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Abstract: Thermal non-equilibrium in porous medium is a prevailing condition when discrepancy 
of temperature exists between the two phases. The solution of a thermal non-equilibrium model 
requires that the two heat transport equations corresponding to fluid and solid phases, can be 
solved separately, which, in turn, provides the information of temperature variations of fluid as 
well as solid phases of the porous domain. A new method is proposed in the current article to solve 
the energy equations of the thermal non-equilibrium condition in a porous square cavity. The 
proposed method is able to predict the thermal equilibrium as well as thermal non-equilibrium 
accurately. The proposed method is used to investigate the heat transfer through the porous cavity 
subjected to two different boundary conditions with a heating strip being placed inside the porous 
cavity. It was found that the new method predicted the heat and fluid flow behavior accurately for 
the previously mentioned case studies. It is noted that the heat transfer is higher when the heating 
strip is placed toward the cold surface. The Nusselt number at the bottom of the strip toward the 
right side is almost 10 times higher than that of the left side of the strip. 

Keywords: thermal non-equilibrium; square cavity; porous medium; novel solution; heating strip 
 

1. Introduction 

The solution of simultaneous equations governing a particular phenomenon is demanding and 
this becomes quite laborious if difficult mathematics, such as partial differential equations (PDE), are 
involved. Unfortunately, many of the natural phenomenon can be described with difficult equations, 
which takes enormous effort and time to get at the solution. The heat transfer in porous medium that 
can be modeled using PDE is an important area of study due to its varied applications in a variety of 
the fields including heat exchangers, drying processes, insulation of building, electronic devices, and 
biomass conversion. Thus, identifying the heat transfer characteristics in a porous domain is of 
paramount importance either due to thermal equilibrium or the thermal non-equilibrium condition. 
However, the literature suggests that the thermal equilibrium is studied for a variety of geometries 
and non-equilibrium boundary conditions did not get as much attention as that of the equilibrium 
condition. One of the reasons for less attention to thermal non-equilibrium as compared to the 
equilibrium condition can be attributed to the additional complexity posed by the non-equilibrium 
condition, which makes the solution task relatively difficult due to multiple PDEs involved. These 
PDEs are interconnected to each other through certain parameters. Solution of such equations can be 
achieved with the help of numerical methods that convert the partial differential equations into 
other forms, which can be solved simultaneously. Among such methods, the finite element method 
(FEM) has gained considerable popularity due to its ability to account the irregular geometry as well 
as difficult boundary conditions, which makes it a viable option for many of the physical 
phenomena. A good insight into the FEM can be seen in the popular books by Segerland [1] and 
Lewis et al. [2]. Ahmed et al. [3] used FEM to study the mixed convection in an annular porous 
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domain subjected to thermal non-equilibrium. Badruddin et al. [4] applied FEM to investigate the 
heat transfer due to thermal equilibrium as well as thermal non-equilibrium in a square porous 
annulus that had a complex set of boundary conditions. The thermal non-equilibrium is modeled by 
introducing an additional energy equation that corresponds to the energy transport in the solid 
phase of the porous domain [5] apart from the fluid phase. However, this equation should be 
adequately coupled with its counterpart in the fluid phase through a convective heat transfer 
coefficient between the fluid and solid phases. This leads to three partial differential equations (PDE) 
to be solved simultaneously [6,7] as compared to two PDE for the thermal equilibrium condition, 
which has been predominantly studied by many researchers [8,9]. The parameters that are of 
importance in this case are the interphase heat transfer coefficient and the thermal conductivity ratio 
between the two phases. The phenomenon of thermal non-equilibrium has been reported for a 
variety of geometrical domains as well as those having been coupled with other phenomenon, such 
as the annular porous domain [10], the effect of thermal radiation [11], the thermal non equilibrium 
effect of double diffusive flow [12], natural convection in a square cavity [13], fluid, solid 
temperature variations in a differential heated cavity with nanofluid [14], forced convection with a 
third grade fluid [15], magneto convection, and thermal non-equilibrium [16], and effect of radiation 
and magnetic field on mixed convection [17], etc. Many researchers have relied upon a finite 
difference or finite volume method when regular geometrical domains, such as the square cavity, 
were involved. This can be well understood since a finite difference or a finite volume method is 
relatively easier to conceptualize and apply when the geometry is simple and boundary conditions 
are not complex. Saeid [18] investigated the thermal non-equilibrium effect in a horizontal porous 
cylinder with the help of the finite difference method and revealed that there is a significant effect on 
the total average Nusselt number by a thermal conductivity ratio between 0.01 and 10. The same 
author [19] also investigated the mixed convection in a porous layer by using the finite volume 
method and reported that higher heat transfer is achieved for higher values of Kr even when the 
Peclet number, Pe = 0.01, is used for aiding as well as opposing flows. Espinosa et al. [20] applied the 
thermal non-equilibrium model to investigate the thermodynamic effects in an oil field. The model 
was discretized using the finite difference method and they concluded that the heat generation in the 
porous media can lead to a higher temperature difference between the mixture of oil-gas and the 
solid matrix of porous medium. Vasdasz [21] analyzed the explicit conditions pertaining to the local 
thermal equilibrium. The investigation of thermal non-equilibrium has been extended to many 
different types of boundary conditions, such as partially heated and cooled vertical walls [22]. It was 
reported that the combination of bottom half heating and top half cooling resulted into the highest 
heat transfer rate while, the other way around, was the lowest as far as heat transfer characteristics 
are concerned. There are some efforts [23] to understand the dependency of the inter-phase heat 
transfer coefficient (that allows the heat transfer between fluid and solid phase) on the geometry and 
thermal properties of porous medium. This study presented an analytical model for periodic striped 
and random media apart from numerical study by finite differences. Rees [24] used the energy 
stability analysis to ascertain the convection stability under a thermal non-equilibrium condition. It 
was found that the system remains unconditionally stable to small amplitude disturbances. Some 
other works related to stability analysis can be found in References [25,26]. Irrespective of the 
geometry being involved or the applied boundary conditions, it was consistently reported by almost 
all researchers that the smaller values of the interphase heat transfer coefficient and the thermal 
conductivity ratio between the two phases is responsible for creating a thermal non-equilibrium 
condition. The interphase heat transfer coefficient is the parameter that couples the energy equations 
of fluid and solid. It is further noted that the numerical procedure adopted in all the work pertaining 
to thermal non-equilibrium involves the solution of three simultaneous equations including 
momentum equation and energy equations of fluid and energy. The solution of this kind of problem 
is an involved task since they need to be solved simultaneously. It is clear from the literature that the 
usual technique to solve such a phenomenon would involve a solution of all three equations (in 
three steps) with one after the other taking place, irrespective of what numerical method is being 
employed. Thus, the current work is undertaken to develop a new technique/method using the finite 
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element method where the two energy equations corresponding to fluid and solid phases are 
combined together in a single stiffness matrix and solved directly without necessitating the solution 
in three steps. The developed method is further applied to investigate the heat transfer in a porous 
cavity by having a heated strip placed inside the domain. It must be noted that the thermal 
equilibrium coupled with different phenomenon or having various boundary conditions, as 
discussed above, has been reported in literature, but there is a gap in the literature for the case where 
a heating strip is placed inside the porous domain with its size and location varying. This kind of 
situation can arise in the drying process, insulation, and electronic equipment. Thus, the current 
work is novel in a way that a new solution methodology is proposed along with applying that 
methodology to investigate a problem of industrial importance, such as the heat transfer due to a 
heating strip and different set of boundary conditions in a square porous cavity. 

2. Analysis 

The current work deals with the alternate method of solution for the two energy equations of 
the thermal non-equilibrium model applied to porous medium. Consider a square porous domain 
that can be described in Cartesian coordinate x and y with the following assumptions. 

 Fluid does not change the phase. 
 Domain properties are isotropic and homogeneous. 

With the above assumptions, the equations in cartesian coordinates are: 
The continuity equation: 

0
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The momentum equation: 
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In case of non-equilibrium modeling, two separate equations of energy are needed to capture 
the temperature variations in the fluid and solid phases of the porous domain. In this case, it is 
assumed that the solid and fluid phases of the medium have dissimilar temperatures, which leads to 
thermal non-equilibrium. 

The fluid phase energy equation is described below. 
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The solid phase energy equation is shown below. 
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The following set of dimensionless parameters are used. 
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The use of the above parameters results in the final set of dimensionless equations for the 
non-equilibrium model. 

Momentum equation 
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Energy equation of fluid 
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Energy equation of solid 
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2.1. Solution Strategy 

The above partial differential equations pose difficulty in the direct solution due to the fact that 
they need to be solved simultaneously for multiple solution variables. There are a variety of solution 
techniques available in order to deal with a difficult set of equations such as those mentioned above. 
One of the reliable and versatile methods being adopted by many researchers is the finite element 
method, which simplifies the partial differential equations into a set of algebraic equations. 
Equations (6)–(8) can be conveniently written in the finite element form as: 

Finite element formulation of momentum equation 
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Finite element formulation of the energy equation of fluid 
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Finite element formulation of the energy equation of a solid 
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It can be noticed that there are three sets of matrix formations in Equations (9)–(11) that should 
be solved simultaneously. The usual method followed is to assume a guess value for all the solution 
variables at every node and substitute into one of the equations that yields a new set of values, 
which are fed into the second equation. The fresh values of the first equation and the second 
equation are further given as input into the third equation. This would provide the values for 
solution variables at the first iteration. Now these values are taken as the guess for the second 
iteration and the process is continued until the error between two successive iterations drops to a 
predetermined tolerance level at all the nodes for the previously mentioned equations. The graphical 
representation of the whole process is shown in Figure 1. 

 
Figure 1. Flowchart of conventional solution methodology. 
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The whole process requires the solution be completed in three steps corresponding to three 
equations. However, the current paper deals in the solution of the three equations in two steps by 
combining the energy equation of the fluid and solid into a single stiffness matrix, which results in a 
3 × 3 stiffness matrix for the momentum equation and a 6 × 6 matrix for the energy equation. 
Combined stiffness matrix of the energy equation for the fluid and solid can be written as: 
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This arrangement leads to the reduction of three equations into a two-equation problem whose 
solution can be obtained by following the procedure shown in Figure 2. The computer coding of the 
new method is easier due to the removal of one complete subroutine required to solve the energy 
equation. 
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Figure 2. Flowchart of new method. 

3. Results and Discussion 

Any new method should be able to withstand the test of simulating the physical problem. Thus, 
the proposed new method is tested by applying to heat transfer in a square porous cavity. The 
physical domain of the porous medium to be tested is shown in Figure 3, which has been subjected 
to assumptions that the fluid follows Darcy’s law, that the porous medium is saturated with fluid, 
that the fluid and medium are not in local thermal equilibrium, that the porous medium is isotropic 
and homogeneous, and that the fluid properties are constant except for the variation of density. The 
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physical domain is divided into 2592 elements of a triangular shape. Mesh independency is ensured 
before selecting 2592 elements to make sure that the results are not affected even if more elements 
are chosen. Smaller-sized elements are placed at the boundaries where large variations are expected 
as compared to regions away from the boundaries. The applied boundary conditions are given 
below. 

hsf TTT   at  0x . 0u .  0v  . (20) 
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Figure 3. Porous domain. 

There can be many solution methods, but their usability should be established by verifying 
them to accurately predict the given phenomenon. Thus, the proposed method is tested against the 
data available in open literature. The results obtained for the case of square porous cavity subjected 
to non-equilibrium condition is compared and shown in Figures 4 and 5 and Table 1. Figure 4 
corresponds to Ra = 100, Rd = 0.5, and Kr = 1. The parameter Kr represents the thermal conductivity 
ratio between fluid and solid phases of the porous medium. It is clear from Figures 4 and 5 that the 
isotherms of the solid phase and fluid phase along with streamline match very well with published 
data. The method is further validated with the Nusselt number of fluids, solids, and the total Nusselt 
number, as shown in Table 1. It is clear from this table that the present method can predict the heat 
transfer from the hot surface to the porous medium accurately. The proposed method is further 
analyzed to predict the limiting case of thermal equilibrium. It is well known that the existence of the 
high thermal conductivity ratio “Kr” and higher value of interphase heat transfer coefficient “H” 
leads to thermal equilibrium between solid and fluid phases due to better heat exchange between the 
two phases. The proposed method should be tested against this limiting case. Figure 6 and Table 2 
illustrates the validation of the thermal equilibrium condition. Figure 6 shows the isotherms of the 
fluid and solid phase when Kr = 1000 and H = 1000. It is very clear from this figure that the isotherms 
of both phases are very similar to each other, which indicates that the thermal equilibrium condition 
prevails at higher values of Kr and H. Therefore, this validates the capability of the proposed method. 
The average Nusselt number for the equilibrium condition is also compared (Table 2) with data 
available in the literature. It was convincingly found that the proposed method has good accuracy in 
predicting the Nusselt number. 
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Figure 4. Isotherms for fluid (Top), solid (Middle), and streamlines (Bottom) at Ra = 100, Rd = 0.5, Kr = 
1, H = 0.1, (a) Ref [27]. (b) Present. 
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Figure 5. Isotherms for fluid (Top), solid (Middle), and streamlines (Bottom) at Ra = 100, Rd = 0.5, Kr = 
1, H = 1000, (a) Ref [27] (b) Present. 
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Table 1. Comparison of Nusselt number at Ra = 100, Kr = 50, and Rd = 0.5. 

H 
Ref [27] Present 

fNu
 sNu  tNu  fNu

 sNu  tNu  
0.1 3.6438 1.8081 3.6088 3.6014 1.8079 3.5663 
1 3.5833 2.6024 3.6033 3.5805 2.5995 3.5612 
10 3.1050 4.2474 3.6080 3.0833 4.2263 3.5665 

100 1.6877 5.4715 3.6110 1.6335 5.4130 3.5704 

 

  

Figure 6. Isotherms for fluid (Left) and solid (Right) at the equilibrium condition, Ra = 100, Rd = 0.5, Kr 
= 1000, H = 1000. 

Table 2. Validation of the average Nusselt number, for the equilibrium condition. 

Ref. no. 10Ra  100Ra  
[28] - 3.118 
[29] - 3.113 
[30] - 3.097 
[31] - 4.2 
[32] - 3.141 
[33] 1.065 2.801 
[34] 1.079 3.16 
[35] 1.119 3.05 

Present 1.0745 3.1905 

3.1. Thermal Non-Equilibrium Analysis of Porous Cavity Due to the Heated Strip 

The developed solution method is used to investigate the thermal non-equilibrium in a porous 
cavity having a vertical heated strip inside the porous domain. The investigation is carried out for 
two cases such that case I belongs to heat being supplied to porous medium through an isothermally 
heated strip along with the left as well as the right vertical surfaces of the cavity being maintained at 
a cold temperature. Case II is considered in such a way that the left vertical surface of the cavity is 
also heated to a hot temperature apart from the heated strip. The right vertical surface is maintained 
at a cold isothermal temperature. The top and bottom surfaces are adiabatic in both cases. 

3.2. Case I 

The boundary conditions in dimensional form for case I can be expressed as: 

along  HH . 0u .  0v  .   hsf TTT 
 (23) 
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at  Lx ,0 . 0u .  0v  .  csf TTT 
 (24) 

at  Ly ,0      0u .  0v  .  0//  yTyT sf  (25) 

The usage of non-dimensional parameters results in: 

along  HH .  0 .  
2

1
 sf TT  (26) 

at     1,0x .  0 .  
2

1
 sf TT  (27) 

at     1,0y   0 .  0//  yTyT sf  (28) 

The Nusselt number is calculated according to the formulas below. 

For fluid  
HH

f
f x

T
Nu

@














  (29) 

For solid  
HH

s
ds x

T
RNu

@
3

4
1 

















   (30) 

Figures 7–12 show the isotherms of fluid, solid, and stream line characteristics derived for 
various geometrical and physical parameters. The first and second row of each of these figures 
shows the fluid and solid phase isotherms, respectively, with the last row reflecting the streamline 
variations. It is expectedly observed for all these figures that the heat transfer and fluid flow follow 
symmetrical behavior for the heating strip when placed at the center but unsymmetrical behavior 
when the strip departs from the central position. Figure 7 depicts the heat transfer and fluid flow 
characteristics when the length of the strip varies from 12.5% to 50% of the cavity height. The fluid 
isotherms indicate the convection of heat due to movement of the fluid arising because of density 
variation. The increase in the strip height leads to larger variation in the fluid isotherms. It must be 
noted that the increase in the strip height would bring in more thermal energy because of the larger 
area of porous medium being exposed to the heated strip. This leads to higher variation in the fluid 
temperature across the porous domain. The solid phase isotherms get affected when the strip height 
HH is increased. The smaller strip leads to a larger area of the porous domain that needs to be 
occupied with low temperature lines with a small thermal gradient across the domain. However, the 
increased strip height leads to a higher thermal gradient and better conduction across the domain. 
The streamlines clearly indicate that the fluid velocity grows with an increase in strip height, which 
is reflected in terms of a higher magnitude of stream function at HH = 0.5 as compared to HH = 0.125. 

The change of position of the strip brings in pronounced variation in heat transfer behavior as 
shown in Figure 8, when compared to that of Figure 7. In this figure, the heating strip is placed 
toward the left vertical surface at 25.0x . The fluid isotherms create a higher thermal gradient 
toward the left vertical surface than the right vertical surface. This clearly indicates that the heat 
dissipation is higher toward the left surface of the cavity than the right surface. A substantial area 
toward the right of the heating strip is seen to have low temperature lines due to lower thermal 
energy in that vicinity. This situation improves slightly with the increase in the strip height to 50%. 
The fluid flows in a vertical direction at the left surface, but in an oblique cell toward the right region 
of the heated strip. The change in the strip’s position ( 75.0x ) toward the right vertical surface, as 
shown in Figure 9, has similar behavior to the results in Figure 8 but with the higher thermal 
gradient being created toward the right surface and the lower gradient being created toward the left 
surface. 
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Figure 7. Isotherms ((a) Fluid, (b) Solid) and streamlines (c), at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip 
at 5.0x . (I) HH = 12.5%. (II) HH = 50%. 
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Figure 8. Isotherms ((a) Fluid, (b) Solid) and streamlines (c), at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip 
at 25.0x . (I) HH = 12.5%. (II) HH = 50%. 
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Figure 9. Isotherms ((a) Fluid, (b) Solid), and streamlines (c), at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip 
at 75.0x . (I) HH = 12.5%. (II) HH = 50%. 
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interphase heat transfer coefficient is known to have similarity between the fluid and solid phase 
[8,21], which leads toward a thermal equilibrium condition. In the present case as well, it is noted 
that the dissimilarity reduces between the fluid and solid phase when H is increased from 0.1 to 10, 
even though a thermal equilibrium condition is not yet reached. The thermal equilibrium is expected 
to reach a much higher value of H. The temperature gradient of fluid decreases while, that of the 
solid phase, increases near the hot strip when H is increased. This can be observed through the fluid 
and solid isotherms where the fluid temperature lines move away from the strip and the solid 
temperature lines come closer to the strip. The increased value of H leads to better transfer of heat 
between the two phases. Thus, the fluid loses the heat to the solid matrix, which reduces fluid 
temperature and increases that of the solid matrix. 

Figure 11 shows the impact of increasing the thermal conductivity ratio between the fluid and 
solid phase. In this case, the dissimilarity between fluid and solid phases decreases due to the 
increased value of Kr. It must also be noted that the large value of Kr leads to a thermal equilibrium 
condition. The higher value of Kr helps the heat to be conducted in a better way in the solid matrix of 
porous medium, which leads to straighter isotherms (reflecting better conduction) of the solid phase. 
Figure 12 shows the effect of the Rayleigh number on heat transfer behavior of a square porous 
domain. The fluid isotherms are distorted due to an increase in the Rayleigh number from 100 to 200, 
which indicates that the convection heat transfer increases in the fluid phase. The streamlines are 
crowded with higher magnitude that indicates the increased fluid velocity due to a higher Rayleigh 
number. 
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Figure 10. Isotherms ((a) Fluid, (b) Solid), and streamlines (c), at Ra = 100, HH = 25%, Kr = 1, Rd = 0 for 
strip at 5.0x . (I) H = 0.1. (II) H = 10. 
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Figure 11. Isotherms ((a) Fluid, (b) Solid), and streamlines (c), at Ra = 100, HH = 25%, H = 5, Rd = 0 for 
strip at 5.0x . (I) Kr = 0.1. (II) Kr = 10. 
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Figure 12. Isotherms ((a) Fluid, (b) Solid), and streamlines (c), at H = 5, HH = 25%, Kr = 1, Rd = 0 for 
strip at 5.0x . (I) Ra = 100. (II) Ra = 200. 
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Figures 13–18 shows the Nusselt number variation for the previously mentioned parameters. 
Figure 13 illustrates the local Nusselt number of the fluid and solid phase. It must be noted that there 
would be two Nusselt number values of fluid as well as solid phases corresponding to the left and 
right side of the heating strip. However, the symmetric placement of the heating strip ensures that 
the Nusselt number values are identical toward the left and right side of the heater. For instance, 
when the heating strip is placed at 5.0x , then the left and right side of the Nusselt number is 
identical due to symmetrical geometry and boundary conditions. When the strip is placed at 

25.0x , then the Nusselt number at the right side of the strip is similar to Nu corresponding to the 
left side of the strip at 75.0x . Thus, only one value of the Nusselt number, i.e., left of the heating 
strip, is presented in Figures 13–18. 

The Nusselt number of fluid (Figure 13) is found to decrease along the height of the heating 
strip, which is the result of the increase in the temperature of fluid as it moves along the heated strip. 
This increased fluid temperature reduces the temperature difference between the strip and fluid 
near its vicinity, which reduces the thermal gradient. The solid Nusselt number increases along the 
height of the Strip. This is the direct result of a higher temperature gradient created in the solid 
phase along the strip height, as vindicated by isotherms of Figure 7. It can be seen in Figure 7 that the 
solid isotherms tend to come closer to the strip at the upper section of the strip as compared to its 
lower section. The increase in strip height from 12.5% to 50% leads to an almost constant Nusselt 
number of solid until the top of the strip and then t increases. This is reflected by almost parallel 
solid phase isotherms along most of the solid strip in Figure 7. It is also noted that the solid Nusselt 
number overtakes the fluid Nusselt number at the upper section of the strip. The placement of the 
heating strip near the left surface increases the Nusselt number for fluid as well as the solid phase, in 
comparison to that of the heating strip at the central position. This can be attributed to the fact that 
the thermal resistance decreases due to less distance between the heating strip and the cold surface. 
This should help the electronic devices where the power source can be placed toward the cold 
surface for better dissipation of heat. The placement of the strip toward the right surface reduces the 
heat transfer, which is reflected in terms of a reduced Nusselt number of fluid and solid phases, as 
shown in Figure 14. This happens due to a larger distance between the strip and the cold surface that 
leads to increased thermal resistance. Thus, it can be said that the Nusselt number is highest when 
the distance between the strip and surface is the lowest (Figure 14) and the lowest when the distance 
is the highest (Figure 15). 

Figure 16 shows that the fluid Nusselt number decreases and the solid Nusselt number 
increases with a rise in the interphase heat transfer coefficient. It can be inferred through the 
isotherms of fluid and solid that the fluid gains heat from the solid phase of porous medium due to a 
better heat transfer coefficient (larger H). The heat gain from solid to fluid increases the fluid 
temperature but reduces that of the solid, which reduces the thermal gradient of fluid and increases 
the thermal gradient of solid. Figure 17 illustrates the effect of the thermal conductivity ratio of the 
Nusselt number. The fluid Nusselt number is not affected much, but the solid phase Nusselt number 
increases with an increase in Kr. This behavior is consistent with the other studies reported [23]. The 
Nusselt number of fluid is substantially increased when the Rayleigh number is increased (Figure 
18), but that of solid is increased to a slight extent. This is because the fluid movement increases with 
a rise in the Rayleigh number that, in turn, increases the heat carrying capacity of fluid, which 
increases the fluid Nusselt number. 
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Figure 13. Nusselt number at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip at 5.0x . 

 

Figure 14. Nusselt number at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip at 25.0x . 
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Figure 15. Nusselt number at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip at 75.0x . 

 

Figure 16. Nusselt number at Ra = 100, HH = 25%, Kr = 1, Rd=0 for strip at 5.0x . 
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Figure 17. Nusselt number at Ra = 100, HH = 25%, H = 5, Rd = 0 for strip at 5.0x . 

 

Figure 18. Nusselt number at H = 5, HH = 25%, Kr = 1, Rd = 0 for strip at 5.0x . 
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along  HH .  0u .  0v  .   hsf TTT   (31) 

at  0x .  0u .  0v  .  hsf TTT 
 

(32) 

at  Lx  .  0u .  0v  .  csf TTT 
 

(33) 

at  Ly ,0 .    0u .  0v  .  
0//  yTyT sf  

(34) 

The usage of non-dimensional parameters results in: 

     along  HH . 0 .  
2

1
 sf TT  (35) 

at     1x .   0 .  
2
1

 sf TT  (36) 

at     0x .   0 .  2

1
 sf TT

 
(37) 

at     1,0y    0 .  0//  yTyT sf  (38) 

Figures 19–24 illustrate the isotherms and streamlines due to heating of the left vertical surface 
along with the heated strip, which is placed in the porous domain. The heat transfer behavior is 
affected substantially in this case as compared to that of the previously mentioned case (Case I). The 
heating of the left surface of the cavity results in unsymmetrical distribution of isotherms and 
streamlines, which is different from that of Case I. The increase in the strip height ensures that the 
temperature variations at the left half of the cavity are minimal (Figure 19). The left half of the cavity 
has higher energy content, as indicated by fluid and solid isotherms. The increase in the strip height 
leads to a substantial portion of the cavity at the left side of the heated strip without any fluid 
movement, as indicated by the streamline in Figure 19. The placement of the heated strip to the left 
side ( 25.0x ) as shown in Figure 20, restricts the high temperature area to about 25% of the 
porous cavity. However, the temperature variations at the right side of the strip decreases in this 
case, as compared to the strip being placed at 5.0x  (Figure 19). The further shift of the strip to 

75.0x  brings the isotherms closer to each other at the right side of the strip, as shown in Figure 
21. The fluid flows rapidly within the small region between the strip and the right cold surface, but 
slowly left of the heated strip. The smaller-sized strip allows the fluid to be occupied in almost all of 
the cavity but an increase in strip height reduces the fluid flow area, as shown by the streamlines of 
Figures 19–21. 
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Figure 19. Isotherms ((a) Fluid, (b) Solid), and streamlines (c), at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip 
at 5.0x . (I) HH = 12.5%. (II) HH = 50%. 
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(c) 

Figure 20. Isotherms ((a) Fluid, (b) Solid), and streamlines (c), at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip 
at 25.0x . (I) HH = 12.5%. (II) HH = 50%. 
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Figure 21. Isotherms ((a) Fluid, (b) Solid), and streamlines (c), at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip 
at 75.0x . (I) HH = 12.5%. (II) HH = 50%. 
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Figure 22 shows the effect of the interphase heat transfer coefficient H on isotherms and 
streamline for Case II. The increase in the H pushes the isotherms toward the right surface, which 
can be inferred by looking at the isotherm corresponding to 0.45. The streamline magnitude 
increases with a rise in H. The magnitude of streamline is higher in this case as compared to Case I. 
The influence of the thermal conductivity ratio is illustrated in Figure 23. The fluid temperature is 
not affected much by the change in the thermal conductivity ratio, but solid temperature lines are 
affected to a certain extent. The increase in Kr leads to larger temperature variations of the solid 
phase in the porous domain. The increase in the Rayleigh number leads to a large number of fluid 
isotherms being crowded near the right side of the heated strip (Figure 24). This should lead to a 
substantial increase in heat transfer toward the right side of the heated strip. This behavior is not 
observed at the left side of the heated strip. It can be inferred that the heated left vertical surface of 
the cavity does not allow the isotherms to be crowded near the strip, which happens in case I. 

Figures 25–30 shows the local Nusselt number for fluid and solid corresponding to Case II. It 
must be noted that the heat transfer from the heated strip to the porous medium differs toward the 
left and right side of the strip. Thus, two values of the Nusselt number is plotted to illustrate this 
effect. Figure 25 shows the Nusselt number for strip height to be 12.5 and 50% of the cavity height. 
The Nusselt number is lower at the left side of the strip than the right side for fluid as well as the 
solid phase. This happens because the cold surface is located at the right of the strip, which allows 
the heat to be dissipated to a cold surface that, in turn, creates an opportunity for further heat 
transfer. However, this does not happen between the strip and the hot surface of the cavity. Due to 
heat flowing from the strip as well as the left surface, the temperature in that area increases, which 
reduces the heat transfer rate as reflected in the reduced Nusselt number. Figure 26 shows the heat 
transfer behavior from the left vertical surface of the cavity. The heat transfer from the left surface is 
higher when the strip is shorter in height. The longer strip height blocks the heat flow from the left 
vertical surface toward the cold surface (right vertical surface). Thus, the Nusselt number is higher 
when the strip is shorter. It is also observed that the solid phase Nusselt number is higher all along 
the surface for a longer strip. This can be attributed to the fact that the fluid flow gets blocked when 
the strip is longer, which, in turn, weakens the heat carrying capacity from the left hot surface to the 
right cold surface. However, for the shorter strip, fluid has a sufficient open space to travel from a 
hot to a cold vertical surface. This increases the fluid heat transfer rate. 

Figure 27 illustrates the impact of moving the strip to the left of the cavity ( 25.0x ). The 
Nusselt number on the right side of the strip follows a similar trend as that of Figure 25. However, 
the maximum value of the Nusselt number in this case is lower than that of the strip being placed at 
the central position (Figure 25). This is due to the increased distance between the strip and the cold 
surface, which reduces the heat transfer rate. The heat transfer at the left vertical surface for the fluid 
phase was found to increase until a certain height of the cavity and then decreased, as shown in 
Figure 28. This behavior is unique for the cases when the strip is placed closer to the vertical hot 
surface. This can be related to the fluid cell circulation inclined toward the left bottom and the right 
top corner of the cavity, which creates a faster circulation zone near the cavity height of around

4.0y , as illustrated in Figure 20. However, this kind of variation is not seen for the solid phase 
Nusselt number. Figures 29 and 30 shows the Nusselt number variation at the inner heater and the 
left vertical surface, respectively, when the strip is placed at the right side of the cavity at 75.0x . 
The heat transfer from the strip to the porous medium is higher in this case because of proximity of 
lower temperature surface (cold surface), which facilitates better heat transfer. Figure 30 illustrates 
that the heat transfer from the left hot surface decreases almost linearly along the surface for 12.5% of 
the strip height, when the strip is placed near the cold surface. However, the longer strip almost 
ceases the Nusselt number variation of fluid due to decreased fluid movement, which can be 
inferred from the reduced magnitude of streamlines between the left vertical surface and the strip 
(Figure 21). 
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Figure 22. Isotherms ((a) Fluid, (b) Solid), and streamlines (c), at Ra = 100, HH = 25%, Kr = 1, Rd = 0 for 
strip at 5.0x . (I) H = 0.1. (II) HH = 10. 
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Figure 23. Isotherms ((a) Fluid, (b) Solid), and streamlines (c), at Ra = 100, HH = 25%, Kr = 1, Rd = 0 for 
strip at 5.0x . (I) Kr = 0.1. (II) Kr = 10. 
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Figure 24. Isotherms ((a) Fluid, (b) Solid), and streamlines (c), at HH = 25%, H = 5, Kr = 1, Rd = 0 for 
strip at 5.0x . (I) Ra = 100. (II) Ra = 200. 
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Figure 25. Nusselt number for inner strip at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip at 5.0x . 

 

Figure 26. Nusselt number of left vertical surface at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip at 5.0x . 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

14

Height of Heater 

N
u

HH = 50%

HH = 12.5 %

                   Fluid

                   Solid 

+      Left Side

o      Right Side

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Height of Heater

N
u

HH = 12.5%

HH = 50%

                   Fluid

                   Solid 



Mathematics 2019, 7, 1085 33 of 37 

 

 

Figure 27. Nusselt number for inner strip at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip at 25.0x . 

 
Figure 28. Nusselt number of the left vertical surface at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip at 

25.0x . 
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Figure 29. Nusselt number for inner strip at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip at 75.0x . 

 
Figure 30. Nusselt number of left vertical surface at Ra = 100, H = 5, Kr = 1, Rd = 0 for strip at 

75.0x . 
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4. Conclusions 

The present article proposes an alternate method to solve the two-heat transport equations of 
the thermal non-equilibrium model in a simpler algorithm by utilizing the finite element method as 
a base tool. The fluid and solid phase equations are combined in a single stiffness matrix at the 
solution stage. The proposed method is tested for heat transfer in a porous cavity. It is found that the 
proposed method is very capable of predicting the thermal equilibrium as well as non-equilibrium 
condition. The proposed method is used to investigate the heat transfer due to a heating strip being 
placed inside the porous domain. Two different boundary conditions are studied. The heat transfer 
is highest when the position of the heating strip is closer to the cold surface. The longer strip is found 
to decrease heat transfer when the left vertical surface is also heated to a higher temperature. The 
heat transfer from the strip is found to be higher toward the cold surface and lower toward the hot 
vertical surface. The Nusselt number for Case I with heating strip at 25.0x  and strip height 12.5%, 
is found to be 13.28. However, this value drops to 0.59 when the left vertical surface is also heated 
(Case II). This difference of the Nusselt number was even higher for a strip height of 50%. This study 
revealed that there can be substantial variations in heat transfer due to strip height and the location. 
It would be interesting to extend this study for mixed/forced convection that occurs in some of the 
electronic devices. 
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Nomenclature 

A Element area  
g Acceleration due to gravity (m/s2) 
h Heat transfer coefficient (W/m2·C) 
k Thermal conductivity (W/m·°C) 
kp, ks Porous and solid thermal conductivity respectively (W/m·°C) 
HH Strip height 
K Permeability of porous medium (m2) 
Kr = ks/kp Conductivity ratio 
L Height and length of cavity (m) 

dR  Radiation parameter 
Ra  Modified Raleigh number 

TT,  
Temperature 

u,v Velocity component sin x and y direction respectively (m/s) 
yx,  Cartesian coordinates 
yx,  Non-dimensional coordinates 

Greek Symbols 
α Thermal diffusivity (m2/s) 
β Coefficient of thermal expansion (1/°C) 
ρ Density (kg/m3) 
v Coefficient of kinematic viscosity (m2/s) 
  Stephan Boltzmann constant (W/m2·K4) 

r  Absorption coefficient (1/m) 
  Stream function 
  Non-dimensional stream function 
Subscripts 
h Hot 
c Cold 
s Solid 
f Fluid 
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