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Abstract: Surface modeling is closely related to interpolation and approximation by using level set
methods, radial basis functions methods, and moving least squares methods. Although radial basis
functions with global support have a very good approximation effect, this is often accompanied by an
ill-conditioned algebraic system. The exceedingly large condition number of the discrete matrix makes
the numerical calculation time consuming. The paper introduces a truncated exponential function,
which is radial on arbitrary n-dimensional space Rn and has compact support. The truncated
exponential radial function is proven strictly positive definite on Rn while internal parameter l
satisfies l ≥ b n

2 c+ 1. The error estimates for scattered data interpolation are obtained via the native
space approach. To confirm the efficiency of the truncated exponential radial function approximation,
the single level interpolation and multilevel interpolation are used for surface modeling, respectively.

Keywords: radial basis functions; native spaces; truncated function; interpolation; approximation;
surface modeling

1. Introduction

Radial basis functions can be used to construct trial spaces that have high precision in arbitrary
dimensions with arbitrary smoothness. The applications of RBFs (or so-called meshfree methods)
can be found in many different areas of science and engineering, including geometric modeling with
surfaces [1].The globally supported radial basis functions such as Gaussians or generalized (inverse)
multiquadrics have excellent approximation properties. However, they often produce dense discrete
systems, which tend to have poor conditioning and lead to a high computational cost. The radial basis
functions with compact supports can lead to a very well conditioned sparse system. The goal of this
work is to design a truncated exponential function that has compact support and is strictly positive
definite and radial on arbitrary n-dimensional space Rn and to show the advantages of the truncated
exponential radial function approximation for surface modeling.

2. Auxiliary Tools

In order to make the paper self-contained and have a complete basis for the theoretical analysis in
the later sections, we introduce some concepts and theorems related to radial functions in this section.

2.1. Radial Basis Functions

Definition 1. A multivariate function Φ : Rn → R is called radial if its value at each point depends only
on the distance between that point and the origin, or equivalently provided there exists a univariate function
ϕ : [0, ∞) → R such that Φ(x) = ϕ(r) with r = ‖x‖. Here, ‖ · ‖ is usually the Euclidean norm. Then, the
radial basis functions are defined by translation Φk(x) = ϕ(‖x− xk‖) for any fixed center xk ∈ Rn.
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Definition 2. A real-valued continuous function Φ : Rn → R is called positive definite on Rn if it is even and:

N

∑
j=1

N

∑
k=1

cjckΦ(xj − xk) ≥ 0 (1)

for any N pairwise different points x1, · · ·, xN ∈ Rn, and c = [c1, · · ·, cN ]
T ∈ RN . It is the Fourier transform

of a (positive) measure. The function Φ is strictly positive definite on Rn if the quadratic (1) is zero only for
c ≡ 0.

The strictly positive definiteness of the radial function can be characterized by considering the
Fourier transform of a univariate function. This is described in the following theorem. Its proof can be
found in [2].

Theorem 1. A continuous function ϕ : [0, ∞) → R such that r → rn−1 ϕ(r) ∈ L1[0, ∞) is strictly positive
definite and radial on Rn if and only if the n-dimensional Fourier transform:

Fn ϕ(r) =
1√

rn−2

∫ ∞

0
ϕ(t)t

n
2 J(n−2)/2(rt)dt (2)

is non-negative and not identically equal to zero. Here, J(n−2)/2 is the classical Bessel function of the first kind
of order (n− 2)/2.

2.2. Multiply Monotonicity

Since Fourier transforms are not always easy to compute, it is convenient to decide whether a
function is strictly positive definite and radial on Rn by the multiply monotonicity for limited choices
of n.

Definition 3. A function ϕ : (0, ∞) → R, which is in Ck−2(0, ∞), k ≥ 2, and for which (−1)l ϕ(l)(r) is
non-negative, non-increasing, and convex for l = 0, 1, · · ·, k− 2, is called k-times monotone on (0, ∞). In the
case k = 1, we only require ϕ ∈ C(0, ∞) to be non-negative and non-increasing.

This definition can be found in the monographs [2,3]. The following Micchelli theorem (see [4])
provides a multiply monotonicity characterization of strictly positive definite radial functions.

Theorem 2. Let k = b n
2 c+ 2 be a positive integer. If ϕ : [0, ∞) → R, ϕ ∈ C[0, ∞), is k-times monotone on

(0, ∞), but not constant, then ϕ is strictly positive definite and radial on Rn for any n such that b n
2 c ≤ k− 2.

2.3. Native Spaces

Every strictly positive definite function can indeed be associated with a reproducing kernel Hilbert
space (or its native space see [5]).

Definition 4. Suppose Φ ∈ C(Rn) ∩ L1(Rn) is a real-valued strictly positive definite function. Then, the
native space of Φ is defined by

NΦ(Rn) = { f ∈ L2(Rn) ∩ C(Rn) :
f̂√
Φ̂
∈ L2(Rn)},

and equip this space with the norm

‖ f ‖2
NΦ(Rn) =

∫
Rn

| f̂ (ω)|2

Φ̂(ω)
dω < ∞. (3)
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For any domain Ω ⊆ Rn, NΦ(Ω) is in fact the completion of the pre-Hilbert space HΦ(Ω) =

span{Φ(·, y) : y ∈ Ω}. Of course, NΦ(Ω) contains all functions of the form:

f =
N

∑
j=1

cjΦ(·, xj)

provided xj ∈ Ω, and can be assembled with an equivalent norm:

‖ f ‖2
NΦ(Ω) =

N

∑
j=1

N

∑
k=1

cjckΦ(xj, xk). (4)

Here, N = ∞ is also allowed.

3. Truncated Exponential Function

In this section, we design a truncated exponential function:

ϕ(r) = (e1−r − 1)l
+ (5)

with r ∈ R, and l is a positive integer. By Definition 1, it becomes apparent that Φ(x) = ϕ(r) is a radial
function centered on the origin on Rn when r = ‖x‖ and x ∈ Rn.

The following theorem characterizes the strictly positive definiteness of Φ(x).

Theorem 3. The function Φ(x) = (e1−‖x‖ − 1)l
+ is strictly positive definite and radial on Rn provided

parameter l satisfies l ≥ b n
2 c+ 1.

Proof. Theorem 2 shows that multiply monotone functions give rise to positive definite radial
functions. Therefore, we only need to verify the multiply monotonicity of univariate function ϕ(r)
defined by (5).

Obviously, the truncated exponential function ϕ(r) is in Cl−1(0, ∞) when r ∈ (0, ∞) and

ϕ(r) = (e1−r − 1)l
+ ≥ 0,

ϕ′(r) = −le1−r(e1−r − 1)l−1
+ ≤ 0,

ϕ′′(r) = l(l − 1)(e1−r)2(e1−r − 1)l−2
+ + le1−r(e1−r − 1)l−1

+ ≥ 0.

For any positive integers p and q, (e1−r)p and (e1−r − 1)q
+ are non-negative, but with negative

derivatives. Therefore,
(−1)n ϕ(n)(r) ≥ 0, n = 0, 1, · · ·, l − 1,

and ϕ(r) is (l + 1)-times monotone on (0, ∞). Then, the conclusion follows directly by Theorem 2.

There are two ways to scale ϕ(r):
(1) In order to make ϕ(0) = 1, we can multiply (5) by the positive constant 1

(e−1)l such that

ϕ(r) = 1
(e−1)l (e1−r − 1)l

+. Here, ϕ(r) is still strictly positive definite and has the same support as (5).
(2) Adding a shape parameter ε > 0, the scaled truncated exponential function can be given by:

ϕ(r) = (e1−εr − 1)l
+. (6)

Obviously, a smaller ε causes the function to become flatter and the support to become larger, while
increasing ε leads to a more peaked ϕ(r) and therefore localizes its support.
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4. Errors in Native Spaces

This section discusses the scattered data interpolation with compactly supported radial basis
functions Φ(x, xk) = (e1−‖x−xk‖ − 1)l

+, x, xk ∈ Rn.
Given a distinct scattered point set X = {x1, x2, · · ·, xN} ⊂ Rn, the interpolant of target function

f can be represented as:

Pf (x) =
N

∑
j=1

cjΦ(x, xj), x ∈ Rn. (7)

Solving the interpolation problem leads to the following system of linear equations:

Ac = y, (8)

where the entries of matrix A are given by Ai,j = Φ(xi, xj), i, j = 1, · · ·, N, c = [c1, · · ·, cN ]
T , and

y = [ f (x1), · · ·, f (xN)]
T . A solution to the system (8) exists and is unique, since the matrix A is positive

definite.
Let u∗(x) = [u∗1(x), · · ·, u∗N(x)]

T be a cardinal basis vector function, then Pf also has the following
form (see [6]):

Pf (x) =
N

∑
j=1

f (xj)u∗j (x), x ∈ Rn. (9)

Comparing (9) with (7), we have:
Au∗(x) = b(x), (10)

where b(x) = [Φ(x, x1), · · ·, Φ(x, xN)]
T .

Equation (10) shows a connection between the radial basis functions and the cardinal basis
functions.

First, the generic error estimate is as follows.

Theorem 4. Let Ω ⊆ Rn, X = {x1, x2, · · ·, xN} ⊂ Ω be distinct and Φ ∈ C(Ω ×Ω) be the truncated
exponential radial basis function with l ≥ b n

2 c+ 1. Denote the interpolant to f ∈ NΦ(Ω) on the set X by Pf .
Then, for every x ∈ Ω, we have

| f (x)− Pf (x)| ≤ PΦ,X (x)‖ f ‖NΦ(Ω).

Here
PΦ,X (x) =

√
C− (b(x))T A−1b(x), C = (e− 1)l .

Proof. Since f ∈ NΦ(Ω), the reproducing property yields

f (x) = 〈 f , Φ(·, x)〉Nφ(Ω).

Then

Pf (x) =
N

∑
j=1

f (xj)u∗j (x) = 〈 f ,
N

∑
j=1

u∗j (x)Φ(·, xj)〉Nφ(Ω).

Applying the Cauchy–Schwarz inequality, we have

| f (x)− Pf (x)| =

∣∣∣∣∣〈 f , Φ(·, x)−
N

∑
j=1

u∗j (x)Φ(·, xj)〉NΦ(Ω)

∣∣∣∣∣
≤ || f ||NΦ(Ω)

∣∣∣∣∣
∣∣∣∣∣Φ(·, x)−

N

∑
j=1

u∗j (x)Φ(·, xj)

∣∣∣∣∣
∣∣∣∣∣
NΦ(Ω)

.
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Denote the second term as

PΦ,X (x) =

∣∣∣∣∣
∣∣∣∣∣Φ(·, x)−

N

∑
j=1

u∗j (x)Φ(·, xj)

∣∣∣∣∣
∣∣∣∣∣
NΦ(Ω)

.

By the definition of the native space norm and Equation (10), PΦ,X (x) can be rewritten as

PΦ,X (x) =
√

Φ(x, x)− (b(x))T A−1b(x).

Then, the conclusion follows directly by the strict positive definiteness of Φ.

One of the main benefits of Theorem 4 is that we are now able to estimate the interpolation
error by computing PΦ,X (x). In addition, PΦ,X (x) can be used as an indicator for choosing a good
shape parameter.

When equipping the dataset X with a fill distance (or sample density, see [7]):

hX ,Ω = sup
x∈Ω

min
xj∈X
‖x− xj‖,

for any symmetric and strictly positive definite Φ ∈ C2k(Ω×Ω), the following generic error estimate
can be obtained.

Theorem 5. Suppose Ω ⊆ Rn is bounded and satisfies an interior cone condition. Suppose Φ ∈ C2k(Ω×Ω)

is symmetric and strictly positive definite. Denote the interpolant to f ∈ NΦ(Ω) on the set X by Pf . Then,
there exist some positive constants h0 and C such that:

| f (x)− Pf (x)| ≤ Chk
X ,Ω

√
DΦ(x)‖ f ‖NΦ(Ω),

provided hX ,Ω ≤ h0. Here
DΦ(x) = max

|β|=2k
max

w,z∈Ω∩B(x,chX ,Ω)
|Dβ

2 Φ(w, z)|

with B(x, chX ,Ω) denoting the ball of radius chX ,Ω centered at x.

Proof. The estimate can be obtained by applying the Taylor expansion. The technical details can be
found in [2,3].

Since the truncated radial basis function Φ is only in C0(Ω×Ω), hk
X ,Ω is vanishing in the above

error estimate of Theorem 5. Therefore, we need to bound the DΦ(x) by some additional powers of
hX ,Ω in order to obtain the estimate in terms of fill distance. The resulting theorem is as follows.

Theorem 6. Suppose Ω ⊆ Rn is bounded and satisfies an interior cone condition. Suppose Φ is the truncated
exponential radial basis function with l ≥ b n

2 c+ 1. Denote the interpolant to f ∈ NΦ(Ω) on the set X by Pf .
Then, there exist some positive constants h0 and C such that:

| f (x)− Pf (x)| ≤ Ch
1
2
X ,Ω‖ f ‖NΦ(Ω),

provided hX ,Ω ≤ h0.
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Proof. From [2], for C0 functions, the factor DΦ(x) can be expressed as:

DΦ(x) = ‖Φ‖L∞(B(0,2chX ,Ω))

independent of x. Selecting h0 ≤ 1
4c , we bound the DΦ(x) determined by the truncated exponential

radial basis function.
Using the definition of Φ and Lagrange’s mean value theorem, we have:

‖Φ‖L∞(B(0,2chX ,Ω)) = max
r∈(0,4chX ,Ω)

|e1−r − 1|l

≤ C max
r∈(0,4chX ,Ω)

|1− r|l

= C‖Ψ‖L∞(B(0,2chX ,Ω))

with Ψ denoting the truncated power radial basis function. From [2],

‖Ψ‖L∞(B(0,2chX ,Ω)) ≤ Ch
1
2
X ,Ω.

5. Numerical Experiments

5.1. Single-Level Approximation

This subsection shows how our truncated exponential radial basis function (TERBF) works at
a single level. Our first 2D target surface is the standard Franke’s function. In the experiments, we
let the kernel Φ in (7) be the truncated exponential radial function Φ(x) = (e1−ε‖x‖ − 1)2

+. A Halton
point set with increasingly greater data density is generated in domain [0, 1]2. Tables 1–8 list the test
results of Gaussian interpolation, MQ (Multiquadrics) interpolation, IMQ (Inverse Multiquadrics)
interpolation, and TERBF interpolation with different values of ε respectively. In the tables, the
RMS-error is computed by

RMS-error =

√√√√ 1
M

M

∑
k=1

[ f (ξk)− Pf (ξk)]2 =
1√
M
‖ f − Pf ‖2,

where ξk are the evaluation points. The rate listed in the Tables is computed using the formula:

ratek =
ln(ek−1/ek)

ln(hk−1/hk)
, k = 2, 3, 4, 5, 6,

where ek is the RMS-error for experiment number k and hk is the fill distance of the k-level. cond(A)

is the condition number of the interpolation matrix defined by (8). From Tables 1–6, we observe that
the globally supported radial basis functions (Gaussian, MQ, IMQ) can obtain ideal accuracy when
assembling a smaller value of ε. However, the condition number of the interpolation matrix will become
surprisingly large as the scattered data increase. We note that MATLAB issues a “matrix close to
singular” warning when carrying out Gaussian and MQ interpolation experiments for N = 1089, 4225
and ε = 10. Tables 7 and 8 show that TERBF interpolation can not only keep better approximation
accuracy, but also produce a well conditioned interpolation matrix. Even for N = 4225 and ε = 0.7, the
condition number of the presented method is relatively smaller (about 105). The change of RMS-error
with varying ε values is displayed in Figure 1. We see that the error curves of Gaussian and MQ
interpolation are not monotonic and even become erratic for the largest datasets. However, the curves
of IMQ and TERBF interpolation are relatively smooth. In particular, TERBF greatly improves the
condition number of the interpolation matrix. To show the application of TERBF approximation
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to compact 3D images, we interpolate Beethoven data in Figure 2 and Stanford bunny in Figure 3.
Numerical experiments suggest that TERBF interpolation is essentially faster than the scattered data
interpolation with globally supported radial basis functions. However, we observe that TERBF
interpolation causes some artifacts such as the extra surface fragment near the bunny’s ear from the
left part of Figure 3. This is because the interpolating implicit surface has a narrow band support. It
will be better if the sample density is smaller than the width of the support band (see the right part of
Figure 3). Similar observations have been reported in Fasshauer’s book [3], where a partition of unity
fits based on Wendland’s C2 function was used. The same observation was also made in [1].

Table 1. Gaussian interpolation to the 2D Franke’s function with ε = 20.

N RMS-Error Rate cond(A)

9 3.633326 × 10−1 - 1. 000028 × 10+0

25 3.138226 × 10−1 0.211341 1. 006645 × 10+0

81 2.003929 × 10−1 0.647118 3. 170400 × 10+0

289 6.616318 × 10−2 1.598731 3. 761572 × 10+1

1089 1.205109 × 10−2 2.456865 1. 925205 × 10+5

4225 2.908614 × 10−4 5.372688 2.687885 × 10+16

Table 2. Gaussian interpolation to the 2D Franke’s function with ε = 10.

N RMS-Error Rate cond(A)

9 3.256546 × 10−1 - 1. 129919 × 10+0

25 1.722746 × 10−1 0.918633 1. 667637 × 10+0

81 5.465624 × 10−2 1.656252 2. 601726 × 10+1

289 1.391350 × 10−2 1.973901 7. 316820 × 10+4

1089 3.273510 × 10−4 5.409503 1.179104 × 10+16

4225 1.135157 × 10−6 8.171803 1.906108 × 10+20

Table 3. MQ interpolation to the 2D Franke’s function with ε = 20.

N RMS-Error Rate cond(A)

9 1.224583 × 10−1 - 5. 366051 × 10+1

25 5.646454 × 10−2 1.116874 3. 124063 × 10+2

81 6.998841 × 10−3 3.012157 5. 534539 × 10+3

289 1.418117 × 10−3 2.303139 2. 324743 × 10+5

1089 3.627073 × 10−4 1.967099 8. 803829 × 10+7

4225 4.969932 × 10−5 2.867508 5.331981 × 10+11

Table 4. MQ interpolation to the 2D Franke’s function with ε = 10.

N RMS-Error Rate cond(A)

9 1.146184 × 10−1 - 8. 464360 × 10+1

25 5.193997 × 10−2 1.141921 6. 680998 × 10+2

81 4.534144 × 10−3 3.517943 2. 158362 × 10+4

289 9.608696 × 10−4 2.238418 5. 033541 × 10+6

1089 1.506154 × 10−4 2.673471 3.025049 × 10+10

4225 4.603113 × 10−6 5.032116 5.613893 × 10+16
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Table 5. IMQ interpolation to the 2D Franke’s function with ε = 20.

N RMS-Error Rate cond(A)

9 2.491443 × 10−1 - 2.733942 × 10+0

25 9.914856 × 10−2 1.329318 6.933813 × 10+0

81 3.257319 × 10−2 1.605907 5.444834 × 10+1

289 1.159691 × 10−2 1.489945 1.022341 × 10+3

1089 3.420734 × 10−3 1.761362 1.850967 × 10+5

4225 6.703871 × 10−4 2.351240 5.607685 × 10+8

Table 6. IMQ interpolation to the 2D Franke’s function with ε = 10.

N RMS-Error Rate cond(A)

9 2.065836 × 10−1 - 5. 995564 × 10+0

25 5.366442 × 10−2 1.944688 2. 312141 × 10+1

81 1.517723 × 10−2 1.822057 4. 053520 × 10+2

289 5.181480 × 10−3 1.550472 3. 889766 × 10+4

1089 9.630601 × 10−4 2.427667 1. 155244 × 10+8

4225 4.615820 × 10−5 4.382967 1.158439 × 10+14

Table 7. TERBF interpolation to the 2D Franke’s function with ε = 1.

N RMS-Error Rate cond(A)

9 1.951235 × 10−1 - 6.639719 × 10+0

25 5.018953 × 10−2 1.958929 2.405994 × 10+1

81 1.628459 × 10−2 1.623879 1.669026 × 10+2

289 6.727682 × 10−3 1.275326 1.250365 × 10+3

1089 2.402630 × 10−3 1.485495 1.058555 × 10+4

4225 9.728457 × 10−4 1.304332 9.410946 × 10+4

Table 8. TERBF interpolation to the 2D Franke’s function with ε = 0.7.

N RMS-Error Rate cond(A)

9 1.728785 × 10−1 - 1.275042 × 10+1

25 4.535991 × 10−2 1.930269 5.066809 × 10+1

81 1.335521 × 10−2 1.764015 3.608813 × 10+2

289 5.013012 × 10−3 1.413653 2.719227 × 10+3

1089 1.773595 × 10−3 1.499001 2.305630 × 10+4

4225 7.107796 × 10−4 1.319203 2.050036 × 10+5
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Figure 1. Cont.
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Figure 1. RMS-error curves for Gaussian, MQ, IMQ, and TERBF interpolations.

Figure 2. TERBF approximation of the Beethoven data. From top left to bottom right: 163 (a), 663 (b),
1163 (c), and 2663 (d) points.

Figure 3. TERBF approximation of the Stanford bunny with 453 (left) and 8171 (right) data points.
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5.2. Multilevel Approximation

The multilevel scattered approximation was implemented first in [8] and then studied by a
number of other researchers [9–13]. In the multilevel algorithm, the residual can be formed on the
coarsest level first and then be approximated on the later finer level by the compactly supported
radial basis functions with gradually smaller support. This process can be repeated and be stopped
on the finest level. An advantage of this multilevel interpolation algorithm is its recursive property
(i.e., the same routine can be applied recursively at each level in the programming language), of course
the disadvantage being the allocation that memory needs.

In this experiment, suppose a 3D target surface is an explicit function f (x, y, z) = 64x(1− x)y(1−
y)z(1 − z). We generate a uniform points set in the domain [0, 1]3, with levels k = 1, 2, 3, 4 and
N = 27, 125, 729, 4913. The scale parameter ε = 0.07× 2[0:3], and l = 3. The corresponding slice plots,
the iso-surfaces, and slice plots of the absolute error are shown in Figures 4–7. Both the iso-surfaces and
the slice plots are color coded according to the absolute error. At each level, the trial space is constructed
by a series of truncated exponential radial basis functions with varying support radii. Hence, the
multilevel approximation algorithm can produce a well conditioned sparse discrete algebraic system
in each recursion and keep ideal approximation accuracy at the same time. Numerical experiments
show that TERBF multilevel interpolation is very effective for 3D explicit surface approximation.
These observations can be found from Figures 4–7. Similar experiments and observations are reported
in detail in Fasshauer’s book [3], where Wendland’s function C4 has been used for approximation.
However, to improve the allocation memory needs of the multilevel algorithm, we can make use of the
hierarchical collocation method developed in [13].

(a) Point sets (b) Iso-surface plot

(c) Slice plot (d) Slice plot of absolute error

Figure 4. Fits and errors at Level 1.
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(a) Point sets (b) Iso-surface plot

(c) Slice plot (d) Slice plot of absolute error

Figure 5. Fits and errors at Level 2.

(a) Point sets (b) Iso-surface plot

(c) Slice plot (d) Slice plot of absolute error

Figure 6. Fits and errors at Level 3.
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(a) Point sets (b) Iso-surface plot

(c) Slice plot (d) Slice plot of absolute error

Figure 7. Fits and errors at Level 4.

6. Conclusions

The truncated exponential radial function, which has compact support, was introduced in
the paper. The strictly positive definiteness of TERBF was proven via the multiply monotonicity
approach, and the interpolation error estimates were obtained via the native space approach. Moreover,
the TERBF was applied to 2D/3D scattered data interpolation and surface modeling successfully.

However, we found that Φ(x) = (e1−ε‖x‖ − 1)l
+ was only in C0 space. In the error estimates in

terms of the fill distance, the power of hX ,Ω was only 1/2. There are many possibilities for enhancement
of TERBF approximation:

(1) We can construct new strictly positive definite radial functions with finite smoothness from
the given Φ(x) by a “dimension-walk” technique.

(2) We can do in-depth analysis of the characterization of TERBF in terms of Fourier transforms
established by Bochner and Schoenberg’s theorems.

(3) TERBF can also be used for the numerical solution of partial differential equations. The
convergence proof will depend on the approximation of TERBF trial spaces, the appropriate inverse
inequality, and the sampling theorem.

Author Contributions: Conceptualization, Methodology and Writing–original draft preparation, Q.X.;
Formal analysis and Writing—review and editing, Z.L.

Funding: The research of the first author was partially supported by the Natural Science Foundations of Ningxia
Province (No. NZ2018AAC03026) and the Fourth Batch of the Ningxia Youth Talents Supporting Program
(No. TJGC2019012). The research of the second author was partially supported by the Natural Science Foundations
of China (No. 11501313), the Natural Science Foundations of Ningxia Province (No. 2019AAC02001), the Project
funded by the China Postdoctoral Science Foundation (No. 2017M621343), and the Third Batch of the Ningxia
Youth Talents Supporting Program (No. TJGC2018037).

Acknowledgments: The authors would like to thank the Editor and two unknown reviewers who made valuable
comments on an earlier version of this paper. The authors used some Halton datasets and drew lessons from
partial codes from Fasshauer’s book [3]. We are grateful to [3] for its free CD, which contains many MATLAB
codes.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2019, 7, 1101 13 of 13

References

1. Ohtake, Y.; Belyaev, A.; Seidel, H.P. 3D scattered data interpolation and approximation with multilevel
compactly supported RBFs. Graph. Model. 2005, 67, 150–165. [CrossRef]

2. Wendland, H. Scattered Data Approximation; Cambridge University Press: Cambridge, UK, 2005.
3. Fasshauer, G.E. Meshfree Approximation Methods with MATLAB; World Scientific Publishers: Singapore, 2007.
4. Micchelli, C.A. Interpolation of scattered data: Distance matrices and conditionally positive definite functions.

Constr. Approx. 1986, 2, 11–22. [CrossRef]
5. Schaback, R. A unified theory of radial basis functions: Native Hilbert spaces for radial basis functions II.

J. Comp. Appl. Math. 2000, 121, 165–177. [CrossRef]
6. De Marchi, S.; Perracchiono, E. Lectures on Radial Basis Functions; Department of Mathematics, “Tullio

Levi-Civita”, University of Padova: Padova, Italy. Available online: https://www.google.com/url?sa=t&
rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjkuuu01ejlAhW9xosBHaZ0Ct8QFjAAegQIABAC&
url=https%3A%2F%2Fwww.math.unipd.it%2F~demarchi%2FRBF%2FLectureNotes_new.pdf&usg=
AOvVaw0sDK5WcNE1POWoa_lVur9v (accessed on 20 October 2019).

7. Bernard, C.P.; Mallat, S.G.; Slotine, J.J. Scattered data interpolation with wavelet trees. In Curve and Surface
Fitting (Saint-Malo, 2002); Nashboro Press: Brentwood, TN, USA, 2003; pp. 59–64.

8. Floater, M.S.; Iske, A. Multistep scattered data interpolation using compactly supported radial basis functions.
J. Comput. Appl. Math. 1996, 73, 65–78. [CrossRef]

9. Chen, C.S.; Ganesh, M.; Golberg, M.A.; Cheng, A.H.D. Multilevel compact radial functions based
computational schemes for some elliptic problems. Comput. Math. Appl. 2002, 43, 359–378. [CrossRef]

10. Chernih, A.; Gia, Q.T.L. Multiscale methods with compactly supported radial basis functions for the Stokes
problem on bounded domains. Adv. Comput. Math. 2016, 42, 1187–1208. [CrossRef]

11. Farrell, P.; Wendland, H. RBF multiscale collocation for second order elliptic boundary value problems.
SIAM J. Numer. Anal. 2013, 51, 2403–2425. [CrossRef]

12. Fasshauer, G.E.; Jerome, J.W. Multistep approximation algorithms: Improved convergence rates through
postconditioning with smoothing kernels. Adv. Comput. Math. 1999, 10, 1–27. [CrossRef]

13. Liu, Z.; Xu, Q. A Multiscale RBF Collocation Method for the Numerical Solution of Partial Differential
Equations. Mathematics 2019, 7, 964. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.gmod.2004.06.003
http://dx.doi.org/10.1007/BF01893414
http://dx.doi.org/10.1016/S0377-0427(00)00345-9
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjkuuu01ejlAhW9xosBHaZ0Ct8QFjAAegQIABAC&url=https%3A%2F%2Fwww.math.unipd.it%2F~demarchi%2FRBF%2FLectureNotes_new.pdf&usg=AOvVaw0sDK5WcNE1POWoa_lVur9v
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjkuuu01ejlAhW9xosBHaZ0Ct8QFjAAegQIABAC&url=https%3A%2F%2Fwww.math.unipd.it%2F~demarchi%2FRBF%2FLectureNotes_new.pdf&usg=AOvVaw0sDK5WcNE1POWoa_lVur9v
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjkuuu01ejlAhW9xosBHaZ0Ct8QFjAAegQIABAC&url=https%3A%2F%2Fwww.math.unipd.it%2F~demarchi%2FRBF%2FLectureNotes_new.pdf&usg=AOvVaw0sDK5WcNE1POWoa_lVur9v
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjkuuu01ejlAhW9xosBHaZ0Ct8QFjAAegQIABAC&url=https%3A%2F%2Fwww.math.unipd.it%2F~demarchi%2FRBF%2FLectureNotes_new.pdf&usg=AOvVaw0sDK5WcNE1POWoa_lVur9v
http://dx.doi.org/10.1016/0377-0427(96)00035-0
http://dx.doi.org/10.1016/S0898-1221(01)00292-9
http://dx.doi.org/10.1007/s10444-016-9458-z
http://dx.doi.org/10.1137/120898383
http://dx.doi.org/10.1023/A:1018962112170
http://dx.doi.org/10.3390/math7100964
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Auxiliary Tools
	Radial Basis Functions
	Multiply Monotonicity
	Native Spaces

	Truncated Exponential Function
	Errors in Native Spaces
	Numerical Experiments
	Single-Level Approximation
	Multilevel Approximation

	Conclusions
	References

