P (im B)⊥ ÃB+T + o(1)→

− [P (im B)⊥ A0 P (im B)⊥ ]
+ P (im B)⊥ A0B+T . (43)

Finally,

Mα = Ω−1B→ U+B + (I −U+V)C+B→ (U+ + C+)B→

M0 =
(

I − [P (im B)T A0 P (im B)⊥ ]
+ P (im B)⊥ A0

)
B+T (44)
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and:
wα = (MαB)−1MαB0 → w0 = (M0B)−1M0B0. (45)

4.3. Key Rate Durations

This result requires more simplifying assumptions and is itself rather simple. However, it is
illustrative to see where the industry best practice approach of matching key rate durations is placed
within our framework, to understand where it is not.

Proposition 2. Let the model term structure be estimated from known key rates r∗ at predefined key terms to
maturity t∗ via linear interpolation and constant extrapolation. Then, the hedging weights w∗ satisfy:

MT Bw∗ = MT B0, (46)

where the columns mk of the matrix M correspond to the key rate durations loadings, i.e., they are:

• equal to one for one key term to maturity t∗k ;
• equal to zero for all other key terms to maturity;
• are linearly interpolated for maturities between key terms;
• are constantly extrapolated outside key terms to maturity.

Proof. Note that r = Mr∗ where M is the linear interpolation and constant extrapolation operator
defined above. The hedging equation becomes:

∂PV(F0; r)
∂r∗

= wT ∂PV(F; r)
∂r∗

, (47)

which can in turn be simplified using ∂r
∂r∗ = M to:

MT Bw = MT B0. (48)

We now present two lemmas characterizing the limit behavior of the optimal solution when
partially relaxing the strict assumptions of Proposition 2.

Lemma 1. In the setup of Proposition 2, let the model term structure be determined via regularized curve fitting
as follows: ∥∥P ′1r− r∗

∥∥2
+ α · ‖Dr‖2

H′ → min
r(·)∈H

, (49)

where D is the differentiation operator, P ′1 is the projection operator:

P ′1r = [r(t∗1), r(t∗2) .. r(t∗K)]
T (50)

and r∗ is the vector of observed market yields at key terms to maturity t∗.
Then, as α → 0, the hedging portfolio composition approaches the portfolio chosen via the key rate

duration approach.

Proof. It is easy to see that Theorem 1 still holds with B =
(

∂P ′1r
∂r

)T
consisting only of ones and zeroes

and A = 0. In our setting, (15) can be written as:

wα = (MT
α B)−1MT

α B0, (51)
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where:
Mα = (BBT + αJT J)−1B. (52)

It is known that:

lim
α→0

((MK)T(MK) + αLT L)−1(MK)T M = K+
M,L, (53)

where K+
M,L = (I − (LP)+L)(MK)+M is the M, L-weighted generalized pseudoinverse of K and

P = I − (MK)+(MK). Thus,

lim
α→0

Mα = M0 = (I − (JP)+ J)B+T = (I − (JP)+ J)B, where P = I − BBT , (54)

because B+ = BT .
Let rα be the optimal solution to (49). Then, ∂rα

∂r∗ = Mα. Mα → M0 and wα → w0 = (MT
0 B)−1MT

0 B0

uniformly over r∗ as Mα does not depend on r∗ at all. Obviously, r0 = limα→∞ rα = Mr∗; the linearly
interpolated key yields, so ∂r0

∂r∗ = M. Therefore, M0 = M, and w0 coincides with the optimal hedging
weight w from Proposition 2.

Lemma 2. Let the term structure be estimated from:

‖Y(r)− r∗‖2 + α · ‖Dr‖2
H′ → min

r(·)∈H
,

where Y(r) is the vector of benchmark bond yields to maturity. Furthermore, let the benchmark bonds be
coupon-bearing with coupon rates uniformly decreasing towards zero and terms to maturity t∗. If in addition,
α→ 0, then the hedging portfolio composition approaches the portfolio chosen via the key rate duration approach.

Proof. Theorem 1 holds for this case with B =
(

∂Y(r)
∂r

)T
and:

A =
K

∑
i=1

(Yi(r)− r∗i )
∂2Y(r)

∂r2 . (55)

First, let us calculate B.

∂Yi(r)
∂r

=

(
∂PV(Fi; y · 1)

∂y

)−1 ∂PV(Fi; r)
∂r

=
1
δi

Fid′(r), (56)

where:

δi =
∂PV(Fi; y · 1)

∂y
=

N

∑
j=1

Fi,jd′(y · 1)j,j. (57)

Note that as the coupon rate of the benchmark bonds approaches zero, Fi,ti∗ → 1 and all other
Fi,j → 0, where i∗ is the index of the ith bond term to maturity ti∗ = t∗i .

Since at the same time Yi(r)→ rti∗ , as the coupon rate decreases to zero, ∂Yi(r)
∂r → ei∗ , where ei∗ is

the corresponding unit vector with one at the coordinate i∗ and zero everywhere else.
Now, let us calculate A.

∂2Yi(r)
∂r2 = − 1

δ2
i

∂δi
∂y

(Fid′(r))T ∂y
∂r

+
1
δi

Fid′′(r) =
1
δi

(
Fid′′(r)−

1
δ2

i

∂δi
∂y

(Fid′(r))T(Fid′(r))

)
=

1
δi

(
Fid′′(r)−

1
δ2

i

(
N

∑
j=1

Fi,jd′′(y · 1)j,j

)
d′(r)FT

i Fid′(r)

)
. (58)
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Using the same logic, we get that as the coupon rate of the benchmark bonds decreases to zero,
∂2Yi(r)

∂r2 → 0, which means A→ 0.
Finally, to get the joint convergence, observe that the convergences above is uniform in α since it

only depends on r and r → r0 as α→ 0.

5. Conclusions

The de facto industry standard of immunizing a bond-like obligation with a portfolio of bonds
is based on key rate durations. It is nonparametric in its nature, but relies on having an exogenous
reference term structure of interest rates determined via piecewise linear interpolation from a set of
observed benchmark zero-coupon rates (e.g., interest rate swap rates).

We presented a general treatment of the immunization problem in a usual setting for developing
markets, when the reference term structure of interest rates is endogenous, i.e., estimated via a
smoothing spline approach from the same set of bonds (usually government bonds), which is being
used for hedging.

We showed that this framework was general enough to contain both the standard duration based
(Example 5) and convexity based (Example 6) hedges, as well as the key rate duration approach
(Proposition 2 with the subsequent lemmas) as special cases.

This could give rise to more general practical implementations of bond portfolio immunization in
developing markets. Our model was limited to short term time frames (no time effects and no changes
in bond payment schedule), risk-free bonds, and perfect frictionless markets, so future research is
desired to introduce the effects of time, heterogeneous credit quality, liquidity, and market frictions.

The practical implications of this work for developing markets are as follows. In the relatively
widely spread case of estimating the term structure via linear interpolation of benchmark bonds’ yields
to maturity, the key rate duration approach could be more or less justified if the coupon rates of the
benchmark bonds are small (with the key rates being equal to the benchmark bonds’ terms to maturity).
However, for coupon-bearing bonds or for higher orders of smoothing, this is generally not the case,
and a specially designed immunization approach as described in this paper could be more desirable.
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