Article

Reliability Evaluation for a Stochastic Flow Network Based on Upper and Lower Boundary Vectors

Ding-Hsiang Huang ${ }^{1(D)}$, Cheng-Fu Huang ${ }^{2(D)}$ and Yi-Kuei Lin ${ }^{1, *(\mathbb{D})}$
1 Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu 300, Taiwan; d0783302.iem07g@nctu.edu.tw
2 Department of Business Administration, Feng Chia University, Taichung 407, Taiwan; cfuhuang@fcu.edu.tw
* Correspondence: yklin@nctu.edu.tw; Tel.: +886-3-5131317; Fax: +886-3-5722392

Received: 18 October 2019; Accepted: 13 November 2019; Published: 15 November 2019

Abstract

For stochastic flow network (SFN), given all the lower (or upper) boundary points, the classic problem is to calculate the probability that the capacity vectors are greater than or equal to the lower boundary points (less than or equal to the upper boundary points). However, in some practical cases, SFN reliability would be evaluated between the lower and upper boundary points at the same time. The evaluation of SFN reliability with upper and lower boundary points at the same time is the focus of this paper. Because of intricate relationships among upper and lower boundary points, a decomposition approach is developed to obtain several simplified subsets. SFN reliability is calculated according to these subsets by means of the inclusion-exclusion principle. Two heuristic options are then established in order to calculate SFN reliability in an efficient direction based on the lower and upper boundary points.

Keywords: lower and upper boundary points; decomposition; subsets

1. Introduction

In the field of network management, one of the main aims is to guarantee that the requirement mission (such as demand) can be successfully completed under certain constraints and uncertain situations. To achieve the goal, the first undertaking is to evaluate network performance. In general, a network is presented by arcs and nodes. To deal with the uncertain situations regarding any probability distribution on the arc in a network, the concept of stochastic flow network (SFN) [1-13] is applied. One of the most important characteristics for SFN is that the capacity of each arc is a random variable according to a certain probability distribution. In previous literature [1-13], researchers have modeled different systems with the stochastic property as SFN, such as supply chain [1,2], manufacturing [3,4], social network [5], computer [6-8], electronic transaction network [9], and project [10]. There are some attributes of the SFN that have been considered in previous works, including time $[3,10]$ and budget $[1,9,10]$. The capacity can be presented as processing time in the manufacturing systems [3,4], bandwidth in the computer network [6-8] or delivery loading in the supply chain network [1,2]. For instance, in [6], a computer network system with error rates was modeled as an SFN to evaluate the system quality. Yeh [1] addressed a reliability problem for a stochastic flow network under different budget allocations. Lin and Pan [8] evaluated the performance of the computer network under a time constraint with retransmission mechanism. Therefore, SFN can cope with the concerns regarding the uncertain situations and certain constraints.

For the network performance, SFN reliability is proposed and is defined as the probability that the requirement can be delivered successfully under constraints through the SFN. Among the common tools are network-based algorithms [1-13] for the demand d, in which d is the required quantity from
the source to the sink. SFN reliability is at least d units of flow which can be successfully sent from a source node to a sink node. The classical SFN reliability formula is $R_{d}=\sum \operatorname{Pr}\{X \mid$ at least d units of flow can be successfully sent from a source node to a sink node under X (system states) in the SFN\}. Rather than listing all the capacity vectors X, finding all lower or upper boundary points is an efficient way to calculate SFN reliability. Note that the lower and upper boundary points are the minimal and maximal capacity vectors to satisfy demand or requirement in the SFN. Given all the lower (or upper) boundary points, several algorithms, such as the improved recursive sum of disjoint products [14] and state space decomposition $[15,16]$, can be used to efficiently calculate SFN reliability.

However, in some practical issues, SFN reliability would be evaluated according to the lower and upper boundary points at the same time. For instance, the probability that required flows between two different demands are successfully transmitted should be known. Besides, in the performance of the project, Lin [10] proposed an algorithm to establish the upper and lower boundary points that satisfy time T and budget B constraints simultaneously. Lin [10] showed that all feasible project state vectors are contained in the minimal and maximal boundary points. Note that there is no SFN reliability evaluation in terms of the lower and upper boundary points simultaneously because of intricate relationships and domination property. Hence, the main purpose of this study is to evaluate SFN reliability with the lower and upper boundary points at the same time in such a way that the related probability evaluation can be addressed. Because of the intricate relationship among all boundary points, a decomposition approach based on upper and lower boundary points is developed to obtain several simplified subsets of feasible capacity vectors. Note that each subset is firstly formed with one upper boundary point and all lower boundary points. The relationships between certain upper boundary points and all lower boundary points in the subset are formulated. Then, the number of lower boundary points in the subset can be further reduced sharply. A special "minimum" operator termed " \downarrow " is developed to calculate SFN reliability according to the subsets. In order to calculate SFN reliability in an efficient direction based on the lower and upper boundary points, two heuristic options for the shared boundary points are established. With this inclusion-exclusion principle, an algorithm is proposed to evaluate SFN reliability with the lower and upper boundary points.

The remainder of this paper is outlined as follows. Section 2.1 describes the SFN model. The lower and upper boundary points are introduced in Section 2.2. SFN reliability is presented by using the simplified subsets in Section 3.1 and is evaluated according to the special operator developed in Section 3.2. Heuristic options are also developed for efficient calculation. In Section 4, an algorithm is presented based on the formula and options in Section 3. The proposed algorithm is presented in Section 4. For readability, a simple network is demonstrated to illustrate the proposed algorithm in Section 5. In Section 6, a real case is presented with some numerical experiments. A conclusion is depicted in Section 7.

2. SFN Model with SFN Reliability

Let $\mathrm{G} \equiv(\mathrm{A}, \mathrm{M})$ denote a stochastic flow network (SFN) in which $\mathrm{A}=\left\{a_{t} \mid t=1,2, \ldots, k\right\}$ is the set of arcs, $\mathrm{M}=\left\{W_{t} \mid t=1,2, \ldots, k\right\}$ where W_{t} is the maximal capacity of a_{t}. Note that every arc a_{t} exhibits multiple states (capacities) in terms of a given probability distribution, which can be obtained from the historical database. Then, the G in this study satisfies the following assumptions.

2.1. Assumptions

Assumptions 1. The state of each arc is a random variable according to a given probability distribution that can be obtained from the historical database.

Assumptions 2. The states of different arcs are statistically independent.
Besides, nomenclatures are listed below.

2.2. Nomenclature

$X \leq Y$	$\left(x_{1}: x_{2}, \ldots, x_{n}\right) \leq\left(y_{1}, y_{2}, \ldots, y_{n}\right): x_{i} \leq y_{i}$ for each $i=1,2, \ldots, n$.
$X<Y$	$\left(x_{1}, x_{2}, \ldots, x_{n}\right)<\left(y_{1}, y_{2}, \ldots, y_{n}\right): X \leq Y$ and $x_{i}<y_{i}$ for at least one i.
$X \leq Y$	$\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq\left(y_{1}, y_{2}, \ldots, y_{n}\right):$ neither $X \geq Y$ nor $X<Y$.

Under G, a (current) state vector is termed $X=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ where x_{t} is termed the state of a_{t}. SFN reliability R_{G} is defined as the probabilities of all feasible X, satisfying the specific constraints. However, it is time-consuming to search for all the feasible X and to sum their probabilities under a complex G since the number of X would violently increase. In order to calculate the R_{G} in an efficient way, the lower and upper boundary points, X_{i}^{L} and X_{j}^{U}, are derived, respectively for $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$. Note that X_{i}^{L} and X_{j}^{U} are the minimal and maximal capacity vectors. Let $X_{L, U}=\left\{X \mid X_{i}^{L}\right.$ $\left.\leq X \leq X_{j}^{U}\right\} \forall i, j$. The definitions for X_{i}^{L} and X_{j}^{U} are presented as follows.

Definition 1. X is one of X_{i}^{L} if $X \in X_{L, U}$ and $Y \notin X_{L, U}$ with $Y<X$.
Definition 2. X is one of X_{j}^{U} if $X \in X_{L, U}$ and $Y \notin X_{L, U}$ with $Y>X$.
All the feasible X are between at least one X_{i}^{L} and at least one X_{i}^{L}. That is, if $X \in X_{L, U}, X$ is feasible and R_{G} can be presented as follows.

$$
\begin{equation*}
R_{\mathrm{G}}=\operatorname{Pr}\left\{X \mid X \in X_{L, u}\right\} . \tag{1}
\end{equation*}
$$

By means of X_{i}^{L} and $X_{j}^{U}, R_{\mathrm{G}}$ can be rewritten as follows.

$$
\begin{equation*}
R_{\mathrm{G}}=\operatorname{Pr}\left\{X \mid X \in X_{L, U}\right\}=\operatorname{Pr}\left\{X \mid X_{i}^{L} \leq X \leq X_{j}^{U}\right\} \forall i, j \tag{2}
\end{equation*}
$$

3. SFN Reliability Evaluation

It is difficult to compute R_{G} since there are complex structures and relationships among multiple X_{i}^{L} and X_{j}^{U}. The decomposition technique is used to derive several simplified subsets.

3.1. Simplified Subsets for SFN Reliability

For convenience, every X_{j}^{U} is a foundation to generate subset S_{j} from $\left\{X \mid X_{i}^{L} \leq X \leq X_{j}^{U}\right\}$ for all i. Let S_{j} be $\cup_{i=1}^{n}\left\{X \mid X_{i}^{L} \leq X \leq X_{j}^{U}\right\}$, for $j=1,2, \ldots, m$, meaning that $X \in S_{j}$ is a state vector between this certain X_{j}^{U} and all of X_{i}^{L} for $i=1,2, \ldots, n$. According to the definition of $X_{L, U}=\left\{X \mid X_{i}^{L} \leq X \leq X_{j}^{U}\right\} \forall i, j$, SFN reliability R_{G} can be rewritten by means of S_{j} as follows.

$$
\begin{equation*}
R_{\mathrm{G}}=\operatorname{Pr}\left\{X \mid X \in X_{L, U}\right\}=\operatorname{Pr}\left\{\cup_{j=1}^{m}\left\{X \mid X \in S_{j}\right\}\right\}=\operatorname{Pr}\left(\bigcup_{j=1}^{m} S_{j}\right) . \tag{3}
\end{equation*}
$$

Focusing on a certain S_{j}, relationships between this X_{j}^{U} and X_{i}^{L} for $i=1,2, \ldots, n$ can be formulated as follows.

$$
I_{i}^{j}=\left\{\begin{array}{l}
1, \text { if } X_{i}^{L} \leq X_{j}^{U} \tag{4}\\
0, \text { otherwise }
\end{array}\right.
$$

For example, $I_{2}^{2}=1$ in Figure 1 because $X_{2}^{L} \leq X_{2}^{U}$. Furthermore, the following theorem can be utilized to simplify S_{j} for the calculation efficiency.

Theorem 1. If $I_{i}^{j}=0$, then $\left\{X \mid X_{i}^{L} \leq X \leq X_{j}^{U}\right\}=\emptyset$ and S_{j} can be simplified as

$$
\begin{equation*}
S_{j}=\cup_{i: I_{i}^{j}=1}\left\{X \mid X_{i}^{L} \leq X \leq X_{j}^{U}\right\} \text { for } j=1,2, \ldots, m \tag{5}
\end{equation*}
$$

Proof of Theorem 1. Suppose that there are two capacity vectors: $X=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is an X_{i}^{L} and $Y=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ is an X_{j}^{U} with $I_{i}^{j}=0$ (i.e., $X \leq Y$). It is evident that at least one x_{q} where $x_{q}>y_{q}$ and at least one x_{p} where $x_{p}<y_{p}(q \neq p)$.

Bringing with the simplified $S_{j}, R_{\mathrm{G}}=\operatorname{Pr}\left(\bigcup_{j=1}^{m} S_{j}\right)$ can be further expanded as the form of the inclusion-exclusion principle as follows.

$$
\begin{align*}
R_{\mathrm{G}} & =\operatorname{Pr}\left(\bigcup_{j=1}^{m} S_{j}\right) \\
& =\sum_{j=1}^{m} \operatorname{Pr}\left(S_{j}\right)-\sum_{\theta_{1}, \theta_{2}: \theta_{1}<\theta_{2}} \operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}}\right)+\sum_{\theta_{1}, \theta_{2}, \theta_{3}: \theta_{1}<\theta_{2}<\theta_{3}} \operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}} \cap S_{\theta_{3}}\right)-\ldots \tag{6}\\
& +(-1)^{n-1} \operatorname{Pr}\left(\bigcap_{j=1}^{m} S_{j}\right)
\end{align*}
$$

where θ_{\bullet} is defined as the index of an S_{j} for $j=1,2, \ldots, m$.

Figure 1. An example of upper and lower boundary points.
3.2. Evaluation R_{G} in Terms of the Inclusion-Exclusion Principle

Calculating every term of Equation (6) in an effective way is necessary. Suppose that there are $q X$: $X^{1}, X^{2}, \ldots, X^{q}$. A special "minimum" operator termed " \downarrow " is defined as follows.

$$
\begin{equation*}
X^{1} \downarrow X^{2} \downarrow \ldots \downarrow X^{q} \equiv \min _{v=1,2, \ldots, q}\left(x_{t}^{v}\right) \forall t \tag{7}
\end{equation*}
$$

To be specific, $\bar{M}^{\theta_{1}, \theta_{2}}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is denoted as a shared upper boundary point for $S_{\theta_{1}}$ and $S_{\theta_{2}}$ and is derived via

$$
\begin{equation*}
\bar{M}^{\theta_{1}, \theta_{2}}=X_{\theta_{1}}^{U} \downarrow X_{\theta_{2}}^{U}=\min \left(x_{t}^{\theta_{1}}, x_{t}^{\theta_{2}}\right) \text { for } t=1,2, \ldots, k \tag{8}
\end{equation*}
$$

Focus on every term $\operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}}\right)$ in $\sum_{\theta_{1}, \theta_{2}: \theta_{1}<\theta_{2}} \operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}}\right)$ of Equation (6). There are probabilities of the intersection of $S_{\theta_{1}}$ and $S_{\theta_{2}}$ such that there exists a shared upper boundary point $\bar{M}^{\theta_{1}, \theta_{2}}$ (instead of $X_{\theta_{1}}^{U}$ and $\left.X_{\theta_{2}}^{U}\right)$. Therefore, $\operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}}\right)$ can be presented as follows.

$$
\begin{equation*}
\operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}}\right)=\operatorname{Pr}\left(\cup_{i: I_{i}^{\theta_{1}}=1, I_{i}^{\theta_{2}}=1}\left\{X \mid X_{i}^{L} \leq X \leq \bar{M}^{\theta_{1}, \theta_{2}}\right\}\right) . \tag{9}
\end{equation*}
$$

In a similar manner, every term $\operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}} \cap S_{\theta_{3}}\right)$ in the expansion of $\sum_{\theta_{1}, \theta_{2}, \theta_{3}: \theta_{1}<\theta_{2}<\theta_{3}} \operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}} \cap S_{\theta_{3}}\right)$ can be represented as

$$
\begin{equation*}
\operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}} \cap S_{\theta_{3}}\right)=\operatorname{Pr}\left(\cup_{i: I_{i}^{\theta_{1}}=1, I_{i}^{\theta_{2}}=1, I_{i}^{\theta_{3}}=1}\left\{X \mid X_{i}^{L} \leq X \leq \bar{M}^{\theta_{1}, \theta_{2}, \theta_{3}}\right\}\right) \tag{10}
\end{equation*}
$$

That is, the term $\operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}} \cap S_{\theta_{3}}\right)$ can also be evaluated with a shared upper boundary vector $\bar{M}^{\theta_{1}, \theta_{2}, \theta_{3}}$.

Without loss of generality for $\operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}} \cap \ldots \cap S_{\theta_{p}}\right)$ with $p \leq m$, each term in Equation (6) is presented and calculated by one shared upper boundary vector $\bar{M}^{\theta_{1}, \theta_{2}, \ldots, \theta_{p}}$ as follows.

$$
\begin{equation*}
\operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}} \cap \ldots \cap S_{\theta_{p}}\right)=\operatorname{Pr}\left(\cup_{i: I_{i}^{\eta_{1}}=1, I_{i}^{\eta_{2}}=1, \ldots, I_{i}^{\eta_{p}}=1}\left\{X \mid X_{i}^{L} \leq X \leq \bar{M}^{\theta_{1}, \theta_{2}, \ldots, \theta_{p}}\right\}\right) \tag{11}
\end{equation*}
$$

Overall, a shared upper boundary point $\bar{M}^{\theta_{1}, \theta_{2}, \ldots, \theta_{p}}$ is firstly generated for each term $\operatorname{Pr}\left(S_{\theta_{1}} \cap\right.$ $S_{\theta_{2}} \cap \ldots \cap S_{\theta_{p}}$) in Equation (6). There are several existing algorithms, such as the improved recursive sum of disjoint products [14] and state space decomposition [15,16], which can be used to calculate the probability above all X_{i}^{L} bounding by $\bar{M}^{\theta_{1}, \theta_{2}, \ldots, \theta_{p}}$.

3.3. Heuristic Rules for the Shared Boundary Point

Yeh [17] pointed out that the number of terms in probability evaluation affects the computational efficiency of the algorithms [14-16] to compute the probabilities. In Section 3.1, every X_{j}^{U} is a foundation to generate subset S_{j} from $\left\{X \mid X_{i}^{L} \leq X \leq X_{j}^{U}\right\}$ for all i. The number of S_{j} is determined by the number of X_{j}^{U} (i.e., $\left.\left|S_{j}\right|=\left|X_{j}^{U}\right|\right)$. Intuitively, the computational efficiency to calculate SFN reliability would be affected by the number of subsets. Hence, the lower boundary points X_{i}^{L} can also act as the foundation to generate subsets P_{i} where

$$
\begin{equation*}
P_{i}=\cup_{i: I_{i}^{j}=1}\left\{X \mid X_{i}^{L} \leq X \leq X_{j}^{U}\right\} \text { for } i=1,2, \ldots, n \tag{12}
\end{equation*}
$$

According to P_{i}, SFN reliability can also be shown as

$$
\begin{align*}
R_{\mathrm{G}} & =\operatorname{Pr}\left(\bigcup_{i=1}^{n} P_{i}\right) \\
& =\sum_{i=1}^{n} \operatorname{Pr}\left(P_{i}\right)-\sum_{\theta_{1}, \theta_{2}: \theta_{1}<\theta_{2}} \operatorname{Pr}\left(P_{\theta_{1}} \cap P_{\theta_{2}}\right)+\sum_{\theta_{1}, \theta_{2}, \theta_{3}: \theta_{1}<\theta_{2}<\theta_{3}} \operatorname{Pr}\left(P_{\theta_{1}} \cap P_{\theta_{2}} \cap P_{\theta_{3}}\right)-\ldots \tag{13}\\
& +(-1)^{n-1} \operatorname{Pr}\left(\bigcap_{i=1}^{n} P_{i}\right)
\end{align*}
$$

Each term, $\operatorname{Pr}\left(P_{\theta_{1}} \cap P_{\theta_{2}} \cap \ldots \cap P_{\theta_{p}}\right)$ with $p \leq n$, is also presented and calculated as follows.

$$
\begin{equation*}
\operatorname{Pr}\left(P_{\theta_{1}} \cap P_{\theta_{2}} \cap \ldots \cap P_{\theta_{p}}\right)=\operatorname{Pr}\left(\cup_{j: I I_{\theta_{1}}^{j}=1, I_{\theta_{2}}^{j}=1, \ldots, I_{\theta_{p}}^{j}=1}\left\{X \mid \underline{M}^{\theta_{1}, \theta_{2}, \ldots, \theta_{p}} \leq X \leq X_{j}^{U}\right\}\right) . \tag{14}
\end{equation*}
$$

where a shared lower boundary point $\underline{M}^{\theta_{1}, \theta_{2}, \ldots, \theta_{p}}$ is calculate based on a special "maximum" operator termed " \uparrow ". There are $q X: X^{1}, X^{2}, \ldots, X^{q}$, and \uparrow is defined as follows.

$$
\begin{equation*}
X^{1} \uparrow X^{2} \uparrow \ldots \uparrow X^{q} \equiv \max _{v=1,2, \ldots, q}\left(x_{t}^{v}\right) \forall t \tag{15}
\end{equation*}
$$

Note that the operator " \uparrow " is primarily manipulated at X_{i}^{L} for $i=1,2, \ldots, n$. The number of P_{i} is determined by the number of X_{i}^{L} (i.e., $\left.\left|P_{i}\right|=\left|X_{i}^{L}\right|\right)$. Overall, a shared lower boundary point $\underline{M}^{\theta_{1}, \theta_{2}, \ldots, \theta_{p}}$ is firstly generated for each term in Equation (14). There are several existing algorithms, such as the improved recursive sum of disjoint products [14] and state space decomposition [15,16], which can be used to calculate the probability under all X_{j}^{U} bounding by $\underline{M}^{\theta_{1}, \theta_{2}, \ldots, \theta_{p}}$.

Currently, there are two kinds of subsets, S_{j} and P_{i}, generated by either X_{i}^{L} or X_{j}^{U} as the foundations to calculate SFN reliability R_{G}. Since the number of terms in Equation (6) or Equation (13) affects the computational efficiency, two options are established as follows.
Option 1. When $\left|X_{j}^{U}\right| \leq\left|X_{i}^{L}\right|$, Equation (6) is applied to calculate R_{G}.
Option 2. When $\left|X_{j}^{U}\right| \geq\left|X_{i}^{L}\right|$, Equation (13) is applied to calculate R_{G}.
Calculation of the fewer terms is more efficient for probability evaluation. Obviously, the number of upper and lower boundary points would affect the number of terms in either Equation (6) or (13). The above options guide the direction of the computation such that the fewer terms are generated in probability evaluation. For instance, suppose that there are three lower boundary points and two upper boundary points: $X_{1}^{L}=(1,2,1,2,1), X_{2}^{L}=(2,3,2,1,1)$ and $X_{3}^{L}=(1,2,1,1,2)$; and $X_{1}^{U}=(3,2,3,3$, 3) and $X_{2}^{U}=(3,3,3,2,3)$ as shown in Figure 1. If Equation (6) is conducted, three terms are calculated to obtain $R_{\mathrm{G}}: \operatorname{Pr}\left(S_{1}\right), \operatorname{Pr}\left(S_{2}\right)$, and $\operatorname{Pr}\left(S_{1} \cap S_{2}\right)$. If Equation (13) is conducted, seven terms are calculated to obtain R_{G} : $\operatorname{Pr}\left(P_{1}\right), \operatorname{Pr}\left(P_{2}\right), \operatorname{Pr}\left(P_{3}\right), \operatorname{Pr}\left(P_{1} \cap P_{2}\right), \operatorname{Pr}\left(P_{1} \cap P_{3}\right), \operatorname{Pr}\left(P_{2} \cap P_{3}\right)$, and $\operatorname{Pr}\left(P_{1} \cap P_{2} \cap P_{2}\right)$. Hence, it is obvious that option $1\left(\left|X_{j}^{U}\right| \leq\left|X_{i}^{L}\right|\right)$ is a more efficient direction for the probability evaluation in this case.

4. Proposed Algorithm to Evaluate SFN Reliability

To calculate R_{G} by the built model above, an algorithm is developed as follows in Algorithm 1.

Algorithm 1a.

Input: all X_{i}^{L} and X_{j}^{U}
Set $\eta=$ True and $R_{\mathrm{G}}=0 / / \eta$ is a flag for either Equation (11) or Equation (14).
IF $\left|X_{j}^{U}\right| \leq\left|X_{i}^{L}\right| / /$ Apply Equation (11) to calculate R_{G} (Option 1)
FOR $p=1$ to m
Set $R_{p}=0 / /$ temporary reliability
FOR each combination with $p S_{j}: S_{\theta_{1}}, S_{\theta_{2}}, \ldots, S_{\theta_{p}}$ where $\theta_{1}<\theta_{2}<\ldots<\theta_{p}$
Set $\bar{M}^{\theta_{1}, \theta_{2}, \ldots, \theta_{p}}=X_{\theta_{1}}^{U} \downarrow X_{\theta_{2}}^{U} \downarrow \ldots \downarrow X_{\theta_{p}}^{U} . / /$ generate a shared upper boundary point.
Calculate
$\operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}} \cap \ldots \cap S_{\theta_{p}}\right)=\operatorname{Pr}\left(\cup_{i:: l_{i}^{\eta_{1}}=1, I_{i}^{\eta_{2}}=1, \ldots, I_{i}^{\eta_{p}}=1}\left\{X \mid X_{i}^{L} \leq X \leq \bar{M}^{\theta_{1}, \theta_{2}, \ldots, \theta_{p}}\right\}\right)$ by using the improved recursive
sum of disjoint products [14].
$R_{p} \leftarrow R_{p}+\operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}} \cap \ldots \cap S_{\theta_{p}}\right)$
END FOR
IF $\eta==$ True
$R_{\mathrm{G}} \leftarrow R_{\mathrm{G}}+R_{p}$
Else
$R_{\mathrm{G}} \leftarrow R_{\mathrm{G}}-R_{p}$
$\eta \leftarrow!\eta / /$ reverse the flag.
END FOR
ELSE $\left|X_{j}^{U}\right| \geq\left|X_{i}^{L}\right| / /$ Apply Equation (14) to calculate R_{G} (Option 2)
FOR $p=1$ to n
Set $R_{p}=0 / /$ temporary reliability
FOR each combination with $n P_{j}: P_{\theta_{1}}, P_{\theta_{2}}, \ldots, P_{\theta_{p}}$ where $\theta_{1}<\theta_{2}<\ldots<\theta_{p}$
Set $\underline{M}^{\theta_{1}, \theta_{2}, \ldots, \theta_{p}}=X_{\theta_{1}}^{L} \uparrow X_{\theta_{2}}^{L} \uparrow \ldots \uparrow X_{\theta_{p}}^{L} . / /$ generate a shared lower boundary point.
Calculate
$\operatorname{Pr}\left(P_{\theta_{1}} \cap P_{\theta_{2}} \cap \ldots \cap P_{\theta_{p}}\right)=\operatorname{Pr}\left(\cup_{j: I I_{\theta_{1}}^{j}=1, I_{\theta_{2}}^{j}=1, \ldots, I_{\theta_{p}}^{j}=1}\left\{X \mid \underline{M}^{\theta_{1}, \theta_{2}, \ldots, \theta_{p}} \leq X \leq X{ }_{j}^{u}\right\}\right)$ by using the improved recursive sum of disjoint products [14].
$R_{p} \leftarrow R_{p}+\operatorname{Pr}\left(P_{\theta_{1}} \cap P_{\theta_{2}} \cap \ldots \cap P_{\theta_{p}}\right)$
END FOR
IF $\eta==$ True
$R_{\mathrm{G}} \leftarrow R_{\mathrm{G}}+R_{p}$
Else
$\mathrm{R}_{\mathrm{G}} \leftarrow \mathrm{R}_{\mathrm{G}}-\mathrm{R}_{\mathrm{p}}$
$\eta \leftarrow!\eta / /$ reverse the flag.
END FOR
Output: R_{G}

5. An Numerical Example

An example is presented to demonstrate the proposed algorithm step by step. The capacity state and the corresponding probability are shown in Table 1. Suppose that there are three lower boundary points and two upper boundary points: $X_{1}^{L}=(1,2,1,2,1), X_{2}^{L}=(2,3,2,1,1)$ and $X_{3}^{L}=(1,2,1,1,2)$; and $X_{1}^{U}=(3,2,3,3,3)$ and $X_{2}^{U}=(3,3,3,2,3)$. According to the states, the relationships of X_{i}^{L} and X_{j}^{U} are displayed in Figure 1. SFN reliability R_{G} can be calculated according to the following.

Table 1. Data of the small example.

Arc	State	Probability	Arc	State	Probability
a_{1}	3	0.30		3	0.20
	2	0.50	a_{4}	2	0.50
	1	0.20		1	0.30
a_{2}	3	0.20		3	0.25
	2	0.70	a_{5}	2	0.40
	1	0.10		1	0.35
a_{3}	3	0.30			
	2	0.50			
	1	0.20			

```
Algorithm 1b.
Input: all \(X_{i}^{L}\) and \(X_{j}^{U}: X_{1}^{L}=(1,2,1,2,1), X_{2}^{L}=(2,3,2,1,1), X_{3}^{L}=(1,2,1,1,2)\), and
\(X_{1}^{U}=(3,2,3,3,3)\) and \(X_{2}^{U}=(3,3,3,2,3)\).
Set \(\eta=\) True and \(R_{\mathrm{G}}=0\).
Since the condition \(\left|X_{j}^{U}\right| \leq\left|X_{i}^{L}\right|\) is true, apply Equation (11) to calculate \(R_{G}\).
Set \(R_{1}=0\).
FOR \(S_{1}\)
Set \(\bar{M}^{1}=X_{1}^{U}=(3,2,3,3,3)\).
From the relationship, \(I_{1}^{1}=1, I_{2}^{1}=0, I_{3}^{1}=1\).
\(\operatorname{Pr}\left(S_{1}\right)=\operatorname{Pr}\left(\cup_{i: 1,3}\left\{X \mid X_{i}^{L} \leq X \leq \bar{M}^{1}\right\}\right)=0.8457\).
\(R_{1} \leftarrow R_{1}+\operatorname{Pr}\left(S_{1}\right)=0.8457\)
FOR \(S_{2}\)
Set \(\bar{M}^{2}=X_{2}^{U}=(3,3,3,2,3)\).
    From the relationship, \(I_{1}^{2}=1, I_{2}^{2}=1, I_{3}^{2}=1\).
    \(\operatorname{Pr}\left(S_{2}\right)=\operatorname{Pr}\left(\cup_{i: 1,2,3}\left\{X \mid X_{i}^{L} \leq X \leq \bar{M}^{2}\right\}\right)=0.7555\).
    \(R_{1} \leftarrow R_{1}+\operatorname{Pr}\left(S_{2}\right)=1.6013\)
    END FOR
    \(R_{\mathrm{G}} \leftarrow R_{\mathrm{G}}+R_{1}=1.6013\)
    \(\eta=\) False \(/ /\) reverse the flag.
    FOR \(p=2 / /\) the second term \(\operatorname{Pr}\left(S_{\theta_{1}} \cap S_{\theta_{2}}\right)\)
    Set \(R_{2}=0\).
    FOR \(S_{1}, S_{2} / /\) the first combination with two \(S_{j}\)
    Set \(\bar{M}^{2}=X_{1}^{U} \downarrow X_{2}^{U}=(3,2,3,2,3)\).
    From the relationships, \(I_{1}^{1}=1, I_{2}^{1}=0, I_{3}^{1}=1\) and \(I_{1}^{2}=1, I_{2}^{2}=1, I_{3}^{2}=1\).
\(\operatorname{Pr}\left(S_{1} \cap S_{2}\right)=\operatorname{Pr}\left(\cup_{i: 1,3}\left\{X \mid X_{i}^{L} \leq X \leq \bar{M}^{2}\right\}\right)=0.6757\).
    \(R_{2} \leftarrow R_{2}+\operatorname{Pr}\left(S_{1} \cap S_{2}\right)=0.6757\)
    END FOR
    \(R_{\mathrm{G}} \leftarrow R_{\mathrm{G}}-R_{2}=0.9255\)
    \(I=\) True \(/ /\) reverse the flag.
Output: \(R_{\mathrm{G}}=0.9255\)
```

In the numerical example, SFN reliability R_{G} is 0.9255 . By the enumeration approach, $3^{5}=243$ capacity vectors are listed from $(1,1,1,1,1)$ to $(3,3,3,3,3)$ firstly. Each vector is confirmed whether to be feasible. Finally, the probabilities of every feasible state vector are added up to obtain R_{G}. On the contrary, the proposed algorithm only calculates $\operatorname{Pr}\left(S_{1}\right), \operatorname{Pr}\left(S_{2}\right)$, and $\operatorname{Pr}\left(S_{1} \cap S_{2}\right)$, to obtain R_{G}, with the corresponding shared upper boundary point.

6. Case Study

This section studies a notebook manufacturer whose headquarters is located in Taiwan. The manufacturer is planning to launch a construction project of new manufacturing lines in Chengdu, China. A project manager plans to ensure that the project can be completed within the expected time and budget. By executing the algorithm in literature [10], the upper and lower boundary points can be generated in terms of different times and budgets, respectively.

In detail, the project consists of 13 main activities, and the project is transformed to an SFN as shown in Figure 2. The durations and the corresponding cost of each activity are displayed in Table 2. Table 3 shows the experimental results from 130 to 140 days and from 110,000 to 120,000 (CNY). Besides, Figure 3 presents the patterns of project reliability in terms of the time and budget. Suppose, under $112,000 \mathrm{CNY}$ and 140 days, the project can be completed with 88.4594% probability. The experimental results also provide the managers with managerial implications. For instance, suppose that the managers plan to guarantee SFN reliability 0.9 under 135 days. The minimum budget should be 116,000.

Table 2. Durations, costs, and probabilities of each activity.

Arc	Activity	Duration (Days)	Cost (CNY)	Probability
a_{1}	Confirmation of the manufacturing lines	3	4500	0.20
		5	3000	0.40
		7	1500	0.40
a_{2}	Confirmation and collection of the tools	2	8400	0.10
		7	4200	0.70
		10	3000	0.20
a_{3}	Establishment of the labor requirement	7	4500	0.10
		14	3000	0.60
		21	1500	0.30
a_{4}	Issue of a purchase order	14	2400	0.10
		28	1200	0.70
		42	600	0.20
a_{5}	Shipment of the tools			
		30	$15,000$	0.30
a_{6}	Establishment of the SOP	7	1800	0.20
		14	1200	0.70
		18	600	0.10
a_{7}	Preparation of machines and materials		7200	0.05
		14	6000	0.90
		16	4800	0.05
a_{8}	Custom declaration	14	1200	0.20
		21	600	0.80
a_{9}	Shipment of machines and materials	21	40,000	0.70
		31	30,000	0.30
a_{10}	Construction of the first line in floor A	11	10,200	0.05
		18	9000	0.05
		25	7400	0.90
a_{11}	Construction of the second line in floor A	5	10,200	0.05
		12	9000	0.05
		19	7400	0.90
a_{12}	Construction of the first line in floor B			
		14	9000	0.05
		21	7400	0.90
a_{13}	Construction of the second line in floor B	5	10,200	0.05
		12	9000	0.05
		19	7400	0.90

Table 3. Experimental results.

	Time (Unit: Day)		
Budget Unit: $\mathbf{1 0 0 0}$ CNY	$\mathbf{1 3 0}$	$\mathbf{1 3 5}$	$\mathbf{1 4 0}$
110	0.565067	0.721672	0.772429
112	0.669611	0.832017	0.884594
114	0.71561	0.881236	0.934397
116	0.734547	0.900869	0.954106
118	0.739934	0.906411	0.959655
120	0.740957	0.907454	0.960698

Figure 2. The project of construction of new manufacturing lines.

7. Conclusions

SFN reliability R_{G} is utilized for quality evaluation of the stochastic flow networks (SFN) and is defined as the probability of all feasible capacity vectors, satisfying certain constraints, such as demand, cost or time, etc. However, for the probability calculation, previous researches, including the improved recursive sum of disjoint products [14] and state space decomposition [15,16], focused on the unilateral boundary points. In some certain cases, upper and lower boundary points, X_{j}^{U} and X_{i}^{L}, are necessary to apply at the same time. For instance, there are time and budget constraints in the literature [10] considered to generate X_{j}^{U} and X_{i}^{L}, simultaneously. It is a challenge to calculate the probabilities of the capacity vectors contained in X_{j}^{U} and X_{i}^{L} to obtain R_{G} due to the complex relationships.

Figure 3. The patterns of the experimental results.

In order to evaluate SFN reliability with X_{j}^{U} and X_{i}^{L}, this paper proposes a decomposition of the feasible areas into several subsets S_{j} to calculate R_{G} in terms of an X_{j}^{U}. For computational efficiency, the relationships between X_{j}^{U} and all X_{i}^{L} in S_{j} is formulated to reduce the computational loading. Then, SFN reliability R_{G} is formatted as the inclusion-exclusion principle by means of S_{j}. To calculate the probability of each term in the inclusion-exclusion principle with S_{j}, a special "minimum" operator termed " \downarrow " is developed to generate a shared boundary vector such that each term only has one unilateral boundary point. Finally, two heuristic options for the shared boundary points are established to calculate R_{G} in an efficient direction. The main merit of the heuristic options is to generate less terms for the calculation of R_{G} such that the computational loading is mitigated.

It is suggested that by using the proposed algorithm with the lower and upper boundary points, the reliability evaluation can be addressed for practical issues: the required flow between two different demands and project reliability with time and budget constraints.

Author Contributions: Conceptualization, D.-H.H., C.-F.H., and Y.-K.L.; methodology, D.-H.H. and C.-F.H.; validation, D.-H.H., C.-F.H., and Y.-K.L.; formal analysis, D.-H.H.; investigation, D.-H.H.; data curation, D.-H.H.; writing-original draft preparation, D.-H.H. and C.-F.H.; writing-review and editing, D.-H.H., C.-F.H., and Y.-K.L.

Funding: This research was funded by the Ministry of Science and Technology (MOST) of Taiwan, ROC MOST107-2218-E-035-011-MY2 and MOST 108-2221-E-009-033-MY3.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yeh, W.C.; Chu, T.C. A novel multi-distribution multi-state flow network and its reliability optimization problem. Reliab. Eng. Syst. Saf. 2018, 176, 209-217. [CrossRef]
2. Huang, C.F. Evaluation of system reliability for a stochastic delivery-flow distribution network with inventory. Ann. Oper. Res. 2019, 277, 33-45. [CrossRef]
3. Lin, Y.K.; Huang, D.H. Reliability analysis for a hybrid flow shop with due date consideration. Reliab. Eng. Syst. Saf. 2017. [CrossRef]
4. Chang, P.C. Reliability estimation for a stochastic production system with finite buffer storage by a simulation approach. Ann. Oper. Res. 2017, 277, 119-133. [CrossRef]
5. Schneider, K.; Rainwater, C.; Pohl, E.; Hernandez, I.; Ramirez-Marquez, J.E. Social network analysis via multi-state reliability and conditional influence models. Reliab. Eng. Syst. Saf. 2013, 109, 99-109. [CrossRef]
6. Lin, Y.K.; Huang, C.F. A multi-state computer network within transmission error rate and time constraints. J. Chin. Inst. Ind. Eng. 2012, 29, 477-484. [CrossRef]
7. Yeh, C.T.; Fiondella, L. Optimal redundancy allocation to maximize multi-state computer network reliability subject to correlated failures. Reliab. Eng. Syst. Saf. 2017, 166, 138-150. [CrossRef]
8. Lin, Y.K.; Pan, C.L. Considering retransmission mechanism and latency for network reliability evaluation in a stochastic computer network. J. Ind. Prod. Eng. 2014, 31, 350-358. [CrossRef]
9. Yeh, C.T. An improved NSGA2 to solve a bi-objective optimization problem of multi-state electronic transaction network. Reliab. Eng. Syst. Saf. 2019, 191, 106578. [CrossRef]
10. Lin, Y.K. Project management for arbitrary random durations and cost attributes by applying network approaches. Comput. Math. Appl. 2008, 56, 2650-2655. [CrossRef]
11. Zarezadeh, S.; Ashrafi, S.; Asadi, M. Network Reliability Modeling Based on a Geometric Counting Process. Mathematics 2018, 6, 197. [CrossRef]
12. El Khadiri, M.; Yeh, W.C. An efficient alternative to the exact evaluation of the quickest path flow network reliability problem. Comput. Oper. Res. 2016, 76, 22-32. [CrossRef]
13. Niu, Y.F.; Xu X, Z. Reliability evaluation of multi-state systems under cost consideration. Appl. Math. Model. 2012, 36, 4261-4270. [CrossRef]
14. Bai, G.H.; Zuo, M.J.; Tian, Z.G. Ordering heuristics for reliability evaluation of multistate networks. IEEE Trans. Reliab. 2015, 64, 1015-1023. [CrossRef]
15. Aven, T. Reliability evaluation of multistate systems with multistate components. IEEE Trans. Reliab. 1985, 34, 473-479. [CrossRef]
16. Bai, G.; Tian, Z.; Zuo, M.J. Reliability evaluation of multistate networks: An improved algorithm using state-space decomposition and experimental comparison. IISE Trans. 2018, 50, 407-418. [CrossRef]
17. Yeh, W.C. An improved sum-of-disjoint-products technique for the symbolic network reliability analysis with known minimal paths. Reliab. Eng. Syst. Saf. 2007, 92, 260-268. [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
