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Abstract: Determining vertex subsets are known tools to provide information about automorphism
groups of graphs and, consequently about symmetries of graphs. In this paper, we provide both
lower and upper bounds of the minimum size of such vertex subsets, called the determining number
of the graph. These bounds, which are performed for arbitrary graphs, allow us to compute the
determining number in two different graph families such are cographs and unit interval graphs.
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1. Introduction and Preliminaries

The graph isomorphism problem is not known to be solvable in polynomial time nor to be
NP-complete (see [1]) and moreover, it is well known that constructing the automorphism group
is at least as difficult (in terms of computational complexity) as solving the graph isomorphism
problem (see [2]). Therefore, it is interesting to provide tools that give information about such
automorphism groups.

Determining sets were introduced simultaneously by Boutin [3] and Erwin and Harary [4] (they
called them fixing sets) in 2006, to deal with the problem of identifying the automorphism group
of a graph. These sets are a generalization of resolving sets, independently introduced by Slater [5]
and Harary and Melter [6], motivated by the problem of identifying the location of an intruder in a
network, by means of distances. Resolving sets and some related sets were recently studied in [7–12].
Determining sets and resolving sets were jointly studied (see [13,14]). Furthermore, determining sets
are closely related to the notion of “symmetry breaking”, firstly studied by Alberson and Collins [15]
in 1996. The interest of this notion, beyond the information it provides about the automorphism group,
was pointed out by Bailey and Cameron in their survey paper [16] of 2011, citing Babai’s words [17]:

“In fact, breaking regularity is one of the key tools in the design of algorithms for graph
isomorphism; the graph isomorphism problem has therefore been one of the strongest
motivators of the study of all sorts of resolving/discriminating sets, and perhaps the only
deep motivator of the study of those in contexts where no group is present.”

In this paper, we deepen the study of determining sets of general graphs, providing both lower
and upper bounds of this parameter in terms of the so-called twin graph. We follow the same spirit
as other works that find general bounds involving other aspects of graphs, such as the number of
automorphisms [3] or the number of orbits [4]. Furthermore, our bounds allow us to obtain the
determining number of some graph classes (cographs and unit interval graphs), which is a problem of
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interest due to the NP-hardness of the computation of this parameter in arbitrary graphs [18]. Indeed,
many papers in the literature are devoted to study the determining number of specific graph families:
trees [4,13], Cartesian products [4,13,19], Kneser and Johnson graphs [3,20], twin-free graphs [14], and
Cayley graphs [21]; among others.

We now introduce the definitions and notations that we shall need throughout the rest of the
paper. All graphs considered here are finite, simple and undirected. An automorphism of a graph G
is a bijective mapping φ : V(G) −→ V(G) so that φ(u)φ(v) ∈ E(G) if and only if uv ∈ E(G). The
set Aut(G) of all automorphisms of G forms a group under composition, and its identity element is
denoted by idG. We recall the definition of determining set and determining number from [3].

Definition 1 ([3]). A subset S of the vertices of a graph G is called a determining set if whenever g, h ∈ Aut(G)

agree on the vertices of S, they agree on all vertices of G. That is, S is a determining set if whenever g and h
are automorphisms with the property that g(s) = h(s) for all s ∈ S, then g = h. The determining number of a
graph G is the smallest integer r so that G has a determining set of size r. Denote this by Det(G).

We quote from [3] the following example illustrating this concept.

Example 1. The Petersen graph is shown in Figure 1, where the vertices are identified with the 2-subsets of a
5-set. The Persersen graph has a determining number equal to three and examples of minimum determining sets
of this graph are S = {{1, 2}, {2, 4}, {2, 5}} and T = {{1, 2}, {2, 3}, {3, 4}} (see [3]).

{1, 2}

{1, 3}

{1, 4}

{1, 5}

{2, 3}

{2, 4}

{2, 5}
{3, 4}

{4, 5}
{3, 5}

Figure 1. The Petersen graph.

The following useful characterization of determining sets, in terms of the stabilizer of a vertex
subset, can be also found in [3]. The stabilizer of a vertex subset S ⊆ V(G) is the automorphism
subset StabG(S) = {φ ∈ Aut(G) : φ(u) = u, ∀u ∈ S}. Observe that StabG(S) =

⋂
s∈S StabG({s}), and

moreover S ⊆ T implies that StabG(T) ⊆ StabG(S).

Proposition 1 ([3]). Let S be a subset of the vertices of a graph G. Then S is a determining set of G if and only
if StabG(S) = {idG}.

We now quote from [22] the construction of the twin graph G1 associated with a given graph
G. This graph will be the main tool to obtain our new bounds. For a vertex u ∈ V(G), the open
and the closed neighborhood of u are respectively denoted by N(u) and N[u] and the degree of u
is deg(u) = |N(u)|. We say that two different vertices u, v ∈ V(G) are twins when N(u) = N(v) or
N[u] = N[v]. This notion induces the following equivalence relation on V(G): u ≡ v if and only if
either u = v or u and v are twins. This allows defining the twin class of u as [u] = {v ∈ V(G) : u ≡ v}.
We say that a twin class is trivial if it contains just one vertex and non-trivial in other case. When each
twin class is trivial, we say that G is twin-free. For S ⊆ V(G), we write [S] = ∪u∈S[u].

Assuming that there are exactly n(1) different equivalence classes, we can consider the partition
[u1], . . . , [un(1) ] of V(G) induced by them, where every ui is a representative of [ui]. The twin graph of
G, denoted by G1, is the graph with vertex set the set of equivalence classes of G. The vertex of G1
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representing the equivalence class [u] is denoted by u1. The edge set is E(G1) = {u1v1 : uv ∈ E(G)}.
For S ⊆ V(G), we denote S1 = {u1 ∈ V(G1) : u ∈ S}.

Please note that G1 is well defined, as shown in the following lemma.

Lemma 1 ([22]). Let G1 be the twin graph of a graph G. Then, u1v1 ∈ E(G1) if and only if xy ∈ E(G) for all
x ∈ [u],y ∈ [v].

We illustrate the construction of the twin graph of a given graph G with the following example.

Example 2. A graph G and its twin graph G1 are shown in Figure 2a,b, respectively. Please note that u2 and
u4 are twin vertices of G, so u1

2 = u1
4 in G1.

u0

u1 u2 u3 u4

(a) A graph G

u1
0

u1
1 u1

3 u1
2 = u1

4

(b) The graph G1

Figure 2. A graph G and its twin graph G1.

This paper is organized as follows. In Section 2 we use the twin graph G1 to provide a lower
bound of the determining number of an arbitrary graph G, whereas in Section 3 we use similar tools to
give an upper bound. Section 4 is devoted to use these bounds to compute the determining number
of cographs and unit interval graphs. We conclude the paper in Section 5 with some remarks and
future work.

2. A Lower Bound of Det(G) from Removing Twins

In this section, we present a new lower bound of the determining number of a graph. A lower
bound in terms of both orders of G and G1 is already known (see [14]).

Lemma 2 ([14]). Let G be a graph of order n such that G1 has order n(1). Then,

n− n(1) ≤ Det(G).

We present a different approach that relates the determining numbers of G and G1. To this end,
we need to define the following natural mapping between the automorphism groups of both G and G1:

T̃ : Aut(G)→ Aut(G1)

given by T̃ (φ)(u1) = φ(u)1. In the following lemma, we show that this mapping is a well-defined
group automorphism.

Lemma 3. For every graph G, the mapping T̃ satisfies the following properties:

1. T̃ is well-defined.
2. T̃ is a group homomorphism.

Proof. 1. Firstly, we have to check that T̃ (φ)(u1) does not depend on the choice of the
representative of u1. By definition of graph automorphism, it is clear that N(u) = N(v) if
and only if N(φ(u)) = N(φ(v)), and also N[u] = N[v] if and only if N[φ(u)] = N[φ(v)], so u, v
are twin vertices if and only of φ(u), φ(v) are twin vertices. Let u, v ∈ V(G) be two different
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vertices such that v1 = u1, then u, v are twin vertices and φ(v), φ(u) are also twin vertices, that
means that φ(v)1 = φ(u)1. Therefore T̃G(φ)(u1) = φ(u)1 = φ(v)1 = T̃ (φ)(v1).

On the other hand, for u1, v1 ∈ V(G1), Lemma 1 yields u1v1 ∈ E(G1) if and only if uv ∈ E(G),
or equivalently φ(u)φ(v) ∈ E(G), that is φ(u)1φ(v)1 = T̃ (φ)(u1)T̃ (φ)(v1) ∈ E(G1), as desired.

2. Clearly T̃ (φ ◦ φ′)(u1) = (φ ◦ φ′)(u)1 = φ(φ′(u))1 = T̃ (φ)(φ′(u)1) = T̃ (φ) ◦ T̃ (φ′)(u1), so
T̃ (φ ◦ φ′) = T̃ (φ) ◦ T̃ (φ′).

We will also need the following definition of a special type of vertex subset. We say that a set
Ω ⊆ V(G) is a plenty twin set if no pair of vertices of V(G) \Ω are twins. Equivalently, Ω is a plenty
twin set if it contains all but at most one vertices of every non-trivial twin class. In particular, this
gives that every determining set is a plenty twin set (see [14], proof of Lemma 3.3). However, there are
plenty twin sets that are not determining sets, as we show with the following example.

Example 3. The graph G in Figure 3 has exactly two non-trivial twin classes, [u1] = {u1, v1}, [u2] = {u2, v2},
therefore {u1, u2} is a plenty twin set. Moreover, the mapping φ satisfying φ(w) = w for every vertex
w ∈ {u, u1, v1, u2, v2}, φ(a1) = a2, φ(a2) = a1, φ(b1) = b2, φ(b2) = b1 is a non-trivial graph automorphism
fixing both u1, u2, so {u1, u2} is not a determining set of G.

u

u2 v2u1 v1
a1 a2

b1 b2

Figure 3. {u1, u2} is a plenty twin set but it is not a determining set.

A basic property of plenty twin sets is the following.

Lemma 4. If Ω is a plenty twin set of a graph G, then Ω1 is a plenty twin set of G1.

Proof. On the contrary, let us assume that there is a pair of twins x1, y1 ∈ V(G1) \Ω1. Thus, we have
that x, y ∈ V(G) \ [Ω], and so [x] = {x} and [y] = {y}, because Ω is a plenty twin set.

In particular, x, y are not twins in G, and so we may assume without loss of generality the existence
of a vertex z ∈ V(G) \ {x, y} such that z ∈ NG(x) and z 6∈ NG(y). By Lemma 1, z1 ∈ NG1(x1) and
z1 /∈ NG1(y1). This contradicts the fact that x1 and y1 are twins.

In the following lemma, we present the general behaviour of the stabilizer of a vertex subset
under the mapping T̃ and also the special situation of plenty twin sets.

Lemma 5. Let G be a graph. For any subset S ⊆ V(G), it holds that

T̃ (StabG(S)) ⊆ StabG1(S1).

Furthermore, if S is a plenty twin set, then the equality holds.

Proof. Let φ ∈ Aut(G) such that φ(u) = u for all u ∈ S. Thus, T̃ (φ)(u1) = φ(u)1 = u1, and so
T̃ (φ) ∈ StabG1(S1), which gives the desired inclusion.

Now, assume that S is a plenty twin set and let ψ ∈ StabG1(S1), and let us construct the mapping
φ : V(G) −→ V(G) in the following way. If u ∈ V(G) satisfies u1 ∈ S1 then we define φ(u) = u (in
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particular φ(u) = u for all u ∈ S). In this case, it is clear that ψ(u1) = u1 = φ(u)1. On the other hand,
if u ∈ V(G) satisfies u1 ∈ V(G1) \ S1 then, ψ(u1) ∈ V(G1) \ S1, because ψ ∈ StabG1(S1). Thus there
exists v1 ∈ V(G1) \ S1 such that ψ(u1) = v1. Using that S is a plenty twin set, we obtain that [v] = {v},
and we define φ(u) = v. Please note that in this case, again ψ(u1) = v1 = φ(u)1.

Let us check that φ is an automorphism of G. Indeed, uv ∈ E(G) if and only if u1v1 ∈ E(G1),
which is equivalent to φ(u)1φ(v)1 = ψ(u1)ψ(v1) ∈ E(G1) since ψ is an automorphism of G1. Again,
this is equivalent to φ(u)φ(v) ∈ E(G), by Lemma 1. This proves that φ ∈ Aut(G).

By construction, ψ(u1) = φ(u)1 = T̃ (φ)(u1) for all u ∈ V(G), and so ψ = T̃ (φ). Furthermore, φ

fixes each element of S, which means φ ∈ StabG(S). Therefore, T̃ (StabG(S)) ⊇ StabG1(S1).

We now present the announced lower bound of the determining number of a graph, in terms of
the corresponding parameter of its twin graph.

Theorem 1. If S is a determining set of a graph G then S1 is a determining set of the twin graph G1.
Consequently, Det(G1) ≤ Det(G) and this bound is tight.

Proof. Let S be a determining set of G. Thus, S is a plenty twin set and Lemma 5 gives

T̃G(StabG(S)) = StabG1(S1). (1)

On the other hand, T̃ is a group homomorphism and StabG(S) = {idG}, which implies that
T̃ (StabG(S)) = T̃ ({idG}) = {idG1}. Combining this with Equality (1), we obtain that StabG1(S1) =

{idG1} and S1 is a determining set of G1. Furthermore, |S1| ≤ |S| and therefore Det(G1) ≤ Det(G).
To prove the tightness of the bound, let Hs, with s ≥ 1, be a graph with vertex set V(Hs) =

{u, u0} ∪ {u1, v1, . . . , us, vs} and edge set E(Hs) = {uui : 0 ≤ i ≤ s} ∪ {uvi : 1 ≤ i ≤ s} ∪ {uivi :
1 ≤ i ≤ s}; its twin graph H1

s is a star on s + 2 vertices (see Figure 4). It is easy to check that
S = {u1, . . . , us} and S1 = {u1

1, . . . , u1
s} are minimum determining sets of Hs and H1

s , respectively, and
so Det(Hs) = Det(H1

s ) = s.

u

u0 u1 u2 usv1 v2 vs

(a) Hs

u1

u1
0 u1

1 u1
2 u1

s

(b) H1
s

Figure 4. Det(Hs) = Det(H1
s ) = s.

In order to compare our new lower bound with that showed in Lemma 2, we provide the following
two examples.

Example 4. Consider the graph G with s + 2 vertices consisting of a complete graph with s ≥ 3 vertices, a
vertex v that is not a neighbor of any vertex in the complete graph and a vertex u which is a neighbor of v and
of every vertex in the complete graph (see Figure 5a). Clearly G1 is a path with three vertices (see Figure 5b),
so n(1) = 3 and Det(G1) = 1. Therefore Det(G1) = 1 < n− n(1) = s + 2− 3 = s− 1 and in this case, the
lower bound in Lemma 2 is greater than the new one.
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u
Ks

v

(a) G

u1 v1w1

(b) G1

Figure 5. Det(G1) = 1 < n− n(1) = s− 1.

Example 5. Consider the graph G, with n = 3s + 3 vertices (s ≥ 3), shown in Figure 6a, whose twin graph
G1 is depicted in Figure 6b. In this case, n(1) = n− 1 and S = {u1

1, u1
2, . . . u1

s−1} is a minimum determining
set of G1, so Det(G1) = s− 1. Therefore n− n(1) = 1 < Det(G1) and our new lower bound is a better option
than the old one.

u1
u2

u3

us

v

w

(a) G

u1
1u1

2

u1
3

u1
s

v1 = w1

(b) G1

Figure 6. n− n(1) = 1 < Det(G1) = s− 1.

Therefore, both lower bounds are independent and we obtain the following corollary.

Corollary 1. Let G be a graph. Then, it holds that

max{n− n(1), Det(G1)} ≤ Det(G).

3. An Upper Bound on Det(G) from Removing Twins

In the previous section, we explored the relationship between the determining number of graphs
G and G1, and thereby providing a new general lower bound for the determining number of a graph.
We now focus on using such relationship to obtain an upper bound for the determining number.

Our strategy is now to obtain a twin-free graph by iterating the process of building G1 from
G. Contrary to what one might think, the twin graph G1 of a graph G is not twin-free in general
(see Figure 7).

u0

u1 u2 u3 u4

(a) u2, u4 are twins

u1
0

u1
1 u1

3 u1
2 = u1

4

(b) u1
3, u1

4 are twins

Figure 7. G1 is not necessarily a twin-free graph.

This fact suggests the iterative process of defining, for any integer i ≥ 2, the graph Gi as the
twin graph of Gi−1; its order is denoted by n(i). So, having in mind that G is a finite graph, we can
iterate this process thus obtaining a graph sequence G = G0, G1, . . . , Gr, where Gr is the only twin-free
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graph of the sequence. Clearly, if G is a non twin-free graph with n vertices, then 1 ≤ r ≤ n − 1.
The following example illustrates the extreme case r = n− 1.

Example 6. In Figure 8 we show a graph G with n = 5 vertices, and its sequence of twin graphs G1, G2, G3, G4.
Please note that G, G1, G2, G3 are not twin-free whereas G4 is, so r = 4 = 5− 1 = n− 1.

u0

u1 u2 u3 u4

(a) G

u1
0

u1
1 u1

3 u1
2 = u1

4

(b) G1

u2
0

u2
1 u2

2 = u2
3 = u2

4

(c) G2

u3
0

u3
1 = u3

2 = u3
3 = u3

4

(d) G3

u3
1 = u3

2 = u3
3 = u3

4

= u4
3 = u4

4

u4
0 = u4

1 = u4
2 =

(e) G4

Figure 8. The sequence of twin graphs obtained from G.

We denote by T i : V(Gi−1)→ V(Gi) the natural projection of Gi−1 onto its twin graph Gi, for any
1 ≤ i ≤ r. Let us denote ui = (T i ◦ T i−1 ◦ . . . ◦ T 1)(u) and [u]i = {v ∈ V(G) : ui = vi} for any vertex
u ∈ V(G). In general, for any subset S ⊆ V(G), we denote by Si = {ui ∈ V(Gi) : u ∈ S}, note that it is
a vertex subset of Gi, and by [S]i = {u ∈ V(G) : ui ∈ Si}, note that it is a vertex subset of G.

The proof of the following properties is trivial.

Lemma 6. Let G be a graph, let u ∈ V(G) and let S ⊆ V(G). Then, the following statements hold

1. [u]1 = [u] and [S]1 = [S].
2. [u] ⊆ [u]i and this inclusion is not an equality in general, for i ≥ 2.
3. S ⊆ [S]1 ⊆ [S]2 ⊆ . . . ⊆ [S]r ⊆ V(G). In particular, if S is a plenty twin set, then [S]i is also a plenty

twin set, for every i.

Remark 1. In Figure 8 we can see an example of the second property of Lemma 6. In this case
[u4]

1 = {u2, u4}  [u4]
2 = {u2, u3, u4}  [u4]

3 = {u1, u2, u3, u4}  [u4]
4 = {u0, u1, u2, u3, u4}.

The iterated application of the construction process of the twin graph easily provides this
straightforward generalization of Lemma 4.

Lemma 7. If Ω is a plenty twin set of a graph G, then Ωi is a plenty twin set of Gi, for i ≥ 1.

We now present three technical lemmas that will be useful to obtain the main result of this section.
These lemmas collect the behavior of plenty twin sets and their stabilizers under the successive twin
graph operations.

Lemma 8. Let Ω be a plenty twin set of a graph G, and let x ∈ V(G). If x ∈ V(G) \ [Ω]i for some i ≥ 1, then
[x]i = {x}.

Proof. We proceed by induction on i ≥ 1. For i = 1, let x ∈ V(G) \ [Ω]1 = V(G) \ [Ω]; in particular,
x 6∈ Ω. Suppose on the contrary that there exists y 6= x such that y ∈ [x]1 = [x]. Then, x and y are
twin vertices of G, and using that Ω is a plenty twin set, we obtain that y ∈ Ω. However, this means
x ∈ [y] ⊆ [Ω], which is a contradiction.

Our inductive hypothesis is the following: if x ∈ V(G) \ [Ω]i−1 then [x]i−1 = {x}. Suppose now
that x ∈ V(G) \ [Ω]i (and so xi /∈ Ωi by definition of Ωi); in particular, by Statement 3 of Lemma 6,
x /∈ [Ω]i−1 (and so xi−1 /∈ Ωi−1) and by the inductive hypothesis [x]i−1 = {x}. Assume that there
exists y 6= x such that y ∈ [x]i, which yields xi = yi. This implies that xi−1 and yi−1 are twins in Gi−1.
We know that [x]i−1 = {x}, so yi−1 6= xi−1. On the other hand, Ωi−1 is a plenty twin set because of
Lemma 7, so yi−1 ∈ Ωi−1. Finally, this gives that xi = yi ∈ Ωi, a contradiction.



Mathematics 2019, 7, 1111 8 of 13

Lemma 9. Let Ω be a plenty twin set of a graph G. Then, for every i ≥ 1,

StabGi−1(Ωi−1) = StabGi−1((T i)−1(Ωi)).

Proof. Recall that G0 = G and Ω0 = Ω. We only have to prove the inclusion StabGi−1(Ωi−1) ⊆
StabGi−1((T i)−1(Ωi)), so let φ ∈ StabGi−1(Ωi−1) and let ui−1 ∈ (T i)−1(Ωi). We need to show that
φ(ui−1) = ui−1. If ui−1 ∈ Ωi−1, then φ(ui−1) = ui−1, by hypothesis about φ. Assume now that
ui−1 ∈ (T i)−1(Ωi) \Ωi−1. Then T i(ui−1) = ui ∈ Ωi.

On the other hand, φ ∈ StabGi−1(Ωi−1) implies that T̃ i(φ) ∈ T̃ i(StabGi−1(Ωi−1)) = StabGi (Ωi),
by Lemma 5, and so T̃ i(φ)(ui) = ui. Moreover, by definition, T̃ i(φ)(ui) = (φ(ui−1))1, and this means
that (φ(ui−1))1 = ui. In other words, φ(ui−1) and ui−1 belong to the same twin class in Gi−1.

Finally, if φ(ui−1) 6= ui−1, using that Ωi−1 is a plenty twin set not containing ui−1, we have that
φ(ui−1) ∈ Ωi−1, however this is not possible because φ is a bijective mapping that fixes every vertex in
Ωi−1, and no vertex outside Ωi−1 have its image in Ωi−1. So φ(ui−1) = ui−1, as desired.

Lemma 10. Let G be a graph, and let Ω ⊆ V(G) be a plenty twin set. Then, for each i ≥ 1:

StabG(Ω) = StabG([Ω]i).

Proof. We proceed by induction on i ≥ 1. Firstly, for i = 1, Lemma 9 gives StabG(Ω) =

StabG((T 1)−1(Ω1)) and (T 1)−1(Ω1) = [Ω]1, by definition.
We now assume that StabG(Ω) = StabG([Ω]i−1). Let φ ∈ StabG(Ω) = StabG([Ω]i−1). We need

to prove that φ ∈ StabG([Ω]i). Indeed, the iteration of Lemma 5 on the plenty twin set [Ω]i−1 gives
T̃ i−1 ◦ . . . ◦ T̃ 1(StabG([Ω]i−1) = StabGi−1(T i−1 ◦ . . . ◦ T 1([Ω]i−1)) = StabGi−1(Ωi−1). Furthermore,
by using again Lemma 9, we obtain that StabGi−1(Ωi−1) = StabGi−1((T i)−1(Ωi)). This means that
T̃ i−1 ◦ . . . ◦ T̃ 1(φ) ∈ StabGi−1(Ωi−1) = StabGi−1((T i)−1(Ωi)).

Let x ∈ [Ω]i \ [Ω]i−1. This implies that xi−1 /∈ Ωi−1 but xi ∈ Ωi, so xi−1 ∈ (T i)−1(Ωi). Hence,
T̃ i−1 ◦ . . . ◦ T̃ 1(φ)(xi−1) = xi−1. On the other hand, T̃ i−1 ◦ . . . ◦ T̃ 1(φ)(xi−1) = φ(x)i−1 by definition.
Thus, φ(x)i−1 = xi−1, which implies that φ(x) ∈ [x]i−1 = {x}, by Lemma 8, so φ(x) = x. Hence,
φ ∈ StabG([Ω]i).

We finally present the main result of this section, that provides an upper bound for Det(G).

Theorem 2. Let G be a graph of order n, and let r be the smallest integer such that Gr is twin-free. Then,

Det(G) ≤ n− n(1) + Det(Gr)

and moreover, this bound is tight.

We first prove the following assertion.
Claim 1. For any plenty twin set Ω of G, we have that

StabG([Ω]r) ∩Ker(T̃ r ◦ . . . ◦ T̃ 1) = {idG}.

Proof. (Proof of Claim 1)
Let φ ∈ StabG([Ω]r) ∩ Ker(T̃ r ◦ . . . ◦ T̃ 1) and let u ∈ V(G). We need to prove that φ(u) =

u. Clearly, we may assume that u ∈ V(G) \ [Ω]r. Since φ ∈ Ker(T̃ r ◦ . . . ◦ T̃ 1), we have that
T̃ r ◦ . . . ◦ T̃ 1(φ)(ur) = ur, but T̃ r ◦ . . . ◦ T̃ 1(φ)(ur) = φ(u)r by definition. Thus, φ(u)r = ur, or
equivalently φ(u) ∈ [u]r = {u}, where the last equality is a consequence of Lemma 8, as [Ω]r is a
plenty set. Therefore, φ(u) = u and this proves the claim.

Let R be a minimum determining set of Gr, and let S ⊆ V(G) be a subset of cardinality |R| such
that Sr = R. By Lemma 5, we have that T̃ (StabG(S)) ⊆ StabG1(S1), and therefore we obtain that
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T̃ 2 ◦ T̃ (StabG(S)) ⊆ T̃ 2(StabG1(S1)) ⊆ StabG2(S2), where the last inclusion is given again by the
same lemma. Thus, iterating this process yields

T̃ r ◦ . . . ◦ T̃ 1(StabG(S)) ⊆ StabGr (Sr) = StabGr (R) = {idGr}

since R is a determining set of Gr. Hence, StabG(S) ⊆ Ker(T̃ r ◦ . . . ◦ T̃ 1).
On the other hand, let Ω ⊆ V(G) be a vertex subset composed by all but one vertices of each twin

class in G. Clearly, Ω is a plenty twin set and |Ω| = n− n(1). Lemma 10 yields StabG(Ω) = StabG([Ω]r),
and Claim 1 yields StabG([Ω]r) ∩Ker(T̃ r ◦ . . . ◦ T̃ 1) = {idG}. Therefore, we obtain that StabG(Ω) ∩
Ker(T̃ r ◦ . . . ◦ T̃ 1) = {idG} but StabG(Ω) ∩ StabG(S) ⊆ StabG(Ω) ∩Ker(T̃ r ◦ . . . ◦ T̃ 1) = {idG}. This
means that StabG(S ∪Ω) = StabG(S) ∩ StabG(Ω) = {idG} and so S ∪Ω is a determining set of G.
This gives the desired bound, since |S| = Det(Gr) and |Ω| = n− n(1).

To show the tightness of the bound, we consider the graph G in Figure 9a, with 2s + 4 vertices
(s ≥ 2). Clearly, G1 (see Figure 9b) is not twin-free whereas G2 is (see Figure 9c). Moreover, S =

{u1, u2, . . . , us−1, w} is a minimum determining set of G, so Det(G) = s. On the other hand, R =

{u2
1, u2

2, . . . , u2
s−1} is a minimum determining set of G2 and Det(G2) = s− 1. Finally, note that n−

n(1) = 1 and therefore Det(G) = n− n(1) + Det(G2).

u1
u2

u3

us

v

w

z

(a) G

u1
1u1

2

u1
3

u1
s

v1

w1 = z1

(b) G1

u2
1u2

2

u2
3

u2
s

v2 = w2 = z2

(c) G2

Figure 9. Det(G) = n− n(1) + Det(G2).

Corollary 2. Let r be the smallest integer such that Gr is twin-free. Then,

max{n− n(1), Det(G1)} ≤ Det(G) ≤ n− n(1) + Det(Gr).

Remark 2. It is proved in [14] that a twin-free graph has determining number at most the half of its order.

Then, max{n− n(1), Det(G1)} ≤ Det(G) ≤ n− n(1) +
n(r)

2
·

4. Determining Number of Cographs and Unit Interval Graphs

As an application of the bounds obtained in the previous sections, we can compute the
determining number of cographs and unit interval graphs. A cograph is a graph that can be constructed
from the single-vertex graph K1 by complementation and disjoint union. This graph class was
independently described by several authors (see [23–26]). Examples of cographs are, among others,
the complete graphs, the complete bipartite graphs, the cluster graphs and the threshold graphs.

Proposition 2. Let G be a cograph of order n with twin graph G1 of order n(1), then

Det(G) = n− n(1).

Proof. Cographs are precisely the graphs without an induced P4 as a subgraph (see [27,28]), and so
the resulting graph from removing any vertex of a cograph is also a cograph. Thus, given a cograph G,
G1 can be seen as a graph obtained by deletion of vertices of G, so it is clear that G1 is also a cograph.
Iterating this argument we obtain that Gi is a cograph, for any index i; in particular, if r is the smallest
integer such that Gr is twin-free, then Gr is a cograph.
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It is known that a non-trivial cograph has at least a pair of twins (see [27]), hence Gr is necessarily
isomorphic to K1, and so Det(Gr) = Det(K1) = 0. Finally, by Corollary 2, we obtain that n− n(1) ≤
max{n − n(1), Det(G1)} ≤ Det(G) ≤ n − n(1) + Det(Gr) = n − n(1), and Det(G) = n − n(1), as
desired.

Please note that the proof of Theorem 2 and Proposition 2 give that minimum determining sets
of cographs are exactly plenty twin sets with n− n(1) vertices, that is, containing exactly all but one
vertices of every non-trivial twin class. In the following example we illustrate this property of cographs.

Example 7. The graph in Figure 10a is a cograph (see [29]) with n = 7 vertices and its twin graph, that
is shown in Figure 10b, has n(1) = 4 vertices. Therefore, Det(G) = n− n(1) = 3 and Ω = {a, c, e} is a
minimum determining set of G because it is composed by all but one vertices of each non-trivial twin class of G.

a

b

c

d

e

f

g

(a) G

a1 = b1

c1 = d1 e1 = f 1

g1

(b) G1

Figure 10. A cograph G and its twin graph G1.

We now focus on unit interval graphs. A graph is a unit interval graph if it is possible to assign to
each of its vertices a unit interval of the real line in such a way that two vertices are adjacent exactly
if the associated intervals intersect (see [30]). We will apply again our previous results to bound the
determining number of these graphs, and we first need the following technical lemma.

Lemma 11. Let S be a vertex subset of a graph G, and let x ∈ V(G) \ S be such that for every y ∈ V(G) \
(S ∪ {x}) either deg(x) 6= deg(y) or (N(x) \ N(y)) ∩ S 6= ∅. Then, StabG(S) = StabG(S ∪ {x}).

Proof. Clearly we just need to prove that StabG(S) ⊆ StabG(S ∪ {x}). To this end, let φ ∈ StabG(S),
which means that φ(u) = u, for every u ∈ S. Let us see that φ(x) = x. Suppose, on the contrary, that
φ(x) = y 6= x, (note that y /∈ S, because if y ∈ S then, y = φ(y)). Clearly deg(x) = deg(φ(x)) = deg(y),
because automorphisms preserve degrees of vertices, so (N(x) \ N(y)) ∩ S 6= ∅, by hypothesis. Let
z ∈ (N(x) \ N(y)) ∩ S. Then, z ∈ N(x) and φ(z) ∈ N(φ(x)) = N(y). On the other hand, z ∈ S
implies that φ(z) = z, a contradiction with z /∈ N(y).

Proposition 3. Let G be a connected unit interval graph of order n with twin graph G1 of order n(1). Then,
Det(G) ∈ {n− n(1), n− n(1) + 1}.

Proof. It is well known that unit interval graphs and indifference graphs are equivalent graphs classes
(see [31]), so the vertices of G can be represented as real numbers {x1, . . . , xn}, with xi < xj when i < j,
and E(G) = {xixj : |xi − xj| ≤ 1}.

We first consider the particular case when G is a connected unit interval twin-free graph. Let us
see that, in this case, StabG({x1, . . . , xi−1}) = StabG({x1, . . . , xi−1, xi}), for every i ∈ {2, . . . n}. If i = n,
clearly StabG({x1, . . . , xn−1}) = StabG({x1, . . . , xn−1, xn}). We now fix i ∈ {2, . . . n− 1}, and suppose
that (N(xi) \ N(xj)) ∩ {x1, . . . , xi−1} 6= ∅, for every j ∈ {i + 1, . . . , n}. Then, by Lemma 11, we obtain
StabG({x1, . . . , xi−1}) = StabG({x1, . . . , xi−1, xi}).
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Assume now that there exits j > i such that N(xi) ∩ {x1, . . . , xi−1} ⊆ N(xj) ∩ {x1, . . . , xi−1}.
Since G is twin-free, there is xk ∈ (N(xi) \ N(xj)) ∪ (N(xj) \ N(xi)). Please note that N(xi) ∩
{x1, . . . , xi−1} 6= ∅, since G is connected, and the hypothesis of this case N(xi) ∩ {x1, . . . , xi−1} ⊆
N(xj) ∩ {x1, . . . , xi−1} gives that |xi − xj| ≤ 1. This also means that N(xi) ∩ {xi+1, . . . , xn} ⊆
N(xj) ∩ {xi+1, . . . , xn} and therefore, N[xi] ⊆ N[xj]. This means that deg(xi) ≤ deg(xj). In addition,
xk ∈ N(xj) \ N(xi) gives that deg(xi) < deg(xj). Again, by Lemma 11, StabG({x1, . . . , xi−1}) =

StabG({x1, . . . , xi−1, xi}).
Applying repeatedly this condition we obtain that StabG({x1}) = StabG({x1, . . . , xn}) =

StabG(V(G)). So {x1} is a determining set of G and Det(G) ∈ {0, 1}, whenever G is a connected unit
interval twin-free graph.

Finally, let us consider the general case and let G be any connected unit interval graph. Observe
that every Gi is also a connected unit interval graph. In particular, if r is the smallest integer such that
Gr is twin-free, then Det(Gr) ∈ {0, 1}. Finally, by Corollary 2, we obtain that n− n(1) ≤ Det(G) ≤
n− n(1) + Det(Gr) ≤ n− n(1) + 1, as desired.

We illustrate the behavior of minimum determining sets of unit interval graphs with the following
examples.

Example 8. We show a unit interval graph G and its representation through intersections of intervals of length
one (see [32]) in Figure 11a. The twin graph of G is in Figure 11b and it is clearly a twin-free graph satisfying
Det(G1) = 1. Proposition 3 gives Det(G) ∈ {n− n(1), n− n(1) + 1} = {5− 4, 5− 4 + 1} = {1, 2}. In this
case, it is easy to check that Det(G) = n− n(1) = 1 and both {b} and {c} are minimum determining sets of G.

a

b

c

d e

a
b

c
d

e

(a) G

a1 b1 = c1 d1 e1

a
b

c
d

e

(b) G1

Figure 11. A unit interval G and its twin graph G1.

Example 9. We now show a unit interval graph G and its representation through intersections of intervals of
length one in Figure 12a. The twin graph of G (see Figure 12b) is a twin-free graph satisfying Det(G1) = 1. In
this case, it is easy to check that Det(G) = n− n(1) + 1 = 2 and {b, f } is an example of minimum determining
set of G.

a

b

c

d e

a
b

c
d

e

f

f

(a) G

a1 b1 = c1 d1 e1

a
b

c
d

e

f 1

(b) G1

Figure 12. A unit interval G and its twin graph G1.
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5. Concluding Remarks

In this paper, we provided a lower bound and an upper bound, each of them being tight, of the
determining number of general graphs. We also showed that our lower bound is independent from
the one obtained in [14]. The main tool that we used is the twin graph, defined in [22] to study the
metric dimension of graphs, and which has proven to be also useful for obtaining determining sets
and for computing the determining number. Indeed, as an application of our bounds, we computed
the exact value of the determining number of cographs. In the case of unit interval graphs, we placed
this parameter in an set of two consecutive integers. In both cases, the obtained values depend only on
the number of vertices of both graphs G and its twin graph G1.

We think that our bounds could be useful to deal with other graph families (e.g.,
distance-hereditary graphs or parity graphs) in order to obtain the exact value of their determining
numbers, or at least to bound the range of possible values. Actually, we could find other techniques,
different from twin deletion, to provide new bounds of the determining number of a graph: addition
of vertices or edges, vertex contraction, etc. Furthermore, it could be of interest to apply all those
techniques to other types of sets different from determining sets such as dominating sets, cut sets, and
independent sets.
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