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1. Introduction

Hadamard metric spaces, also known as complete CAT(0) metric spaces, play an important
role when dealing with the geometry of Bruhat–Tits building, metric trees, Hadamard manifolds, or
simply connected nonpositively curved symmetric spaces. In fact, the power of Hadamard spaces
goes beyond geometry. For example, CAT(0) geometry was used to solve an interesting problem in
Dynamical billiards [1]. In a very simplistic way, Hadamard metric spaces are the nonlinear version of
Hilbert vector spaces.

A metric Hadamard space (M, d) is characterized by the inequality (1) [2,3], known as the
inequality of Bruhat and Tits, i.e., for any a, b, x ∈ M, there exists c ∈ M such that

4 d(x, c)2 + d(a, b)2 ≤ 2 d(x, a)2 + 2 d(x, b)2. (1)

It is easy to check that c is a metric midpoint of a and b, i.e., d(c, a) = d(c, b) = d(a, b)/2. Note that
in the linear Hilbert spaces, the inequality (1) becomes an equality. A Hadamard space for which the
inequality (1) is an equality are known as flat Hadamard spaces. They are isomorphic to closed convex
subsets of Hilbert spaces.

To understand this inequality, one has to look at the formal definition of a CAT(0) space with
the comparison triangles taken in the Euclidean plane R2. In this case, the triangles in M are kind
of slimmer than the comparison triangles in R2. This fundamental property motivated the authors
of [4] to consider metric spaces for which the corresponding triangles are taken in general Banach
spaces. The most natural example is to take these comparison triangles in `p, for p > 1. The authors
of [4] called these more general metric spaces “generalized CATp(0)”. In this work, we continue
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investigating the properties of these metric spaces and establish some existence fixed point results and
their approximations.

For readers interested in metric fixed point theory, we recommend the book [5]. For more on
geodesic metric spaces, we recommend the excellent book [2].

2. Basic Definitions and Preliminaries

Most of the terminology of geodesic metric spaces is taken from the work in [2]. Consider a
metric space (M, d). A geodesic function ζ : [0, 1]→ M is any function that satisfies d(ζ(α), ζ(β)) =

|α− β|d(ζ(0), ζ(1)), for every α, β ∈ [0, 1]. (M, d) is said to be a geodesic space if, for every two points
a, b ∈ M, there exists a function ζ : [0, 1] → M such that ζ(0) = a and ζ(1) = b and is geodesic.
Throughout, we will use the notation ζ(α) = (1− α) a⊕ α b, for α ∈ (0, 1). (M, d) is said to be uniquely
geodesic if any two points in M are connected by a unique geodesic. In this case, the range of the unique
geodesic function connecting a and b will be denoted by [a, b], i.e., [a, b] = {(1− α) a⊕ α b; α ∈ [0, 1]}.

Normed vector spaces are natural examples of geodesic metric spaces. Complete Riemannian
manifolds, and polyhedral complexes of piecewise constant curvature are examples of nonlinear
geodesic metric spaces. In these two examples, it is not obvious to show the existence of geodesics
and show that they are unique. To determine when such spaces are uniquely geodesic is also a very
hard task.

Geodesic triangles are naturally introduced in geodesic metric spaces. Indeed, let (M, d) be a
geodesic metric space. Any three points—x, y, z ∈ M—will define a geodesic triangle ∆(x, y, z), which
consists of the three given points called its vertices and the geodesic segments between each pair of
vertices also known as the edges of ∆(x, y, z). Comparison triangles are crucial to the definition of
CAT(0) spaces [6]. Given a geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (M, d), a triangle
∆(x̄1, x̄2, x̄3) in the Euclidean plane R2 is said to be a comparison triangle to ∆(x1, x2, x3) whenever

dR2
(
x̄i, x̄j

)
= d

(
xi, xj

)
,

holds for any i, j ∈ {1, 2, 3}. The point x̄ = α x̄i + (1− α) x̄j is called a comparison point for x =

α xi ⊕ (1− α) xj, for any α ∈ [0, 1] and i 6= j.
Throughout (M, d) stands for a uniquely geodesic metric space.

Definition 1. [2] Let ∆ = ∆(x1, x2, x3) be a geodesic triangle in M and ∆ = ∆(x̄1, x̄2, x̄3) be a comparison
triangle for ∆ in R2. We say that ∆ satisfies the CAT(0) inequality if for any x, y ∈ ∆ and their comparison
points x̄, ȳ ∈ ∆, the following holds,

d(x, y) ≤ dR2(x, y).

(M, d) is said to be a CAT(0) space if all geodesic triangles satisfy the CAT(0) inequality. A Hadamard metric
space is any complete CAT(0) space [7].

Let (M, d) be a CAT (0) space. Let x, y1, y2 be in M. If m = 1
2 y1 ⊕ 1

2 y2 is the midpoint of y1 and
y2, then the CAT (0) inequality implies:

d (x, m)2 +
1
4

d (y1, y2)
2 ≤ 1

2
d (x, y1)

2 +
1
2

d (x, y2)
2 .

Strictly convex Banach spaces are obviously uniquely geodesic. It is well known that a normed
vector space is a CAT(0) space if and only if it is a pre-Hilbert space [2].

A recent extension to CAT(0) spaces was initiated in [4]. It is based on the idea that comparison
triangles belong to a general Banach spaces instead of the Euclidean plane.
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Definition 2. [4] (E, ‖.‖) be a Banach space. The geodesic metric space (M, d) is said to be a CATE(0) space
if for any geodesic triangle ∆ in M, there exists a comparison triangle ∆ in E such that

d(x, y) ≤ ‖x− y‖,

for any x, y ∈ ∆ and their comparison points x, y ∈ ∆. If E = `p, for p ≥ 1, we say M is a CATp(0) space.

It is obvious that (E, ‖.‖) is a CATE(0) space. If (E, ‖.‖) is not a pre-Hilbert space, then (E, ‖.‖) is
not a CAT(0) space. In other words, Definition 2 gives a larger class of hyperbolic metric spaces.
Throughout our work, we mainly focus on CATp(0) metric spaces for p > 2. It is obvious that CAT2(0)
space is exactly the classical CAT(0) space, which has been extensively studied.

The classical inequality (1) gives information about the middle point of two points. Except that
many successive iterations, which present some interesting behavior, do not involve the middle point,
but a convex combination of the given two points. Therefore, it is of utmost importance to prove or
discover some metric properties of this kind of convex combinations.

Next, we will discuss a property of the convex combinations that holds in CATp(0) spaces
for p ≥ 2.

Lemma 1. Let (M, d) be a CATp(0) metric space, with p ≥ 2. Then, for any x, y1, y2 in M and β ∈ [0, 1],
we have

d(x, β y1 ⊕ (1− β) y2)
p +

1
2p−1 β (1− β) d(y1, y2)

p ≤ β d(x, y1)
p + (1− β) d(x, y2)

p.

Proof. Note that this inequality is valid in `p, for p ≥ 2. Indeed, Lim [8] proved the
following inequality,

‖β x + (1− β) y‖p + g(β) ‖x− y‖p ≤ β ‖x‖p + (1− β) ‖y‖p,

for any β ∈ [0, 1] and x, y ∈ `p, where

g(β) = β (1− β)
1 + [x(β ∧ (1− β))]p−1

[1 + x(β ∧ (1− β))]p−1 ,

and x(γ), for γ ∈ [0, 1/2] is the unique solution to

(1− γ)xp−1 − γ− ((1− γ)x− γ)p−1 = 0, x ∈
[

γ

1− γ
, 1
]

.

In particular, we have g(β) ≥ β (1− β)
1

2p−1 , for any β ∈ [0, 1]. Therefore,

‖β x + (1− β) y‖p +
β (1− β)

2p−1 ‖x− y‖p ≤ β ‖x‖p + (1− β) ‖y‖p, (2)

for any β ∈ [0, 1] and x, y ∈ `p. Next, we turn our attention to the proof of Lemma 1. Consider
the geodesic triangle ∆(x, y1, y2), where x, y1, y2 ∈ M, and β ∈ [0, 1]. Ase M is a CATp(0) space,
there exists a comparison geodesic triangle ∆ = ∆(x̄, ȳ1, ȳ2) in `p. The comparison axiom implies that

d(x, β y1 ⊕ (1− β) y2) ≤
∥∥∥x−

(
β ȳ1 + (1− β) ȳ2

)∥∥∥ = ‖β (x̄− ȳ1) + (1− β) (x̄− ȳ2)‖.
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The inequality (2) implies that

d(x, β y1 ⊕ (1− β) y2)
p ≤ ‖β (x̄− ȳ1) + (1− β) (x̄− ȳ2)‖p

≤ β ‖x̄− ȳ1‖p + (1− β) ‖x̄− ȳ2‖p

− β (1−β)

2p−1 ‖ȳ2 − ȳ1‖p

= β d(x, y1)
p + (1− β) d(x, y2)

p − β (1−β)

2p−1 d(y2, y1)
p,

which implies the conclusion of Lemma 1.

Throughout, we will use the notation Cp = 1/2p−1, for p ≥ 2.
In the next section, we extend some known fixed point results in Banach spaces and CAT(0)

spaces to the case of CATp(0), for p > 2.

3. Fixed Point Results in CATp(0)

Next, we investigate the fixed point problem for the class of asymptotically nonexpansive
mappings. Note that this family of mappings was introduced by Goebel and Kirk [9] as a family of
mappings that sits between the family of nonexpansive mappings [10] and the family of uniformly
Lipschitzian mappings [11].

As we said before, throughout we consider (M, d) to be a geodesic metric space.

Definition 3. [9–11] Let J : M→ M be a map.

(1) J is asymptotically nonexpansive if there exists {ρn} such that lim
n→∞

ρn = 1 and

d(Jn(x), Jn(y)) ≤ ρn d(x, y),

for any x, y ∈ M and n ∈ N. We can always assume that ρn ≥ 1, for any n ∈ N.
(2) J is uniformly Lipschitzian if there exists ρ ≥ 0 such that

d(Jn(x), Jn(y)) ≤ ρ d(x, y),

for any x, y ∈ M and n ∈ N.
(3) A point x ∈ M is a fixed point of J if J(x) = x holds. Fix(J) will denote the set of fixed points of J.

The fixed point problem for this class of mappings was extensively investigated [12–15].
It followed two directions: The first deals with the existence of a fixed point. The second deals
with the approximation of the fixed points based on algorithms initiated by Schu [16]. In this work, we
will follow the same directions as well.

A powerful tool used in investigating the existence of fixed points is the concept of type functions,
which plays a major role in the study of metric fixed point theory in Banach spaces. Historically, it is
also known as the asymptotic center.

Definition 4. Let (M, d) be a metric space. A function θ : M → [0,+∞) is a type function if there exists a
bounded sequence {xn} in M such that

θ(a) = lim sup
n→∞

d(xn, a),

for any a ∈ M. A sequence {zn} in M is said to be a minimizing sequence of θ whenever

lim
n→∞

θ(zn) = inf{θ(a); a ∈ M}.

The following technical lemma shows why type functions are a powerful tool.
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Lemma 2. Let (M, d) be a complete CATp(0) metric space, with p ≥ 2. Let C be a nonempty closed convex
subset of M and θ : C → [0,+∞) be a type function generated by a bounded sequence {xn} ⊂ M. Then, the
following hold.

(1) Any minimizing sequence of θ is convergent.
(2) All minimizing sequences of θ converge to the same limit z ∈ C.
(3) z is a minimum point of θ, i.e., θ(z) = inf{θ(x); x ∈ C}.

Proof. Set θ0 = inf{θ(x); x ∈ C}. Without loss of generality, we assume θ0 > 0. Let {zn} be a
minimizing sequence of θ. Assume that {zn} is not Cauchy. As any subsequence of {zn} is also
a minimizing sequence of θ, we may assume there exists ε0 > 0 such that d(zn, zm) ≥ ε0, for any
n, m ∈ N. As C is convex, then 1

2 zm ⊕ 1
2 zm+1 ∈ C, for any m ∈ N. Lemma 1 implies

d
(

xn,
1
2

zm ⊕
1
2

zm+1

)p
+

1
2p+1 ε

p
0 ≤ d

(
xn,

1
2

zm ⊕
1
2

zm+1

)p

+
1

2p+1 d(zm, zm+1)
p

≤ 1
2

d(xn, zm)
p +

1
2

d(xn, zm+1)
p,

for any n, m ∈ N. If we let n→ ∞, we get

θ

(
1
2

zm ⊕
1
2

zm+1

)p
+

1
2p+1 ε

p
0 ≤

1
2

θ(zm)
p +

1
2

θ(zm+1)
p,

which implies

θ
p
0 +

1
2p+1 ε

p
0 ≤

1
2

θ(zm)
p +

1
2

θ(zm+1)
p,

for any m ∈ N. If we let m→ ∞, we get

θ
p
0 +

1
2p+1 ε

p
0 ≤

1
2

θ
p
0 +

1
2

θ
p
0 = θ

p
0 .

This contradiction shows that {zn} is Cauchy, which shows that (1) holds. To prove (2), let {zm}
and {wm} be two minimizing sequences of θ. Consider the sequence {ym} defined by y2m = zm and
y2m+1 = wm, for any m ∈ N. Then, {ym} is also a minimizing sequence of θ. From (1) we conclude
that {ym} is convergent. As both {zm} and {wm} are subsequence of {ym} we conclude that {zm} and
{wm} have the same limit. The conclusion of (3) follows from the simple fact that type functions are
continuous.

In the first result, we discuss the existence of a fixed point for asymptotically nonexpansive
mappings in CATp(0) spaces.

Theorem 1. Let (M, d) be a complete CATp(0) metric space, with p ≥ 2. Let C be a nonempty closed bounded
convex subset of M. Let J : C → C be an asymptotically nonexpansive mapping. Then, J has a fixed point.
Moreover, Fix(J) is closed and convex.

Proof. Let {ρn} be the Lipschitz sequence associated to J. Fix x ∈ C. Consider the type function θ

generated by {Jn(x)}. Let z be the minimum point of θ which exists by using Lemma 2. Therefore,

d(Jn+m(x), Jm(z)) ≤ ρm d(Jn(x), z),

for any n, m ∈ N. If we let n → ∞, we will get θ(Jm(z)) ≤ ρm θ(z) = ρm θ0, for any m ∈ N. If we let
m → ∞, and using lim

n→∞
ρn = 1, we get lim

m→∞
θ(Jm(z)) = θ0, i.e., {Jm(z)} is a minimizing sequence
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of θ. Using Lemma 2, we conclude that {Jm(z)} converges to z. As J is continuous, we conclude
that J(z) = z. The fact that Fix(J) is closed is obvious from the continuity of J. Let us prove that
Fix(J) is convex. Let z1, z2 ∈ Fix(J) be different. As Fix(J) is closed, we only need to prove that
w = 1

2 z1 ⊕ 1
2 z2 ∈ Fix(J). Note that

d(zi, Jn(w)) = d(Jn(zi), Jn(w)) ≤ ρn d(zi, w) =
ρn

2
d(z1, z2),

for n ∈ N and i = 1, 2. Therefore,

d(z1, z2) ≤ d(z1, Jn(w)) + d(Jn(w), z2) ≤ ρn d(z1, z2),

for any n ∈ N. As lim
n→∞

ρn = 1, we conclude that

lim
n→∞

d(zi, Jn(w)) =
d(z1, z2)

2
, f or i = 1, 2.

Similarly, we can show that

lim
n→∞

d
(

zi,
1
2

w⊕ 1
2

Jn(w)

)
=

d(z1, z2)

2
, f or i = 1, 2.

Using Lemma 1, we get

d
(

z1,
1
2

w⊕ 1
2

Jn(w)

)p
+

1
2p+1 d(w, Jn(w))p ≤ 1

2
d(z1, w)p +

1
2

d(z1, Jn(w))p,

for any n ∈ N. If we let n→ ∞, we get lim
n→∞

d(w, Jn(w)) = 0. As J is continuous, then w ∈ Fix(J) as

claimed, which completes the proof of Theorem 1.

Note that we may refine the boundedness assumption of C by assuming that an orbit of J is
bounded. In this case, the above proof still holds. The convexity of the set of fixed points is a useful
information, because it will allow us to prove the existence of a common fixed point for this class of
mappings for example.

Next, we discuss the behavior of the successive iterations introduced by Schu [16] for
asymptotically nonexpansive. In this case, Lemma 1 will prove to be crucial.

Recall that for a bounded nonempty subset C of a metric space (M, d), δ(C) denotes the diameter
of C and is defined by

δ(C) = sup{d(c1, c2); c1, c2 ∈ C}.

Lemma 3. Let (M, d) be a complete CATp(0) metric space, with p ≥ 2. Let C be a nonempty closed bounded
convex subset of M. Let J : C → C be an asymptotically nonexpansive mapping with {ρn} as its associated

Lipschitz constants. Let {γn} ⊂ [0, 1], such that
∞
∑

n=1
γn(ρn − 1) < ∞. The modified Mann iteration

process [16] is defined by
xn+1 = γn Jn(xn)⊕ (1− γn)xn, (3)

for any n ∈ N, where x0 ∈ C is a fixed arbitrary point. If z ∈ Fix(J), then lim
n→∞

d(xn, z) exists.

Proof. First, note that

d(xn+1, z) ≤ γnd(Jn(xn), z) + (1− γn)d(xn, z)

= γnd(Jn(xn), Jn(z)) + (1− γn)d(xn, z)

≤ γn(ρn − 1)d(xn, z) + d(xn, z),
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which implies d(xn+1, z) − d(xn, z) ≤ γn(ρn − 1)d(xn, z), for any n ∈ N. In particular, we have
d(xn+1, z)− d(xn, z) ≤ γn(ρn − 1)δ(C), for any n ∈ N. Therefore,

d(xn+m, z)− d(xn, z) ≤ δ(C)
m−1

∑
i=0

γn+i(ρn+i − 1),

for any n, m ∈ N. If we let m→ ∞, we get

lim sup
m→∞

d(xm, z) ≤ d(xn, z) + δ(C)
∞

∑
i=n

γi(ρi − 1),

for any n ∈ N. Using the assumption
∞
∑

n=1
γn(ρn − 1) < ∞, we obtain

lim sup
m→∞

d(xm, z) ≤ lim inf
n→∞

d(xn, z) + δ(C) lim inf
n→∞

∞

∑
i=n

γi(ρi − 1)

= lim inf
n→∞

d(xn, z)

≤ lim sup
m→∞

d(xm, z) ≤ δ(C).

Therefore, lim sup
m→∞

d(xm, z) = lim inf
n→∞

d(xn, z), i.e., {d(xn, z)} is convergent as claimed.

Remark 1. In the original work of Schu [16], the conclusion of Lemma 3 is obtained under the stronger

assumption
∞
∑

n=1
(ρn − 1) < ∞. One may be confused to how we can assume a weaker assumption that involves

the sequence {γn}. In fact, the construction of the sequence {γn} is done during the computation of the sequence

{xn} at the same time making sure we have the convergence of the series
∞
∑

n=1
γn(ρn − 1). Moreover, if we

assume that γn ≥ a > 0, for some a ∈ (0, 1), then
∞
∑

n=1
γn(ρn − 1) is convergent if and only if

∞
∑

n=1
(ρn − 1)

is convergent.

In the next result, we show that the sequence generated by (3) almost gives a fixed point.

Theorem 2. Let (M, d) be a complete CATp(0) metric space, with p ≥ 2. Let C be a nonempty closed bounded
convex subset of M. Let J : C → C be an asymptotically nonexpansive mapping with {ρn} as its associated

Lipschitz constants. Assume
∞
∑

n=1
(ρn − 1) < ∞. Let {γn} ⊂ [a, b], where 0 < a ≤ b < 1. Fix x0 ∈ C and

consider the sequence {xn} generated by the iteration (3). Then,

lim
n→∞

d(xn, Jn(xn)) = 0 and lim
n→∞

d(xn, Jm(xn)) = 0,

for any m ≥ 1, i.e., the sequence {xn} is said to be an approximate fixed point sequence of T.
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Proof. First, let us prove that lim
n→∞

d(xn, Jn(xn)) = 0. Using Theorem 1, J has a fixed point z ∈ C.

Lemma 3 implies that lim
n→∞

d(xn, z) = r exists. Using Lemma 1, we get

d(z, xn+1)
p +

a(1− b)
2p−1 d(xn, Jn(xn))

p ≤ d(z, xn+1)
p +

γn(1− γn)

2p−1 d(xn, Jn(xn))
p

≤ γn d(xn, z)p + (1− γn) d(Jn(xn), z)p

= γn d(xn, z)p + (1− γn) d(Jn(xn), Jn(z))p

≤ (γn + ρ
p
n(1− γn)) d(xn, z)p

≤ (ρ
p
nγn + ρ

p
n(1− γn)) d(xn, z)p = ρ

p
n d(xn, z)p,

since ρn ≥ 1, which implies

d(xn, Jn(xn))
p ≤ 2p−1

a(1− b)

(
ρ

p
n d(xn, z)p − d(z, xn+1)

p
)

,

for any n ∈ N. As
lim

n→∞
ρ

p
n d(xn, z)p − d(z, xn+1)

p = rp − rp = 0,

we conclude that lim
n→∞

d(xn, Jn(xn)) = 0. Next, we prove that for any m ≥ 1, we have

lim
n→∞

d(xn, Jm(xn)) = 0. As {ρn} is convergent, it is bounded. Set ρ = sup
n∈N

ρn. Therefore,

d(xn, J(xn)) ≤ d(xn, Jn(xn)) + ρ d(Jn−1(xn), xn)

≤ d(xn, Jn(xn)) + ρ2 d(xn, xn−1) + ρ d(xn, Jn−1(xn−1))

= d(xn, Jn(xn)) + ρ2 γn−1 d(xn−1, Jn−1(xn−1))

+ ρ (1− γn−1) d(xn−1, Jn−1(xn−1))

≤ d(xn, Jn(xn)) + ρ(ρ + 1) d(xn−1, Jn−1(xn−1)),

for any n ≥ 1. As lim
n→∞

d(xn, Jn(xn)) = 0, we conclude that

lim
n→∞

d(xn, J(xn)) = 0.

Finally, fix m ≥ 1. As we have

d(xn, Jm(xn)) ≤
m−1
∑

k=0
d(Jk(xn), Jk+1(xn))

≤
m−1
∑

k=0
ρ d(xn, J(xn))

≤ m ρ d(xn, J(xn)),

for any n ∈ N. Therefore, we have lim
n→∞

d(xn, Jm(xn)) = 0, for any m ≥ 1.

From a computational point of view, the algorithm (3) almost generated a fixed point of J.
However, from a mathematical point of view, we still need to look at the convergence of {xn}. First,
we have a strong convergence as did Schu [16]. To obtain this, we need some kind of compactness
assumption. Recall that J : C → C is said to be compact if the closure of J(C) is compact.

Theorem 3. Let (M, d) be a complete CATp(0) metric space, with p ≥ 2. Let C be a nonempty closed bounded
convex subset of M. Let J : C → C be an asymptotically nonexpansive mapping such that Jm is compact for some

m ≥ 1. Assume
∞
∑

n=1
(ρn − 1) < ∞, where {ρn} is the Lipschitz sequence associated to J. Let {γn} ⊂ [a, b],
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where 0 < a ≤ b < 1. Fix x0 ∈ C and consider the sequence {xn} generated by the iteration (3). Then, {xn}
converges strongly to a fixed point z of J, i.e., lim

n→∞
d(xn, z) = 0.

Proof. Let m ≥ 1 such that Jm is compact. Then, there exists a subsequence {xφ(n)} such that
{Jm(xφ(n))} converges to some point z ∈ C. Using Theorem 2, we know that lim

n→∞
d(xn, Jm(xn)) = 0,

which implies {xφ(n)} also converges to z. Again, using Theorem 2, we know that lim
n→∞

d(xn, J(xn)) = 0,

which implies that {J(xφ(n))} also converges to z. As J is continuous, we conclude that J(z) = z, i.e,
z ∈ Fix(J). Moreover, Lemma 3 implies lim

n→∞
d(xn, z) = r exists. As lim

n→∞
d(xφ(n), z) = 0, we conclude

that r = 0, i.e., lim
n→∞

d(xn, z) = 0. In other words, the sequence {xn} converges to z as claimed.

Therefore, we wonder whether a weaker convergence is happening if we relax the compactness
assumption in Theorem 3. In the original work of Schu [16], the setting is a Banach space. Therefore, we
may consider naturally the weak topology. In the nonlinear setting, it is still unknown what the weak
topology looks like. Lim [17] introduced a convergence concept he called ∆-convergence based on the
asymptotic center of a sequence. Except that this convergence does not capture the weak topology
once we restrict ourselves to Banach spaces. It only happens if the Banach space enjoys the Opial
property [18]. In the next result, we discard the compactness assumption.

Theorem 4. Let (M, d) be a complete CATp(0) metric space, with p ≥ 2. Let C be a nonempty closed bounded

convex subset of M. Let J : C → C be an asymptotically nonexpansive mapping. Assume
∞
∑

n=1
(ρn − 1) < ∞,

where {ρn} is the Lipschitz sequence associated to J. Let {γn} ⊂ [a, b], where 0 < a ≤ b < 1. Fix x0 ∈ C
and consider the sequence {xn} generated by the iteration (3). For any subsequence {xφ(n)}, consider the type
θφ(x) = lim sup

n→∞
d(xφ(n), x) on C. Then, the minimum point z of θφ is independent of the subsequence and is a

fixed point of J. We say that {xn} ∆-converges to z.

Proof. Consider the type function θ : C → [0, ∞) defined by {xn}, i.e., θ(x) = lim sup
n→∞

d(xn, x), for

any x ∈ C. According to Lemma 2, the type function θ has a unique minimum point z, which is a
fixed point of J. Let us prove that z is also the minimum point of any type function θφ generated by a
subsequence {xφ(n)} of {xn}. Again according to Lemma 2, there exists a unique minimum point zφ of
θφ, which is also a fixed point of J. Lemma 3 implies that lim

n→∞
d(xn, z) and lim

n→∞
d(xn, zφ) exist. As z is

the minimum point of θ, we get θ(z) ≤ θ(zφ), which implies lim
n→∞

d(xn, z) ≤ lim
n→∞

d(xn, zφ) or

lim
n→∞

d(xφ(n), z) ≤ lim
n→∞

d(xφ(n), zφ),

i.e., θφ(z) ≤ θφ(zφ). The uniqueness of the minimum point of θφ implies that z = zφ, which completes
the proof of Theorem 4.
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