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Abstract: We present a method using contour integration to evaluate the definite integral of arctangent
reciprocal logarithmic integrals in terms of infinite sums. In a similar manner, we evaluate the definite
integral involving the polylogarithmic function Lik(y) in terms of special functions. In various cases,
these generalizations give the value of known mathematical constants such as Catalan’s constant G,
Aprey’s constant ζ(3), the Glaisher–Kinkelin constant A, log(2), and π.
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1. Introduction

We use our new method to evaluate definite integrals in the form of a series [1]. This is a novel
approach to these problems in mathematics and has not been used before to our knowledge. This
method involves using a form of the Cauchy integral formula. Both the definite integral and infinite
sum can be written in terms of the same contour integral, and therefore, we can equate the two. We will

evaluate integrals of the form 1
y arctan(y) logk(ay) where Re(k) < −1 as well as logk(ay)

y Lim(cy) over
y ∈ [0, ∞) in the form of known functions. The parameters in these integrals are complex in general.

2. Results

2.1. The Contour Integral

We start with Cauchy’s integral Formula (1) where C is the generalized Hankel contour as
described by Reynolds and Stauffer [1].

yk

k!
=

1
2πi

∫
C

ewy

wk+1 dw (1)

2.2. The Arctangent Reciprical Logarithmic Integral

We replace y by log(ay) and multiply both sides by 1
y arctan(y) in (1) to get the Cauchy equation

arctan(y) logk(ay)
yk!

=
1

2πi

∫
C

arctan(y)(ay)w

ywk+1 dw, (2)

where the definition of the logarithmic function is from Section 4.1 in [2]. This definition of the
logarithmic function is used throughout this paper. Then, we take the definite integral over y ∈ [0, ∞)

of both sides to get
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∫ ∞

0

arctan(y) logk(ay)
yk!

dy =
1

2πi

∫ ∞

0

∫
C

arctan(y)(ay)w

ywk+1 dwdy

=
1

2πi

∫
C

∫ ∞

0

arctan(y)(ay)w

ywk+1 dydw

= − 1
4i

∫
C

aww−k−2 sec
(πw

2

)
dw

(3)

from
∫ ∞

0 xα−1 arctan(x)dx = − π
2α cos(απ/2) , Equation (2.7.4.7) in [3], where the integral is valid for

−1 < Re(w) < 0 and Re(k) < −1

2.3. Infinite Sum of the Contour Integral

In this section, we will derive an equivalent contour integral by taking an infinite sum over n of a
transformed Cauchy integral formula. We once again start with Equation (1), multiplying both sides
by (−1)n+1π, replacing y with πi(2n + 1)/2 + log(a) and k with k + 1 to yield

(−1)n+1π(πi(2n + 1)/2 + log(a))k+1

(k + 1)!
=

(−1)n+1π

2πi

∫
C

ew(πi(2n+1)/2+log(a))

wk+2 dw. (4)

We then take the infinite sum of both sides over [0, ∞) with Re(k) < −1 to get

∞

∑
n=0

(−1)n+1π(πi(2n + 1)/2 + log(a))k+1

(k + 1)!
=

∞

∑
n=0

(−1)n+1π

2πi

∫
C

ew(πi(2n+1)/2+log(a))

wk+2 dw

=
1
2i

∫
C

∞

∑
n=0

(−1)n+1 ew(πi(2n+1)/2+log(a))

wk+2 dw

= − 1
4i

∫
C

aww−k−2 sec
(πw

2

)
dw

(5)

from sech(x) = 2 ∑∞
k=0(−1)ke−(2k+1)x, Equation (1.232.2) in [4], where sech(ix) = sec(x) and

Im(w) > 0 for the sum to converge.

2.4. Equating the Definite Integral and Infinite Sum

Since the right-hand side of Equations (3) and (5) are equal, we can equate the left-hand sides of
these equations and simplify the factorials to yield

∫ ∞

0

arctan(y)
y

logk(ay)dy = − π

k + 1

∞

∑
n=0

(−1)n(πi(2n + 1)/2 + log(a))k+1, (6)

where Re(k) < −1. If a is real and positive, then ay will be unity for some finite value of y, which
implies that log(ay) will be zero and the integrand will diverge at that point. However, the series
converges as long as the real part of k is negative. Thus, the principal value of the integral will be given
by the value of the series.

2.5. Evaluations in Terms of Fundamental Constants

Here we will look at a few examples of the integral in Equation (6), which yields new integral
forms in terms of constants such as Catalan’s constant ζ and π.
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(1) When k = −2. Replace a with eai

∫ ∞

0

arctan(y)
y log2(eaiy)

dy = π
∞

∑
n=0

(−1)n

πi(2n + 1)/2 + log(eai)

= −i
∞

∑
n=0

(−1)n

n + 1/2 + a/π)

= −iΦ
(
−1, 1,

1
2
+

a
π

) (7)

from Φ(z, s, v) = ∑∞
n=0(v + n)−szn where |z| < 1, v 6= 0,−1, ..., Equation (9.550.1) in [4], and Φ is the

Lerch function. We will now simplify the left-hand side by rationalizing the denominator to get

∫ ∞

0

arctan(y)
y

dy
(ai + log(y))2 =

∫ ∞

0

arctan(y)
y

−2ai log(y)
(log2(y) + a2)2

dy+∫ ∞

0

arctan(y)
y

(log2(y)− a2)

((log2(y) + a2)2
dy.

(8)

Now, comparing the real and imaginary coefficients on the left-hand sides of Equations (7) and (8),

∫ ∞

0

arctan(y)(log2(y)− a2)

y(log2(y) + a2)2
dy = 0. (9)

This result can be shown by breaking the integral into two parts, integrating from y ∈ [0, 1] and
y ∈ [1, ∞). In the latter, replace y by 1/y and use the log form of the arctan function to show that the
two integrals are the negatives of one another and hence zero. We also have

∫ ∞

0

arctan(y) log(y)
y(log2(y) + a2)2

dy =
1
2a

Φ
(
−1, 1,

1
2
+

a
π

)
. (10)

(2) When k = −2 and a = −1. Note That log(−1) = πi.

∫ ∞

0

arctan(y)
y

dy
log2(−y)

= π
∞

∑
n=0

(−1)n

πi(2n + 1)/2 + log(−1)

= −i
∞

∑
n=0

(−1)n

n + 3/2

= −i
4− π

2

(11)

from ∑∞
k=1(−1)k+1 1

2k−1 = π
4 , Equation (0.232.2) in [4]. We will now simplify the left-hand side by

rationalizing the denominator to get

∫ ∞

0

arctan(y)
y

dy
(log(−1) + log(y))2 =

∫ ∞

0

arctan(y)
y

−2iπ log(y)
(log2(y) + π2)2

dy+∫ ∞

0

arctan(y)
y

(log2(y)− π2)

(log2(y) + π2)2
dy.

(12)

Now, comparing the real and imaginary coefficients on the left-hand sides of Equations (11)
and (12), ∫ ∞

0

arctan(y)(log2(y)− π2)

y(log2(y) + π2)2
dy = 0 (13)
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from the procedure used in (9), and

∫ ∞

0

arctan(y) log(y)
y(log2(y) + π2)2

dy =
4− π

4π
. (14)

(3) When k = −2 and a = i. Note That log(i) = πi/2.

∫ ∞

0

arctan(y)
y

dy
log2(iy)

= π
∞

∑
n=0

(−1)n

πi(2n + 1)/2 + log(i)

= −i
∞

∑
n=0

(−1)n

n + 1

= −i log(2)

(15)

from ∑∞
k=1(−1)k+1 1

k = log(2), Equation (0.232.1) in [4]. We will now simplify the left-hand side by
rationalizing the denominator to get

∫ ∞

0

arctan(y)
y

dy
(log(i) + log(y))2 =

∫ ∞

0

arctan(y)
y

−iπ log(y)
(log2(y) + π2/4)2

dy+∫ ∞

0

arctan(y)
y

log2(y)− π2/4
(log2(y) + π2/4)2

dy.
(16)

Now, comparing the real and imaginary coefficients on the left-hand sides of Equations (15)
and (16), ∫ ∞

0

arctan(y)(log2(y)− π2/4)
y(log2(y) + π2/4)2

dy = 0 (17)

from the procedure used in (9), and

∫ ∞

0

arctan(y) log(y)
y(log2(y) + π2/4)2

dy =
log(2)

π
. (18)

3. Table of Integrals

We can use other values of k and generate more integrals, in particular, starting from Equation (6)
for numerical values of k and a, the entries in the Table 1,

Table 1. Table of Integrals.

k a
∫ ∞

0
arctan(y)

y logk(ay)dy

−3 −1 2 (G−1)
π

−3 i − π
24

−3 eai 1
8π

(
ζ(2, 1

2 (1 +
2a+π

2π )− ζ(2, 2a+π
4π )

)

where Re(a) > 0, G is Catalan’s constant, and ζ is the Hurwitz zeta function given by (9.521.1)
in [4].
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4. Integrals Involving the Polylogarithmic Function

4.1. Definite Integral of the Contour Integral

We replace y by log(ay) in (1) and multiply both sides by Lim(−cy)
y to get the Cauchy equation

1
k!

logk(ay)Lim(−cy)
y

=
1

2πi

∫
C

yw−1Lim(−cy)
awdw
wk+1 . (19)

Then we take the definite integral over y ∈ [0, ∞) of both sides to get

1
k!

∫ ∞

0

logk(ay)Lim(−cy)
y

dy =
1

2πi

∫ ∞

0

∫
C

yw−1Lim(−cy)
awdwdy

wk+1

=
1

2πi

∫
C

(∫ ∞

0
yw−1Lim(−cy)dy

)
awdw
wk+1

=
(−1)m

2i

∫
C

awc−ww−k−m−1 csc(πw)dw

(20)

from
∫ ∞

0 xα−1Lin(−cx)dx = (−α)−nπ
sin(απ)

c−α, Equation (2.5.2.1) in [5], where the integral is valid for
−1 < Re(w) < 0, −π < arg(a) ≤ π and | arg(c)| < π.

4.2. Infinite Sum of the Contour Integral

In this section, we will derive an equivalent contour integral by taking an infinite sum over n of a
transformed Cauchy integral formula. We once again start with Equation (1), multiplying both sides
by −2(−1)mπi, replacing y with πi(2n + 1) + log(a)− log(c) and k with k + m to yield

−2(−1)mπi(πi(2n + 1) + log(a)− log(c))k+m

(k + m)!
=
−2(−1)mπi

2πi

∫
C

ew(πi(2n+1)+log(a)−log(c))

wk+m+1 dw. (21)

We then take the infinite sum of both sides over [0, ∞) to get

−2(−1)mπi
(k+m)! ∑∞

n=0(πi(2n + 1) + log(a)− log(c))k+m = (−1)m+1 ∑∞
n=0

∫
C

ew(πi(2n+1)+log(a)−log(c))

wk+m+1 dw

= (−1)m+1
∫

C ∑∞
n=0

ew(πi(2n+1)+log(a)−log(c))

wk+m+1 dw

= (−1)m

2i
∫

C awc−ww−k−m−1 csc(πw)dw

(22)

from csc(x) = 2 ∑∞
k=0 e−(2k+1)x, (1.232.3) in [4], where csc(ix) = −i csc(x) and Im(w) > 0 for the sum

to converge.

4.3. Equating the Definite Integral and Infinite Sum

Since the right-hand sides of Equations (3) and (5) are equal, we can equate the left-hand sides of
these equations to yield

∫ ∞

0

logk(ay)Lim(−cy)
y

dy =
2πi(−1)m+1k!

(k + m)!

∞

∑
n=0

(πi(2n + 1) + log(a)− log(c))k+m, (23)

where Re(k + m) < −1, a 6= 0 and c 6= 0. We can simplify the infinite sum on the right-hand side to get

∫ ∞

0

logk(ay)Lim(−cy)
y

dy =
(−1)m+1k!
(k + m)!

(2πi)k+m+1ζ

(
−k−m,

1
2
+

log(a)− log(c)
2πi

)
(24)

from ζ(z, q) = ∑∞
n=0

1
(q+n)z where Re(z) > 1, q 6= 0,−1,−2, ..., (9.521.1) in [4], where ζ(r, s) is the

Hurwitz zeta function, which has a meromorphic continuation in the r-plane, its only singularity in C
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being a simple pole at r = 1 with residue −1. Note the left-hand side of Equation (24) converges for all
finite k. We also note that ζ(x, 1) is the Riemann zeta function ζ(x).

5. Special Cases of the Polylogarithmic Integral

In this section, we will use the Hurwitz zeta function in Equation (24) to look at values of the
parameters k, a, n, and c, which yield known constants and special functions such as ζ(3), Aprey’s
constant, and Catalan’s constant G.

(1) From Equation (24), when a = −c,

(−1)m+1 k!
(k + m)!

(2πi)k+m+1ζ(−k−m). (25)

Choosing particular values of k and m, we can obtain ζ(2), ζ(3), etc.

(2) From Equation (24), when a = ic and m = −1, we get

k(2πi)kζ

(
1− k,

3
4

)
. (26)

From the above, when k = −1,
1

2πi
(π2 − 8C) (27)

from ψn(z) = (−1)n+1n! ∑∞
k=0(z + k)−n−1, where z 6= 0,−1,−2, ..., (6.4.10) in [2], where the

value of the polygamma function ψ1(3/4) is from [6] and C is Catalan’s constant.

(3) Similarly, when a = −ic and m = −1, we get

k(2πi)kζ

(
1− k,

1
4

)
. (28)

From the above, when k = −1,
1

2πi
(π2 + 8C), (29)

from Equation (6.4.10) in [2], where the polygamma function ψ1(1/4) is from [6] and C is
Catalan’s constant.

Integral Representation of the Glaisher–Kinkelin Constant

Using Equation (24) and setting a = −c, m = −1 and replacing k with 1− k,

(1− k)(2πi)1−kζ(k). (30)

Take the derivative of the function with respect to k to get

− (2πi)1−kζ(k)− (1− k)(2πi)1−k log(2πi)ζ(k) + (1− k)(2πi)1−kζ ′(k). (31)

Then setting k = −1,

− (2πi)2ζ(−1)− 2(2πi)2 log(2πi)ζ(−1) + 2(2πi)2ζ ′(−1)

= −(2πi)2
(
− 1

12

)
− 2(2πi)2 log(2πi)

(
− 1

12

)
+ 2(2πi)2ζ ′(−1)

= −π2

3
− 2

3
π2 log(2πi)− 8π2

(
1

12
− log(A)

) (32)
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from A = e(1/12−ζ ′(−1)), Equation (2.15) in [7], where A is the Glaisher–Kinkelin constant and from
(9.535.2) in [4] and 23.2.24 in [2]. The value of ζ(−1) is given in [7].

6. Summary and Future Research Directions

In Section 1, we presented a novel method to derive a generalized formula for the definite integral
over y ∈ [0, ∞) of 1

y arctan(y) logk(ay) where a and k are complex with Re(k) < −1. In Section 2,
we motivated this work by evaluating this integral to known constant forms. We gave several
examples involving π, log(2), known as Mercator’s constant and Catalan’s constant (G), and more are
possible using the method presented. We derived similar formulas for definite integrals of the form
logk(ay)

y Lim(cy) over y ∈ [0, ∞) in Section 4, and we expressed a closed form solution for this integral
in terms of the Hurwitz zeta function. In Section 5, we evaluated the integral using particular values
of the parameter to yield special constants such as Catalan’s constant, with more constants possible
using the ζ function. The results in this article were numerically verified for various values, both real
and imaginary, of the parameters in the integrals using Mathematica by Wolfram.
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