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Abstract: For stochastic flow network (SFN), given all the lower (or upper) boundary points, the
classic problem is to calculate the probability that the capacity vectors are greater than or equal to
the lower boundary points (less than or equal to the upper boundary points). However, in some
practical cases, SFN reliability would be evaluated between the lower and upper boundary points at
the same time. The evaluation of SFN reliability with upper and lower boundary points at the same
time is the focus of this paper. Because of intricate relationships among upper and lower boundary
points, a decomposition approach is developed to obtain several simplified subsets. SFN reliability is
calculated according to these subsets by means of the inclusion-exclusion principle. Two heuristic
options are then established in order to calculate SFN reliability in an efficient direction based on the
lower and upper boundary points.

Keywords: lower and upper boundary points; decomposition; subsets

1. Introduction

In the field of network management, one of the main aims is to guarantee that the requirement
mission (such as demand) can be successfully completed under certain constraints and uncertain
situations. To achieve the goal, the first undertaking is to evaluate network performance. In general, a
network is presented by arcs and nodes. To deal with the uncertain situations regarding any probability
distribution on the arc in a network, the concept of stochastic flow network (SFN) [1–13] is applied.
One of the most important characteristics for SFN is that the capacity of each arc is a random variable
according to a certain probability distribution. In previous literature [1–13], researchers have modeled
different systems with the stochastic property as SFN, such as supply chain [1,2], manufacturing [3,4],
social network [5], computer [6–8], electronic transaction network [9], and project [10]. There are
some attributes of the SFN that have been considered in previous works, including time [3,10] and
budget [1,9,10]. The capacity can be presented as processing time in the manufacturing systems [3,4],
bandwidth in the computer network [6–8] or delivery loading in the supply chain network [1,2].
For instance, in [6], a computer network system with error rates was modeled as an SFN to evaluate the
system quality. Yeh [1] addressed a reliability problem for a stochastic flow network under different
budget allocations. Lin and Pan [8] evaluated the performance of the computer network under a time
constraint with retransmission mechanism. Therefore, SFN can cope with the concerns regarding the
uncertain situations and certain constraints.

For the network performance, SFN reliability is proposed and is defined as the probability that
the requirement can be delivered successfully under constraints through the SFN. Among the common
tools are network-based algorithms [1–13] for the demand d, in which d is the required quantity from
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the source to the sink. SFN reliability is at least d units of flow which can be successfully sent from a
source node to a sink node. The classical SFN reliability formula is Rd =

∑
Pr{X | at least d units of

flow can be successfully sent from a source node to a sink node under X (system states) in the SFN}.
Rather than listing all the capacity vectors X, finding all lower or upper boundary points is an efficient
way to calculate SFN reliability. Note that the lower and upper boundary points are the minimal and
maximal capacity vectors to satisfy demand or requirement in the SFN. Given all the lower (or upper)
boundary points, several algorithms, such as the improved recursive sum of disjoint products [14] and
state space decomposition [15,16], can be used to efficiently calculate SFN reliability.

However, in some practical issues, SFN reliability would be evaluated according to the lower and
upper boundary points at the same time. For instance, the probability that required flows between two
different demands are successfully transmitted should be known. Besides, in the performance of the
project, Lin [10] proposed an algorithm to establish the upper and lower boundary points that satisfy
time T and budget B constraints simultaneously. Lin [10] showed that all feasible project state vectors
are contained in the minimal and maximal boundary points. Note that there is no SFN reliability
evaluation in terms of the lower and upper boundary points simultaneously because of intricate
relationships and domination property. Hence, the main purpose of this study is to evaluate SFN
reliability with the lower and upper boundary points at the same time in such a way that the related
probability evaluation can be addressed. Because of the intricate relationship among all boundary
points, a decomposition approach based on upper and lower boundary points is developed to obtain
several simplified subsets of feasible capacity vectors. Note that each subset is firstly formed with
one upper boundary point and all lower boundary points. The relationships between certain upper
boundary points and all lower boundary points in the subset are formulated. Then, the number of
lower boundary points in the subset can be further reduced sharply. A special “minimum” operator
termed “ ↓” is developed to calculate SFN reliability according to the subsets. In order to calculate
SFN reliability in an efficient direction based on the lower and upper boundary points, two heuristic
options for the shared boundary points are established. With this inclusion-exclusion principle, an
algorithm is proposed to evaluate SFN reliability with the lower and upper boundary points.

The remainder of this paper is outlined as follows. Section 2.1 describes the SFN model. The lower
and upper boundary points are introduced in Section 2.2. SFN reliability is presented by using the
simplified subsets in Section 3.1 and is evaluated according to the special operator developed in
Section 3.2. Heuristic options are also developed for efficient calculation. In Section 4, an algorithm
is presented based on the formula and options in Section 3. The proposed algorithm is presented in
Section 4. For readability, a simple network is demonstrated to illustrate the proposed algorithm in
Section 5. In Section 6, a real case is presented with some numerical experiments. A conclusion is
depicted in Section 7.

2. SFN Model with SFN Reliability

Let G ≡ (A, M) denote a stochastic flow network (SFN) in which A = {at | t = 1, 2, . . . , k} is the set
of arcs, M = {Wt | t = 1, 2, . . . , k} where Wt is the maximal capacity of at. Note that every arc at exhibits
multiple states (capacities) in terms of a given probability distribution, which can be obtained from the
historical database. Then, the G in this study satisfies the following assumptions.

2.1. Assumptions

Assumptions 1. The state of each arc is a random variable according to a given probability distribution that
can be obtained from the historical database.

Assumptions 2. The states of different arcs are statistically independent.

Besides, nomenclatures are listed below.
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2.2. Nomenclature

X ≤ Y (x1: x2, . . . , xn) ≤ (y1, y2, . . . , yn): xi ≤ yi for each i = 1, 2, . . . , n.
X < Y (x1, x2, . . . , xn) < (y1, y2, . . . , yn): X ≤ Y and xi < yi for at least one i.
X≤Y (x1, x2, . . . , xn) ≤ (y1, y2, . . . , yn): neither X ≥ Y nor X < Y.

Under G, a (current) state vector is termed X = (x1, x2, . . . , xk) where xt is termed the state of at.
SFN reliability RG is defined as the probabilities of all feasible X, satisfying the specific constraints.
However, it is time-consuming to search for all the feasible X and to sum their probabilities under a
complex G since the number of X would violently increase. In order to calculate the RG in an efficient
way, the lower and upper boundary points, XL

i and XU
j , are derived, respectively for i = 1, 2, . . . , n and

j = 1, 2, . . . , m. Note that XL
i and XU

j are the minimal and maximal capacity vectors. Let XL,U = {X | XL
i

≤ X ≤ XU
j } ∀ i, j. The definitions for XL

i and XU
j are presented as follows.

Definition 1. X is one of XL
i if X ∈ XL,U and Y < XL,U with Y < X.

Definition 2. X is one of XU
j if X ∈ XL,U and Y < XL,U with Y > X.

All the feasible X are between at least one XL
i and at least one XL

i . That is, if X ∈ XL,U, X is feasible
and RG can be presented as follows.

RG = Pr{X | X ∈ XL,U}. (1)

By means of XL
i and XU

j , RG can be rewritten as follows.

RG = Pr{X
∣∣∣ X ∈ XL,U } = Pr{X

∣∣∣ XL
i ≤ X ≤ XU

j } ∀i, j. (2)

3. SFN Reliability Evaluation

It is difficult to compute RG since there are complex structures and relationships among multiple
XL

i and XU
j . The decomposition technique is used to derive several simplified subsets.

3.1. Simplified Subsets for SFN Reliability

For convenience, every XU
j is a foundation to generate subset Sj from {X | XL

i ≤ X ≤ XU
j } for all i.

Let Sj be ∪n
i=1

{
X
∣∣∣∣XL

i ≤ X ≤ XU
j

}
, for j = 1, 2, . . . , m, meaning that X ∈ Sj is a state vector between this

certain XU
j and all of XL

i for i = 1, 2, . . . , n. According to the definition of XL,U = {X | XL
i ≤ X ≤ XU

j } ∀i, j,
SFN reliability RG can be rewritten by means of Sj as follows.

RG = Pr{X| X ∈ XL,U } = Pr
{
∪

m
j=1

{
X
∣∣∣X ∈ S j

}}
= Pr(

m
∪

j=1
S j). (3)

Focusing on a certain Sj, relationships between this XU
j and XL

i for i = 1, 2, . . . , n can be formulated
as follows.

I j
i =

 1, i f XL
i ≤ XU

j ,

0, otherwise.
(4)

For example, I2
2 = 1 in Figure 1 because XL

2 ≤ XU
2 . Furthermore, the following theorem can be

utilized to simplify Sj for the calculation efficiency.
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Theorem 1. If I j
i = 0, then {X |XL

i ≤ X ≤XU
j } = ∅ and Sj can be simplified as

S j = ∪
i:I j

i=1

{
X
∣∣∣∣XL

i ≤ X ≤ XU
j

}
for j = 1, 2, . . . , m. (5)

Proof of Theorem 1. Suppose that there are two capacity vectors: X = (x1, x2, . . . , xk) is an XL
i and

Y = (y1, y2, . . . , yk) is an XU
j with I j

i = 0 (i.e., X ≤ Y). It is evident that at least one xq where xq > yq and
at least one xp where xp < yp (q , p). �

Bringing with the simplified Sj, RG = Pr(
m
∪

j=1
S j) can be further expanded as the form of the

inclusion-exclusion principle as follows.

RG = Pr(
m
∪

j=1
S j)

=
m∑

j=1
Pr(S j) −

∑
θ1,θ2:θ1<θ2

Pr(Sθ1 ∩ Sθ2) +
∑

θ1,θ2,θ3:θ1<θ2<θ3

Pr(Sθ1 ∩ Sθ2 ∩ Sθ3) − . . .

+(−1)n−1Pr(
m
∩

j=1
S j)

(6)

where θ• is defined as the index of an Sj for j = 1, 2, . . . , m.
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3.2. Evaluation RG in Terms of the Inclusion-Exclusion Principle

Calculating every term of Equation (6) in an effective way is necessary. Suppose that there are q X:
X1, X2, . . . , Xq. A special “minimum” operator termed “ ↓” is defined as follows.

X1
↓ X2

↓ . . . ↓ Xq
≡ min

v=1,2,...,q
(xv

t ) ∀ t. (7)

To be specific, M
θ1,θ2

= (x1, x2, . . . , xk) is denoted as a shared upper boundary point for Sθ1 and
Sθ2 and is derived via

M
θ1,θ2

= XU
θ1
↓ XU

θ2
= min(xθ1

t , xθ2
t ) for t = 1, 2, . . . , k. (8)
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Focus on every term Pr(Sθ1 ∩Sθ2) in
∑

θ1,θ2:θ1<θ2

Pr(Sθ1 ∩ Sθ2) of Equation (6). There are probabilities

of the intersection of Sθ1 and Sθ2 such that there exists a shared upper boundary point M
θ1,θ2 (instead

of XU
θ1

and XU
θ2

). Therefore, Pr(Sθ1 ∩ Sθ2) can be presented as follows.

Pr(Sθ1 ∩ Sθ2)= Pr

∪
i:I
θ1
i =1,I

θ2
i =1

{
X
∣∣∣∣XL

i ≤ X ≤M
θ1 ,θ2

}. (9)

In a similar manner, every term Pr(Sθ1 ∩ Sθ2 ∩ Sθ3) in the expansion of∑
θ1,θ2,θ3:θ1<θ2<θ3

Pr(Sθ1 ∩ Sθ2 ∩ Sθ3) can be represented as

Pr(Sθ1 ∩ Sθ2 ∩ Sθ3)= Pr

∪
i:I
θ1
i =1,I

θ2
i =1,I

θ3
i =1

{
X
∣∣∣∣XL

i ≤ X ≤M
θ1 ,θ2 ,θ3

}. (10)

That is, the term Pr(Sθ1 ∩ Sθ2 ∩ Sθ3) can also be evaluated with a shared upper boundary vector

M
θ1 ,θ2 ,θ3 .

Without loss of generality for Pr(Sθ1 ∩ Sθ2 ∩ . . .∩ Sθp) with p ≤ m, each term in Equation (6) is

presented and calculated by one shared upper boundary vector M
θ1,θ2,...,θp as follows.

Pr(Sθ1 ∩ Sθ2 ∩ . . .∩ Sθp)= Pr
(
∪

i:I
η1
i =1,I

η2
i =1,...,I

ηp
i =1

{
X
∣∣∣∣XL

i ≤ X ≤M
θ1,θ2,...,θp

})
. (11)

Overall, a shared upper boundary point M
θ1,θ2,...,θp is firstly generated for each term Pr(Sθ1 ∩

Sθ2 ∩ . . .∩ Sθp) in Equation (6). There are several existing algorithms, such as the improved recursive
sum of disjoint products [14] and state space decomposition [15,16], which can be used to calculate the

probability above all XL
i bounding by M

θ1,θ2,...,θp .

3.3. Heuristic Rules for the Shared Boundary Point

Yeh [17] pointed out that the number of terms in probability evaluation affects the computational
efficiency of the algorithms [14–16] to compute the probabilities. In Section 3.1, every XU

j is a foundation

to generate subset Sj from {X | XL
i ≤ X ≤ XU

j } for all i. The number of Sj is determined by the number

of XU
j (i.e., |Sj| =|XU

j |). Intuitively, the computational efficiency to calculate SFN reliability would be

affected by the number of subsets. Hence, the lower boundary points XL
i can also act as the foundation

to generate subsets Pi where

Pi = ∪
i:I j

i=1

{
X
∣∣∣∣XL

i ≤ X ≤ XU
j

}
for i = 1, 2, . . . , n. (12)
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According to Pi, SFN reliability can also be shown as

RG = Pr(
n
∪

i=1
Pi)

=
n∑

i=1
Pr(Pi) −

∑
θ1,θ2:θ1<θ2

Pr(Pθ1 ∩ Pθ2) +
∑

θ1,θ2,θ3:θ1<θ2<θ3

Pr(Pθ1 ∩ Pθ2 ∩ Pθ3) − . . .

+(−1)n−1Pr(
n
∩

i=1
Pi)

(13)

Each term, Pr(Pθ1 ∩ Pθ2 ∩ . . .∩ Pθp) with p ≤ n, is also presented and calculated as follows.

Pr(Pθ1 ∩ Pθ2 ∩ . . .∩ Pθp)= Pr

∪ j:I j
θ1

=1,I j
θ2
=1,...,I j

θp
=1

{
X
∣∣∣∣Mθ1,θ2,...,θp ≤ X ≤ XU

j

}. (14)

where a shared lower boundary point Mθ1,θ2,...,θp is calculate based on a special “maximum” operator
termed “ ↑”. There are q X: X1, X2, . . . , Xq, and ↑ is defined as follows.

X1
↑ X2

↑ . . . ↑ Xq
≡ max

v=1,2,...,q
(xv

t ) ∀ t. (15)

Note that the operator “↑” is primarily manipulated at XL
i for i = 1, 2, . . . , n. The number of Pi is

determined by the number of XL
i (i.e., |Pi| =|XL

i |). Overall, a shared lower boundary point Mθ1,θ2,...,θp

is firstly generated for each term in Equation (14). There are several existing algorithms, such as the
improved recursive sum of disjoint products [14] and state space decomposition [15,16], which can be
used to calculate the probability under all XU

j bounding by Mθ1,θ2,...,θp .

Currently, there are two kinds of subsets, Sj and Pi, generated by either XL
i or XU

j as the foundations
to calculate SFN reliability RG. Since the number of terms in Equation (6) or Equation (13) affects the
computational efficiency, two options are established as follows.

Option 1. When | XU
j | ≤ |XL

i |, Equation (6) is applied to calculate RG.

Option 2. When |XU
j |≥|XL

i |, Equation (13) is applied to calculate RG.

Calculation of the fewer terms is more efficient for probability evaluation. Obviously, the number
of upper and lower boundary points would affect the number of terms in either Equation (6) or (13).
The above options guide the direction of the computation such that the fewer terms are generated
in probability evaluation. For instance, suppose that there are three lower boundary points and two
upper boundary points: XL

1 = (1, 2, 1, 2, 1), XL
2 = (2, 3, 2, 1, 1) and XL

3 = (1, 2, 1, 1, 2); and XU
1 = (3, 2, 3, 3,

3) and XU
2 = (3, 3, 3, 2, 3) as shown in Figure 1. If Equation (6) is conducted, three terms are calculated

to obtain RG: Pr(S1), Pr(S2), and Pr(S1 ∩ S2). If Equation (13) is conducted, seven terms are calculated
to obtain RG: Pr(P1), Pr(P2), Pr(P3), Pr(P1 ∩ P2), Pr(P1 ∩ P3), Pr(P2 ∩ P3), and Pr(P1 ∩ P2 ∩ P2). Hence,
it is obvious that option 1 (|XU

j | ≤ |XL
i |) is a more efficient direction for the probability evaluation in

this case.

4. Proposed Algorithm to Evaluate SFN Reliability

To calculate RG by the built model above, an algorithm is developed as follows in Algorithm 1.
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Algorithm 1a.

Input: all XL
i and XU

j
Set η = True and RG = 0 //η is a flag for either Equation (11) or Equation (14).
IF |XU

j | ≤ |XL
i | //Apply Equation (11) to calculate RG (Option 1)

FOR p = 1 to m
Set Rp = 0 //temporary reliability
FOR each combination with p Sj: Sθ1 , Sθ2 , . . . , Sθp where θ1 < θ2 < . . . < θp

Set M
θ1,θ2,...,θp

= XU
θ1
↓ XU

θ2
↓ . . . ↓ XU

θp
. // generate a shared upper boundary point.

Calculate

Pr(Sθ1 ∩ Sθ2 ∩ . . .∩ Sθp ) = Pr(∪
i:I
η1
i =1,I

η2
i =1,...,I

ηp
i =1

{
X
∣∣∣∣XL

i ≤ X ≤M
θ1,θ2,...,θp

}
) by using the improved recursive

sum of disjoint products [14].
Rp ← Rp + Pr(Sθ1 ∩ Sθ2 ∩ . . .∩ Sθp )

END FOR
IF η == True
RG ← RG + Rp

Else
RG ← RG − Rp

η← !η //reverse the flag.
END FOR
ELSE |XU

j | ≥ |XL
i | //Apply Equation (14) to calculate RG (Option 2)

FOR p = 1 to n
Set Rp = 0 //temporary reliability
FOR each combination with n Pj: Pθ1 , Pθ2 , . . . , Pθp where θ1 < θ2 < . . . < θp

Set Mθ1,θ2,...,θp = XL
θ1
↑ XL

θ2
↑ . . . ↑ XL

θp
. // generate a shared lower boundary point.

Calculate

Pr(Pθ1 ∩ Pθ2 ∩ . . .∩ Pθp ) = Pr(∪
j:I j
θ1
=1,I j

θ2
=1,...,I j

θp
=1

{
X
∣∣∣∣Mθ1,θ2,...,θp ≤ X ≤ XU

j

}
) by using the improved recursive

sum of disjoint products [14].
Rp ← Rp + Pr(Pθ1 ∩ Pθ2 ∩ . . .∩ Pθp )

END FOR
IF η == True
RG ← RG + Rp

Else
RG ← RG − Rp

η← !η //reverse the flag.
END FOR
Output: RG

5. An Numerical Example

An example is presented to demonstrate the proposed algorithm step by step. The capacity state
and the corresponding probability are shown in Table 1. Suppose that there are three lower boundary
points and two upper boundary points: XL

1 = (1, 2, 1, 2, 1), XL
2 = (2, 3, 2, 1, 1) and XL

3 = (1, 2, 1, 1, 2); and
XU

1 = (3, 2, 3, 3, 3) and XU
2 = (3, 3, 3, 2, 3). According to the states, the relationships of XL

i and XU
j are

displayed in Figure 1. SFN reliability RG can be calculated according to the following.
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Table 1. Data of the small example.

Arc State Probability Arc State Probability

a1

3 0.30
a4

3 0.20
2 0.50 2 0.50
1 0.20 1 0.30

a2

3 0.20
a5

3 0.25
2 0.70 2 0.40
1 0.10 1 0.35

a3

3 0.30
2 0.50
1 0.20

Algorithm 1b.

Input: all XL
i and XU

j : XL
1 = (1, 2, 1, 2, 1), XL

2 = (2, 3, 2, 1, 1), XL
3 = (1, 2, 1, 1, 2), and

XU
1 = (3, 2, 3, 3, 3) and XU

2 = (3, 3, 3, 2, 3).
Set η = True and RG = 0.
Since the condition |XU

j | ≤ |X
L
i | is true, apply Equation (11) to calculate RG.

Set R1 = 0.
FOR S1

Set M
1

= XU
1 = (3, 2, 3, 3, 3).

From the relationship, I1
1 = 1, I1

2 = 0, I1
3 = 1.

Pr(S1) = Pr(∪i:1,3

{
X
∣∣∣∣XL

i ≤ X ≤M
1
}
) = 0.8457.

R1 ← R1 + Pr(S1) = 0.8457
FOR S2

Set M
2

= XU
2 = (3, 3, 3, 2, 3).

From the relationship, I2
1 = 1, I2

2 = 1, I2
3 = 1.

Pr(S2) = Pr(∪i:1,2,3

{
X
∣∣∣∣XL

i ≤ X ≤M
2
}
) = 0.7555.

R1 ← R1 + Pr(S2) = 1.6013
END FOR
RG ← RG + R1 = 1.6013
η = False //reverse the flag.
FOR p = 2 //the second term Pr(Sθ1 ∩ Sθ2 )

Set R2 = 0.
FOR S1, S2 //the first combination with two Sj

Set M
2

= XU
1 ↓ XU

2 = (3, 2, 3, 2, 3).
From the relationships, I1

1 = 1, I1
2 = 0, I1

3 = 1 and I2
1 = 1, I2

2 = 1, I2
3 = 1.

Pr(S1 ∩ S2) = Pr(∪i:1,3

{
X
∣∣∣∣XL

i ≤ X ≤M
2
}
) = 0.6757.

R2 ← R2 + Pr(S1 ∩ S2) = 0.6757
END FOR
RG ← RG − R2 = 0.9255
I = True //reverse the flag.

Output: RG = 0.9255

In the numerical example, SFN reliability RG is 0.9255. By the enumeration approach, 35 = 243
capacity vectors are listed from (1, 1, 1, 1, 1) to (3, 3, 3, 3, 3) firstly. Each vector is confirmed whether to
be feasible. Finally, the probabilities of every feasible state vector are added up to obtain RG. On the
contrary, the proposed algorithm only calculates Pr(S1), Pr(S2), and Pr(S1 ∩ S2), to obtain RG, with the
corresponding shared upper boundary point.



Mathematics 2019, 7, 1115 9 of 12

6. Case Study

This section studies a notebook manufacturer whose headquarters is located in Taiwan.
The manufacturer is planning to launch a construction project of new manufacturing lines in Chengdu,
China. A project manager plans to ensure that the project can be completed within the expected time
and budget. By executing the algorithm in literature [10], the upper and lower boundary points can be
generated in terms of different times and budgets, respectively.

In detail, the project consists of 13 main activities, and the project is transformed to an SFN as
shown in Figure 2. The durations and the corresponding cost of each activity are displayed in Table 2.
Table 3 shows the experimental results from 130 to 140 days and from 110,000 to 120,000 (CNY). Besides,
Figure 3 presents the patterns of project reliability in terms of the time and budget. Suppose, under
112,000 CNY and 140 days, the project can be completed with 88.4594% probability. The experimental
results also provide the managers with managerial implications. For instance, suppose that the managers
plan to guarantee SFN reliability 0.9 under 135 days. The minimum budget should be 116,000.

Table 2. Durations, costs, and probabilities of each activity.

Arc Activity Duration (Days) Cost (CNY) Probability

a1 Confirmation of the manufacturing lines
3 4500 0.20
5 3000 0.40
7 1500 0.40

a2 Confirmation and collection of the tools
2 8400 0.10
7 4200 0.70
10 3000 0.20

a3 Establishment of the labor requirement
7 4500 0.10
14 3000 0.60
21 1500 0.30

a4 Issue of a purchase order
14 2400 0.10
28 1200 0.70
42 600 0.20

a5 Shipment of the tools 20 20,000 0.70
30 15,000 0.30

a6 Establishment of the SOP
7 1800 0.20
14 1200 0.70
18 600 0.10

a7 Preparation of machines and materials
12 7200 0.05
14 6000 0.90
16 4800 0.05

a8 Custom declaration
14 1200 0.20
21 600 0.80

a9 Shipment of machines and materials 21 40,000 0.70
31 30,000 0.30

a10 Construction of the first line in floor A
11 10,200 0.05
18 9000 0.05
25 7400 0.90

a11 Construction of the second line in floor A
5 10,200 0.05
12 9000 0.05
19 7400 0.90

a12 Construction of the first line in floor B
7 10,200 0.05
14 9000 0.05
21 7400 0.90

a13 Construction of the second line in floor B
5 10,200 0.05
12 9000 0.05
19 7400 0.90
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Table 3. Experimental results.

Time (Unit: Day)

Budget
Unit: 1000 CNY 130 135 140

110 0.565067 0.721672 0.772429
112 0.669611 0.832017 0.884594
114 0.71561 0.881236 0.934397
116 0.734547 0.900869 0.954106
118 0.739934 0.906411 0.959655
120 0.740957 0.907454 0.960698
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7. Conclusions

SFN reliability RG is utilized for quality evaluation of the stochastic flow networks (SFN) and is
defined as the probability of all feasible capacity vectors, satisfying certain constraints, such as demand,
cost or time, etc. However, for the probability calculation, previous researches, including the improved
recursive sum of disjoint products [14] and state space decomposition [15,16], focused on the unilateral
boundary points. In some certain cases, upper and lower boundary points, XU

j and XL
i , are necessary

to apply at the same time. For instance, there are time and budget constraints in the literature [10]
considered to generate XU

j and XL
i , simultaneously. It is a challenge to calculate the probabilities of the

capacity vectors contained in XU
j and XL

i to obtain RG due to the complex relationships.
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In order to evaluate SFN reliability with XU
j and XL

i , this paper proposes a decomposition of the

feasible areas into several subsets Sj to calculate RG in terms of an XU
j . For computational efficiency,

the relationships between XU
j and all XL

i in Sj is formulated to reduce the computational loading. Then,
SFN reliability RG is formatted as the inclusion-exclusion principle by means of Sj. To calculate the
probability of each term in the inclusion-exclusion principle with Sj, a special “minimum” operator
termed “ ↓” is developed to generate a shared boundary vector such that each term only has one
unilateral boundary point. Finally, two heuristic options for the shared boundary points are established
to calculate RG in an efficient direction. The main merit of the heuristic options is to generate less terms
for the calculation of RG such that the computational loading is mitigated.

It is suggested that by using the proposed algorithm with the lower and upper boundary points,
the reliability evaluation can be addressed for practical issues: the required flow between two different
demands and project reliability with time and budget constraints.

Author Contributions: Conceptualization, D.-H.H., C.-F.H., and Y.-K.L.; methodology, D.-H.H. and C.-F.H.;
validation, D.-H.H., C.-F.H., and Y.-K.L.; formal analysis, D.-H.H.; investigation, D.-H.H.; data curation, D.-H.H.;
writing—original draft preparation, D.-H.H. and C.-F.H.; writing—review and editing, D.-H.H., C.-F.H., and
Y.-K.L.

Funding: This research was funded by the Ministry of Science and Technology (MOST) of Taiwan,
ROC MOST107-2218-E-035-011-MY2 and MOST 108-2221-E-009-033-MY3.

Conflicts of Interest: The authors declare no conflict of interest.
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