
mathematics

Article

On Neutral Functional Differential Inclusions
involving Hadamard Fractional Derivatives

Bashir Ahmad 1,* , Ahmed Alsaedi 1 , Sotiris K. Ntouyas 1,2 and Hamed H. Al-Sulami 1

1 Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics,
Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
aalsaedi@kau.edu.sa (A.A.); sntouyas@uoi.gr (S.K.N.); hhaalsalmi@kau.edu.sa (H.H.A.-S.)

2 Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece
* Correspondence: bahmad@kau.edu.sa or bashirahmad−qau@yahoo.com

Received: 29 September 2019; Accepted: 6 November 2019; Published: 10 November 2019 ����������
�������

Abstract: We prove the existence of solutions for neutral functional differential inclusions involving
Hadamard fractional derivatives by applying several fixed point theorems for multivalued maps.
We also construct examples for illustrating the obtained results.
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1. Introduction

Fractional calculus has emerged as an important area of investigation in view of the application
of its tools in scientific and engineering disciplines. Examples include bio-medical sciences, ecology,
finance, reaction-diffusion systems, wave propagation, electromagnetics, viscoelasticity, material
sciences, and so forth. Fractional-order operators give rise to more informative and realistic
mathematical models in contrast to their integer-order counterparts. It has been due to the non-local
nature of fractional-order operators, which enables us to gain insight into the hereditary behavior
(past history) of the associated phenomena. For examples and recent development of the topic,
see References [1,2] and the references cited therein.

Differential inclusions—known as generalization of differential equations and inequalities—are
found to be of great utility in the study of dynamical systems, stochastic processes, optimal control
theory, and so forth. One can find a detailed account of the topic in Reference [3]. In recent years,
an overwhelming interest in the subject of fractional-order differential equations and inclusions has
been shown, for instance, see References [4–14] and the references cited therein.

In Reference [15], the authors obtained some existence results for sequential neutral differential
equations involving Hadamard derivatives: D

α[Dβy(t)− g(t, yt)] = f (t, y(t)), t ∈ J := [1, b],

y(t) = φ(t), t ∈ [1− r, 1], Dβy(1) = η ∈ R,
(1)

where Dα,Dβ are the Hadamard fractional derivatives of order 0 < α, β < 1, respectively and
f , g : J ×R→ R are continuous functions, J ⊆ R and φ ∈ C([1− r, 1],R).
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In this paper, we cover the multivalued case of problem (1) and investigate the Hadamard type
neutral fractional differential inclusions given by D

α[Dβy(t)− g(t, yt)] ∈ F(t, y(t)), t ∈ J := [1, b],

y(t) = φ(t), t ∈ [1− r, 1], Dβy(1) = η ∈ R,
(2)

where F : J ×R→ P(R) is a multivalued map, P(R) represents the family of all nonempty subsets
of R, and the other quantities in (2) are the same as taken in (1). Here yt is an element of the Banach
space Cr := C([−r, 0],R) equipped with norm ‖φ‖C := sup{|φ(θ)| : −r ≤ θ ≤ 0}, and is defined by
yt(θ) = y(t + θ), θ ∈ [−r, 0], where y is a function defined on [1− r, b] and t ∈ J. The standard fixed
point theorems for multivalued maps are applied to establish the existence results for the problem (2).

The remaining content of the paper is composed as follows. In Section 2, we describe the necessary
background material needed for our work. Section 3 deals with the main theorems. In Section 4,
we construct illustrative examples for the obtained results.

2. Preliminaries

Let us begin this section with some necessary definitions of fractional calculus [1].

Definition 1. For a function h : [1, ∞)→ R, the Hadamard derivative of fractional order χ is defined by

Dχh(t) =
1

Γ(n− χ)

(
t

d
dt

)n ∫ t

1

(
log

t
s

)n−χ−1 h(s)
s

ds, n = [χ] + 1,

where [χ] denotes the integer part of the real number χ and log(·) = loge(·).

Definition 2. The Hadamard fractional integral of order χ for a function h is defined as

Iχh(t) =
1

Γ(χ)

∫ t

1

(
log

t
s

)χ−1 h(s)
s

ds, χ > 0,

provided the integral exists.

Now we state a known result [15], which plays a key role in the forthcoming analysis.

Lemma 1 (Lemma 2.3 in [15]). The function y is a solution of the problem
Dα[Dβy(t)− g(t, yt)] = f (t, yt), t ∈ J := [1, b],
y(t) = φ(t), t ∈ [1− r, 1],
Dβy(1) = η ∈ R,

(3)

if and only if

y(t) =



φ(t), if t ∈ [1− r, 1],

{
φ(1) + (η − g(1, φ))

(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 f (s, ys)

s
ds
}

, if t ∈ J.

(4)
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3. Existence Results

For a normed space (X, ‖ · ‖), we define Pcl(X) = {Y ∈ P(X) : Y is closed}, Pcp(X) =

{Y ∈ P(X) : Y is compact}, Pcl,b(X) = {Y ∈ P(X) : Y is closed and bounded}, Pcp,c(X) = {Y ∈
P(X) : Y is compact and convex} and Pb,cl,c(X) = {Y ∈ P(X) : Y is bounded, closed and convex}.
In passing, we remark that a closed and bounded set in a metric space is not necessarily compact in
general; however, it is true that a set in a metric space of real or complex numbers is compact if and
only if it is closed and bounded.

For each y ∈ C(J,R), define the set of selections of F by

SF,y := {ξ ∈ L1(J,R) : ξ(t) ∈ F(t, y(t)) on J}.

Denote by C(J,R) the Banach space of all continuous functions from J into R endowed with
the norm ‖y‖ := sup{|y(t)| : t ∈ J}. L1(J,R) represents the space of functions y : J → R such that
‖y‖L1 =

∫ b
1 |y(t)|dt.

Our first existence result deals with the case when F has convex values and is based on nonlinear
alternative for Kakutani maps [16] with the assumption that the multivalued map F is Carathéodory.

Definition 3 (Granas, Dugundji [16]). A multivalued map F : J ×R→ P(R) is said to be Carathéodory if

(i) t 7−→ F(t, x) is measurable for each x ∈ R;
(ii) x 7−→ F(t, x) is upper semicontinuous for almost all t ∈ J.

Further a Carathéodory function F is called L1−Carathéodory if

(iii) for each ρ > 0, there exists ϕρ ∈ L1(J,R+) such that

‖F(t, x)‖ = sup{|v| : v ∈ F(t, x)} ≤ ϕρ(t)

for all x ∈ R with ‖x‖ ≤ ρ and for almost everywhere t ∈ J.

Theorem 1. Assume that:

(H0) there exists a non-negative constant k < Γ(α + 1)(log b)−α such that

|g(t, u1)− g(t, u2)| ≤ k‖u1 − u2‖C, for t ∈ J and every u1, u2 ∈ Cr.

(H1) F : J ×R→ Pcp,c(R) is L1-Carathéodory;
(H2) there exists a continuous non-decreasing function Φ : [0, ∞) → (0, ∞) and a function p ∈ C(J,R+)

such that

‖F(t, x)‖P := sup{|y| : y ∈ F(t, x)} ≤ p(t)Φ(‖x‖) for each (t, x) ∈ J ×R;

(H3) there exists a constant ω > 0 such that (
1− k(log b)α

Γ(α + 1)

)
ω

‖φ‖C + (|η|+ k‖φ‖C + g0)
(log b)β

Γ(β + 1)
+

g0(log b)α

Γ(α + 1)
+

Φ(ω)‖p‖
Γ(α + β + 1)

(log b)α+β

> 1,

where g0 = |g(1, 0)|.

Then the problem (2) has at least one solution on [1− r, b].
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Proof. Let us first transform the problem (2) into a fixed point problem by introducing an operator
V : C([1− r, b],R) −→ P(C([1− r, b],R)) by

V(y) =



h ∈ C([1− r, b],R) :

h(t) =



φ(t), if t ∈ [1− r, 1],

{
φ(1) + (η − g(1, φ))

(log t)β

Γ(β + 1)

+
1

Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξ(s)
s

ds
}

, if t ∈ J,



(5)

for ξ ∈ SF,x. It is obvious by Lemma 1 that the fixed points of the operator V are solutions of the
problem (2).

We verify the hypothesis of nonlinear alternative for Kakutani maps [16] in several steps.

Step 1. V(y) is convex for each y ∈ C([1− r, b],R). It directly follows from the fact that SF,y is convex (F
has convex values).

Step 2. V maps bounded sets (balls) into bounded sets in C([1− r, b],R). Let Bζ = {y ∈ C([1− r, b],R) :
‖y‖[1−r,b] ≤ ζ} be a bounded set in C([1− r, b],R). Then, for each h ∈ B(y), y ∈ Bζ , there
exists ξ ∈ SF,y such that

h(t) = φ(1) + (η − g(1, φ))
(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξ(s)
s

ds.

Then, for t ∈ J, we have

|h(t)| ≤ ‖φ‖C + (|η|+ k‖φ‖C + g0)
(log b)β

Γ(β + 1)
+

k‖y‖[1−r,b] + g0

Γ(α + 1)
(log b)α

+
Φ(‖y‖[1−r,b])‖p‖

Γ(α + β + 1)
(log b)α+β.

Thus,

‖h‖ ≤ ‖φ‖C + (|η|+ k‖φ‖C + g0)
(log b)β

Γ(β + 1)
+

kζ + g0

Γ(α + 1)
(log b)α +

Φ(ζ)‖p‖
Γ(α + β + 1)

(log b)α+β.

Step 3. V maps bounded sets into equicontinuous sets of C([1− r, b],R).

Let t1, t2 ∈ J with t1 < t2 and y ∈ Bζ . Then, for each h ∈ B(y), we obtain

|h(t2)− h(t1)| ≤
|η|+ k‖φ‖C + g0

Γ(β + 1)

[
(log t2)

β − (log t1)
β
]

+
kζ + g0

Γ(α + β)

∫ t1

1

∣∣∣ (log
t2

s

)α+β−1
−
(

log
t1

s

)α+β−1 ∣∣∣ds
s

+
kζ + g0

Γ(α + β)

∫ t2

t1

(
log

t2

s

)α+β−1 ds
s

+
Φ(ζ)‖p‖
Γ(α + β)

∫ t1

1

∣∣∣ (log
t2

s

)α+β−1
−
(

log
t1

s

)α+β−1 ∣∣∣ds
s
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+
Φ(ζ)‖p‖
Γ(α + β)

∫ t2

t1

(
log

t2

s

)α+β−1 ds
s

≤ |η|+ k‖φ‖C + g0

Γ(β + 1)

[
(log t2)

β − (log t1)
β
]

+

{
kζ + g0

Γ(α + β)
+

Φ(ζ)‖p‖
Γ(α + β + 1)

}[ ∣∣∣(log t2)
α+β − (log t1)

α+β
∣∣∣+ | log t2/t1|α+β

]
,

which tends to zero as t2 − t1 → 0 independently of y ∈ Bζ . For the cases t1 < t2 ≤ 0 and t1 ≤ 0 ≤ t2,
the equicontinuity can be established in a similar manner. Thus, by Arzelá-Ascoli theorem [17],
we deduce that V : C([1− r, b],R)→ P(C([1− r, b],R)) is completely continuous.

Now we show that V has a closed graph. Then it will follow by the Proposition 1.2 in Reference [18]
that V is upper semi-continuous, as it is already proved to be completely continuous.

Step 4. V has a closed graph. We need to show that h∗ ∈ V(y∗) when yn → x∗, hn ∈ V(yn) and hn → h∗.
Associated with hn ∈ V(yn), there exists ξn ∈ SF,yn such that, for each t ∈ J,

hn(t) = φ(1) + (η − g(1, φ))
(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξn(s)
s

ds.

Thus it suffices to show that there exists ξ∗ ∈ SF,y∗ such that, for each t ∈ J,

h∗(t) = φ(1) + (η − g(1, φ))
(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξ∗(s)
s

ds.

Let us introduce the linear operator Θ : L1(J,R)→ C(J,R) given by

ξ 7→ Θ(ξ)(t) = φ(1) + (η − g(1, φ))
(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξ(s)
s

ds.

Notice that ‖hn(t)− h∗(t)‖ → 0, as n→ ∞. Therefore, it follows from a result dealing with the closed
graph operators derived in Reference [19] that Θ ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ Θ(SF,yn). Since yn → y∗, we have

h(t) = φ(1) + (η − g(1, φ))
(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξ∗(s)
s

ds,

for some ξ∗ ∈ SF,y∗ .

Step 5. We can find an open set U ⊆ C([1− r, b],R) with y /∈ νV(y) for any ν ∈ (0, 1) and all y ∈ ∂U.

Let ν ∈ (0, 1) and y ∈ νV(y). Then there exists ξ ∈ L1(J,R) with ξ ∈ SF,y such that for t ∈ J,

|y(t)| ≤ ‖φ‖C + (|η|+ k‖φ‖C + g0)
(log b)β

Γ(β + 1)
+

k‖y‖[1−r,b] + g0

Γ(α + 1)
(log b)α
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+
Φ(‖y‖[1−r,b])‖p‖

Γ(α + β + 1)
(log b)α+β, t ∈ J,

which implies that

‖y‖[1−r,b]

{
1− k(log b)α

Γ(α + 1)

}
≤ ‖φ‖C + (|η|+ k‖φ‖C + g0)

(log b)β

Γ(β + 1)

+
g0(log b)α

Γ(α + 1)
+

Φ(‖y‖[1−r,b])‖p‖
Γ(α + β + 1)

(log b)α+β.

Consequently (
1− k(log b)α

Γ(α + 1)

)
‖y‖[1−r,b]

‖φ‖C + (|η|+ k‖φ‖C + g0)
(log b)β

Γ(β + 1)
+

g0(log b)α

Γ(α + 1)
+

Φ(‖y‖[1−r,b])‖p‖
Γ(α + β + 1)

(log b)α+β

≤ 1.

By (H3), there exists a real number ω such that ‖y‖[1−r,b] 6= ω. Let us consider an open set

U = {y ∈ C([1− r, b],R)) : ‖y‖[1−r,b] < ω},

with U = U ∪ ∂U. Notice that V : U → P(C([1− r, b],R)) is compact and upper semi-continuous
multivalued map with convex closed values. The choice of U implies that there does not exist any
y ∈ ∂U satisfying y ∈ νV(y) for some ν ∈ (0, 1). In consequence, we deduce from the nonlinear
alternative for Kakutani maps [16] that V has a fixed point y ∈ U which corresponds to a solution to
the problem (2). This finishes the proof.

In the following result, we make use of the nonlinear alternative for contractive maps ([20]
Corollary 3.8) to show the existence of solutions for the problem (2).

Lemma 2. (Nonlinear alternative [20]) Let D be a bounded neighborhood of 0 ∈ X, where X is a Banach space.
Let Z1 : X → Pcp,c(X) and Z2 : D̄ → Pcp,c(X) be multivalued operators such that (a) Z1 is contraction,
and (b) Z2 is upper semi-continuous and compact. Then, if G = Z1 + Z2, either (i) G has a fixed point in D or
(ii) there is a point u ∈ ∂D and λ ∈ (0, 1) with u ∈ λG(u).

Theorem 2. If the conditions (H0)− (H3) of Theorem 1 hold, then there exists at least one solution for the
problem (2) on [1− r, b].

Proof. In order to verify the hypotheses of Lemma 2, we introduce the operator Ψ1 : C([1− r, b],R) −→
C([1− r, b],R) by

Ψ1y(t) =


0, if t ∈ [1− r, 1],

(η − g(1, φ))
(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds, if t ∈ J.

(6)

and the multivalued operator Ψ2 : C([1− r, b],R) −→ P(C([1− r, b],R)) by

Ψ2y(t) =



h ∈ C([1− r, b],R) :

h(t) =


φ(t), if t ∈ [1− r, 1],

φ(1) +
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξ(s)
s

ds, if t ∈ J,


(7)
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for ξ ∈ SF,y. Observe that V = Ψ1 +Ψ2, where V is defined by (5). In the first step, it will be established
that the operators Ψ1 and Ψ2 define the multivalued operators Ψ1, Ψ2 : Bθ → Pcp,c(C([1− r, b],R)),
where Bθ = {y ∈ C([1− r, b],R) : ‖y‖[1−r,b] ≤ θ} is a bounded set in C([1− r, b],R). Let us show that
Ψ2 is compact-valued on Bθ . Observe that the operator Ψ2 is equivalent to the composition L ◦ SF,
where L is the continuous linear operator on L1(J,R) into C([1− r, b],R), defined by

L(v)(t) = φ(1) +
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 v(s)
s

ds.

Let y ∈ Bθ be arbitrary and let {ξn} be a sequence in SF,y. Then it follows by the definition of SF,y
that ξn(t) ∈ F(t, y(t)) for almost all t ∈ J. As F(t, y(t)) is compact for all t ∈ J, we have a convergent
subsequence of {ξn(t)} (we denote it by {ξn(t)} again) that converges in measure to some ξ(t) ∈ SF,y
for almost all t ∈ J. On the other hand, L is continuous, so L(ξn)(t)→ L(ξ)(t) pointwise on J.

The convergence will be uniform once it is shown that {L(ξn)} is an equicontinuous sequence.
For t1, t2 ∈ J with t1 < t2, we have

|L(ξn)(t2)−L(ξn)(t1)| ≤
Φ(θ)‖p‖
Γ(α + β)

∫ t1

1

∣∣∣ (log
t2

s

)α+β−1
−
(

log
t1

s

)α+β−1 ∣∣∣ds
s

+
Φ(θ)‖p‖
Γ(α + β)

∫ t2

t1

(
log

t2

s

)α+β−1 ds
s

≤ Φ(θ)‖p‖
Γ(α + β + 1)

[∣∣∣(log t2)
α+β − (log t1)

α+β
∣∣∣+ | log t2/t1|α+β

]
→ 0,

as t2 → t1, which shows that the sequence {L(ξn)} is equicontinuous. As a consequence of the
Arzelá-Ascoli theorem, there exists a uniformly convergent subsequence of {ξn} (we denote it again
by {ξn}) such that L(ξn) → L(ξ). Noting that L(ξ) ∈ L(SF,y), we deduce that B(y) = L(SF,y) is
compact for all y ∈ Bθ . So Ψ2(y) is compact.

Now, we show that Ψ2(y) is convex for all y ∈ C([1− r, b],R). Let h1, h2 ∈ Ψ2(y). We select
ξ1, ξ2 ∈ SF,y such that

hi(t) = φ(1) +
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξi(s)
s

ds, i = 1, 2,

for almost all t ∈ J. Then

[λh1 + (1− λ)h2](t) = φ(1) +
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 [λξ1(s) + (1− λ)ξ2(s)]
s

ds,

where 0 ≤ λ ≤ 1. Since SF,y is convex (as F has convex values), λξ1(s) + (1− λ)ξ2(s) ∈ SF,y. Thus
λh1 + (1− λ)h2 ∈ Ψ2(y), which shows that Ψ2 is convex-valued.

On the other hand, it is easy to show that Ψ1 is compact and convex-valued. Next we prove that
Ψ1 is a contraction on C([1− r, b],R). For y, z ∈ C([1− r, b],R), we have

|Ψ1(y)(t)−Ψ1(z)(t)| ≤
1

Γ(α)

∫ t

1

(
log

t
s

)α−1 |g(s, ys)− g(s, zs)|
s

ds

≤ k
Γ(α)

∫ t

1

(
log

t
s

)α−1 ‖ys − zs‖C
s

ds

≤ k(log t)α

Γ(α + 1)
‖y− z‖[1−r,b],

which implies that ‖Ψ1(y) − Ψ1(z)‖[1−r,b] ≤
k(log b)α

Γ(α+1) ‖y − z‖[1−r,b]. By the assumption (H0), we
conclude that Ψ1 is a contraction.
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As in the proof of Theorem 1, it can easily be shown that the operator Ψ2 is compact and
upper semi-continuous.

In view of the foregoing steps, we deduce that Ψ1 and Ψ2 satisfy the hypothesis of Lemma 2. So,
from the conclusion of Lemma 2, either condition (i) or condition (ii) holds. We show that conclusion
(ii) is not possible. If y ∈ λΨ1(y) + λΨ2(y) for λ ∈ (0, 1), then there exist ξ ∈ SF,y such that

y(t) = λ

(
φ(1) + (η − g(1, φ))

(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξ(s)
s

ds

)
, t ∈ J.

By our assumptions, we can obtain

|y(t)| ≤ ‖φ‖C + [|η|+ k‖φ‖C + g0]
(log b)β

Γ(β + 1)
+

k‖y‖[1−r,b] + g0

Γ(α)

∫ t

1

(
log

t
s

)α−1 ds
s

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1
p(s)Φ(‖ys‖C)

ds
s

≤ ‖φ‖C + [|η|+ k‖φ‖C + g0]
(log b)β

Γ(β + 1)
+

k‖y‖[1−r,b] + g0

Γ(α + 1)
(log b)α

+
‖p‖Φ(‖y‖[1−r,b])

Γ(α + β + 1)
(log b)α+β.

Thus (
1− k(log b)α

Γ(α + 1)

)
‖y‖[1−r,b]

‖φ‖C + [|η|+ k‖φ‖C + g0]
(log b)β

Γ(β + 1)
+

g0(log b)α

Γ(α + 1)
+

Φ(‖y‖[1−r,b])‖p‖
Γ(α + β + 1)

(log b)α+β

≤ 1. (8)

If condition (ii) of Lemma 2 is satisfied, then there exists λ ∈ (0, 1) and y ∈ ∂Bω with y = λV(y). Then,
y is a solution of (2) with ‖y‖[1−r,b] = ω. Now, by the inequality (8), we get(

1− k(log b)α

Γ(α + 1)

)
ω

‖φ‖C + [|η|+ k‖φ‖C + g0]
(log b)β

Γ(β + 1)
+

g0(log b)α

Γ(α + 1)
+

Φ(ω)‖p‖
Γ(α + β + 1)

(log b)α+β

≤ 1,

which contradicts (H3). Hence, V has a fixed point on [1− r, b] by Lemma 2, which implies that the
problem (2) has a solution. The proof is complete.

Our next result deals with the non-convex valued map in the problem (2) and is based on Covitz
and Nadler’s fixed point theorem [21] (If N : X → Pcl(X) is a contraction, then FixN 6= ∅, where X is a
metric space).

For a metric space (X, d) induced from the normed space (X; ‖ · ‖), it is argued in Reference [22]
that (Pcl,b(X), Hd) is a metric space, where Hd : P(X)×P(X)→ R∪ {∞} is defined by Hd(A, B) =
max{supa∈A d(a, B), supb∈B d(A, b)}, d(A, b) = infa∈A d(a; b) and d(a, B) = infb∈B d(a; b).

Definition 4 (Granas, Dugundji [16]). A multivalued operator N : X → Pcl(X) is called

(a) γ−Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ−Lipschitz with γ < 1.
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Theorem 3. Assume that (H0) and the following conditions hold:

(A1) F : J ×R→ Pcp(R) is such that F(·, y) : J → Pcp(R) is measurable for each y ∈ R.
(A2) Hd(F(t, y), F(t, ȳ)) ≤ m(t)|y − ȳ| for almost all t ∈ J and y, ȳ ∈ R with m ∈ C(J,R+) and

d(0, F(t, 0)) ≤ m(t) for almost all t ∈ J.

Then there exists at least one solution for the problem (2) on J, provided that

δ :=
k

Γ(α + 1)
(log b)α +

‖m‖
Γ(α + β + 1)

(log b)α+β < 1. (9)

Proof. Observe that the set SF,y is nonempty for each y ∈ C(J,R) by the assumption (A1). Therefore
F has a measurable selection (see Theorem III.6 [23]). Next we consider the operator V given by (5)
and verify that it satisfies the hypothesis of the Covitz and Nadler theorem [21]. We show that
V(y) ∈ Pcl(C(J,R)) for each y ∈ C(J,R). Let {vn}n≥0 ∈ F (y) be such that vn → v (n→ ∞) in C(J,R).
Then v ∈ C(J,R) and we can find ξn ∈ SF,yn such that, for each t ∈ J,

vn(t) = φ(1) + (η − g(1, φ))
(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξn(s)
s

ds.

Since F has compact values, we pass onto a subsequence (if necessary) such that ξn converges to ξ in
L1(J,R). So ξ ∈ SF,y and for each t ∈ J, we have

un(t)→ ξ(t) = φ(1) + (η − g(1, φ))
(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξ(s)
s

ds.

Hence, v ∈ V(y).
Next we prove that there exists 0 < δ < 1 (δ is defined by (9)) such that

Hd(V(y),V(ȳ)) ≤ δ‖y− ȳ‖ for each y, ȳ ∈ C2(J,R).

Let y, ȳ ∈ C2(J,R) and h1 ∈ V(y). Then there exists ξ1(t) ∈ F(t, y(t)) such that, for each t ∈ J,

h1(t) = φ(1) + (η − g(1, φ))
(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξ1(s)
s

ds.

By (A2), we have
Hd(F(t, y), F(t, ȳ)) ≤ m(t)|y(t)− ȳ(t)|.

So, there exists υ ∈ F(t, ȳ(t)) such that

|ξ1(t)− υ(t)| ≤ m(t)|y(t)− ȳ(t)|, t ∈ J.

Define V : J → P(R) by

V(t) = {υ ∈ R : |ξ1(t)− υ(t)| ≤ m(t)|y(t)− ȳ(t)|}.
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By Proposition III.4 in Reference [23], it follows that the multivalued operator V(t) ∩ F(t, ȳ(t)) is
measurable. So we can find a measurable selection ξ2(t) for V. So ξ2(t) ∈ F(t, ȳ(t)) and satisfying
|ξ1(t)− ξ2(t)| ≤ m(t)|y(t)− ȳ(t)| for each t ∈ J.

For each t ∈ J, we define

h2(t) = φ(1) + (η − g(1, φ))
(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ȳs)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξ2(s)
s

ds.

Thus,

|h1(t)− h2(t)| ≤
1

Γ(α)

∫ t

1

(
log

t
s

)α−1 |g(s, ys)− g(s, ȳs)|
s

ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 |ξ1(s)− ξ2(s)|
s

ds

≤
k‖y− ȳ‖[1−r,b]

Γ(α + 1)
(log b)α +

‖m‖
Γ(α + β + 1)

(log b)α+β‖y− ȳ‖[1−r,b].

Hence

‖h1 − h2‖ ≤
{

k
Γ(α + 1)

(log b)α +
‖m‖

Γ(α + β + 1)
(log b)α+β

}
‖y− ȳ‖[1−r,b].

On the other hand, interchanging the roles of y and ȳ leads to

Hd(F (y),F (ȳ)) ≤
{

k
Γ(α + 1)

(log b)α +
‖m‖

Γ(α + β + 1)
(log b)α+β

}
‖y− ȳ‖[1−r,b].

So V is a contraction. Therefore, from the conclusion of Covitz and Nadler theorem [21], the operator
V has a fixed point y which is indeed a solution of the problem (2). This finishes the proof.

Finally, we prove an existence result by applying the multivalued version of Krasnoselskii’s fixed
point theorem [24], which is stated below.

Lemma 3 (Krasnoselskii [24]). Let X be a Banach space, Y ∈ Pb,cl,c(X) and W1, W2 : Y → Pcp,c(X) be
multivalued operators satisfying the conditions: (i) W1y + W2y ⊂ Y for all y ∈ Y; (ii) W1 is contraction;
and (iii) W2 is upper semicontinuous and compact. Then there exists y ∈ Y such that y ∈W1y + W2y.

Theorem 4. Suppose that (H0), (H1) and the following assumption are satisfied

(B1) there exists a function q ∈ C([1, b],R+) such that

‖F(t, u)‖P := sup{|y| : y ∈ F(t, u)} ≤ q(t), for each (t, u) ∈ [1, b]× Cr.

Then there exists at least one solution for the problem (2) on [1− r, b].

Proof. Let us consider the operators Ψ1 and Ψ2 defined by (6) and (7) respectively. As in Theorem 2,
one can show that Ψ1, Ψ2 : Bθ → Pcp,c(C([1− r, b],R)) are indeed multivalued operators, where
Bθ = {y ∈ C([1− r, b],R) : ‖y‖[1−r,b] ≤ θ} is a bounded set in C([1− r, b],R). Moreover, Ψ1 is a
contraction on C([1− r, b],R) and Ψ2 is upper semi-continuous and compact.
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Next we show that Ψ1(y) + Ψ2(y) ⊂ Bθ for all y ∈ Bθ . Let y ∈ Bθ and suppose that

θ

(
1− k(log b)α

Γ(α + 1)

)
> ‖φ‖C +

[|η|+ k‖φ‖C + g0](log b)β

Γ(β + 1)
+

g0(log b)α

Γ(α + 1)
+
‖q‖(log b)α+β

Γ(α + β + 1)
.

For h ∈ Ψ1, Ψ2 and ξ ∈ SF,y, we have

h(t) = φ(1) + (η − g(1, φ))
(log t)β

Γ(β + 1)
+

1
Γ(α)

∫ t

1

(
log

t
s

)α−1 g(s, ys)

s
ds

+
1

Γ(α + β)

∫ t

1

(
log

t
s

)α+β−1 ξ(s)
s

ds, t ∈ J.

With the given assumptions, one can obtain

|h(t)| ≤ ‖φ‖C + [|η|+ k‖φ‖C + g0]
(log b)β

Γ(β + 1)
+

k‖y‖[1−r,b] + g0

Γ(α + 1)
(log b)α

+
‖q‖

Γ(α + β + 1)
(log b)α+β.

Thus

‖h‖ ≤ ‖φ‖C + [|η|+ k‖φ‖C + g0]
(log b)β

Γ(β + 1)
+

kθ + g0

Γ(α + 1)
(log b)α +

‖q‖
Γ(α + β + 1)

(log b)α+β < θ,

which means that Ψ1(y) + Ψ2(y) ⊂ Bθ for all y ∈ Bθ .
Thus, the operators Ψ1 and Ψ2 satisfy the hypothesis of Lemma 3 and hence its conclusion implies

that y ∈ A(y) +B(y) in Bθ . Therefore the problem (2) has a solution in Bθ and the proof is finished.

4. Examples

In this section, we demonstrate the application of our main results by considering the following
Hadamard type neutral fractional differential inclusions:

D1/4
(

D2/3y(t)− g(t, yt)
)
∈ F(t, yt), t ∈ J = [1, e], (10)

y(t) = φ(t), t ∈ [1/2, 1], D2/3y(1) = 1/4. (11)

Here α = 1/4, β = 2/3, r = 1/2, b = e,

F(t, yt) =

[√
3 + ln t

4
sin(yt),

√
3|yt|3

8(1 + |yt|3)
sin(πt/2e) +

1
16

]
,

g(t, yt) =
1

4 + ln t
tan−1(yt) + sin(πt/2), φ(t) =

1

16
√

3
4 + t2

.

With the given data, it is easy to see that (H0) is satisfied with k < Γ(5/4), (H2) is satisfied with
p(t) =

√
3 + ln t/4, ‖p‖ = 1/2, Φ(‖u‖C) = ‖u‖C and (H3) holds true for M > 7.05996548 (M0 =

1.46447352, g0 = 1) with a particular choice of k = 1/4. Thus all the conditions of Theorem 1 hold true.
Hence the problem (10) and (11) has at least one solution on [1/2, e] by the conclusion of Theorem 1.
In a similar manner, one can check that the hypotheses of Theorem 2 hold with M > 1.71978641 and
consequently the conclusion of Theorem 2 applies to the problem (10) and (11).
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In order to illustrate Theorem 3, let us take

F(t, yt) =

[
0,

√
15 + (ln t)2

8
|yt|

(1 + |yt|)
+

1
4

]
(12)

in (10). Then ‖m‖ = 1/2 and from the condition (9), δ ≈ 0.74950391 < 1. Clearly the hypothesis of
Theorem 3 is satisfied. Therefore, there exists at least one solution for the problem (10) and (11) with
F(t, yt) given by (12) on [1/2, e].

5. Conclusions

In this paper, we have derived several existence results for an initial value problem of neutral
functional Hadamard-type fractional differential inclusions. In our first result (Theorem 1), we apply
a nonlinear alternative for Kakutani multivalued maps to prove the existence of solutions for the
problem at hand when the multivalued map F is assumed to be convex-valued. The nonlinear
alternative for contractive maps is applied to prove the existence of solutions for the given problem
in Theorem 2. In Theorem 3, we show the existence of solutions for the given problem involving
non-convex valued maps with the aid of Covitz and Nadler’s fixed point theorem. Our final existence
result (Theorem 4) relies on the multivalued version of Krasnoselskii’s fixed point theorem. In the
nutshell, we have presented a comprehensive study of neutral functional Hadamard-type fractional
differential inclusions by making use of different tools of fixed point theory for multivalued maps.
In our future work, we plan to investigate the existence of solutions to an initial value problem for
neutral functional fractional differential inclusions involving a combination of Caputo and Hadamard
fractional derivatives.
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