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Abstract: Single-valued neutrosophic sets (SVNSs), which involve in truth-membership,
indeterminacy-membership and falsity-membership, play a significant role in describing the
decision-makers’ preference information. In this study, a single-valued neutrosophic multi-criteria
decision-making (MCDM) approach is developed based on Shapley fuzzy measures and power
aggregation operator that takes a correlative relationship among criteria into account and also
simultaneously reduces the effects of abnormal preference information. Firstly, two aggregation
operators, namely, generalized weighted single-valued neutrosophic power Shapley Choquet average
(GWSVNPSCA) operator and generalized weighted single-valued neutrosophic power Shapley
Choquet geometric (GWSVNPSCG) operator, are accordingly defined, and the corresponding
properties are discussed as well. Secondly, based on the proposed aggregation operators, an integrated
MCDM approach is proposed to effectively solve single-valued neutrosophic problems where the
weight information is incompletely known. A programming model is constructed to obtain the optimal
Shapley fuzzy measure. Next, the proposed operators are utilized to aggregate the decision-makers’
preference information. Finally, a theoretical example with tourism attraction selection is provided to
examine the efficacy of the developed approach, in which the results is found reasonable and credible.

Keywords: multi-criteria decision-making; single-valued neutrosophic sets; Shapley fuzzy measure;
aggregation operators

1. Introduction

In real environment, a successful decision-making often requires consideration of multiple factors
(criteria). This kind of problem related to decision-making simultaneously involving multiple criteria
is called multi-criteria decision-making (MCDM) problem [1]. Since Zadeh put forward the theory of
the fuzzy sets (FSs) in 1965 [2], MCDM based on FSs theory has been widely developed and applied
to practical decision-making problems [3–11]. Due to the inherent fuzziness of human preference
information, a single membership degree of FSs cannot properly describe the fuzziness and uncertainty
in the decision-making process. After that, Atanassov [12] defined intuitionistic fuzzy sets (IFSs),
including a membership, non-membership, and hesitation index, as the extension of FSs [2]. However,
FSs and IFSs cannot deal with indeterminate information. Thus, Smarandache et al. [13,14] developed
neutrosophic sets (NSs), involving truth membership, indeterminacy membership, and falsity
membership, respectively, and it lies in the range of ]0−, 1+[ [15]. Obviously, it is the extension
of the standard interval [0, 1] of IFSs. Subsequently, a single-valued neutrosophic set (SVNS) was
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proposed, that is an instance of NS [16–20]. In addition, other extensions of NSs, including interval
neutrosophic sets [21], neutrosophic cubic sets [22,23], single-valued neutrosophic hesitant fuzzy sets
(SVNHFSs) [24], rough neutrosophic sets (RNSs) [25], interval rough neutrosophic sets (IRNSs) [26],
probability multi-valued neutrosophic sets [27,28], and other extensions [29,30], were proposed and
applied to solve theoretical problems.

Additionally, SVNS, as a popular method to describe DMs’ preference information, has greatly
received scholars’ attention, and also was studied from different aspects, such as aggregation
operators [31–36], outranking relations [37], and information measures [38,39]. For instance, Liu and
Wang [31] presented a single-valued neutrosophic normalized weighted Bonferroni mean operator;
Garg [36] presented single-valued neutrosophic Frank operators; Wu et al. [39] defined a simplified
neutrosophic prioritized aggregation operator. Liu et al. [28] defined some single-valued neutrosophic
Schweizer-Sklar prioritized aggregation operators. To our knowledge, aggregation operators play
a significant role in solving MCDM problems. Different aggregation operators are mainly involved
in different functions, which can reduce the effect of abnormal data provided by DMs. Especially,
power aggregation (PA) operator, defined by Yager [40], can aggregate the information by using a
weighted vector based on support degree among different arguments and allow the evaluation values
to be supported.

In practice, we always experience some decision-making problems with the correlation between
criteria. For example, tourism attraction selection, constraints of tourists, and preferences of tourists
are correlated to each other, and male tourists prefer adventurous tourism attractions. Apparently,
there is a redundancy between constraints and preferences, where the sum of the weights of constraints
and preferences is greater than the weight of the combination s of two criteria.

The Shapley fuzzy measure and Choquet integral [41–44] are highly applied to deal with MCDM
problems where the criteria are correlated [45,46]. For instance, Zhang et al. [44] presented some
hesitant fuzzy linguistic Shapley Choquet integral operators; Meng et al. [47] developed interval-valued
intuitionistic fuzzy Shapley Choquet integral operators; Qu et al. [48] defined dual hesitant fuzzy
Shapley Choquet integral operators; Nie et al. [49] developed some Pythagorean fuzzy partitioned
normalized weighted Bonferroni mean operator based on Shapley fuzzy measures.

From the above analysis, two shortcomings can be concluded as follows: (1) the existing
single-valued neutrosophic aggregation operators only take the importance of assessment values or
that of ordered position into account. However, criteria were often interdependent or interactive
in the decision-making process; (2) Most of existing methods cannot handle some special MCDM
problems where the weight information is incompletely known. Moreover, power aggregation
operator can reduce the effects of abnormal assessment values, and Shapley fuzzy measures can
simultaneously consider the importance and overall correlation among the criteria. To do this, the main
contributions can be summarized as: (1) This paper proposes two new aggregation operators, namely
the generalized weighted single-valued neutrosophic power Shapley Choquet average (GWSVNPSCA)
operator and the generalized weighted single-valued neutrosophic power Shapley Choquet geometric
(GWSVNPSCG) operator, which can avoid the first drawback. (2) This paper develops a MCDM
approach based on proposed aggregation operators to solve single-valued neutrosophic problems with
incomplete weight information, which can overcome the second drawback.

The rest of the study is constructed as follows. In Section 2, some related definitions are
introduced. Then, the GWSVNPSCA and GWSVNPSCG operators are defined in Section 3. Next,
the single-valued MCDM method accompanied with unknown weight information is constructed in
Section 4. In Section 5, the selection of tourism attraction is provided to assess the effectiveness of the
proposed method. Finally, we summarize the achieved results in Section 6.

2. Preliminaries

Here, some basic definitions, including Shapley fuzzy measure, PA operator, NSs, and SVNS,
are described.
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2.1. Shapley Fuzzy Measure

Definition 1 [42,43]. Let X = {x1, x2, . . . , xn} be a finite set and P(x) be the power set of X. Then the function
M : (P(x)→ [0, 1]) is defined as a fuzzy measure, satisfying:

(1) µ(Φ) = 0 and µ(X) = 1;
(2) ∀α, β ∈ P(X) and α ⊆ β, then µ(α) ≤ µ(β).

To measure the influence of each condition in a game, Shapley [42] defined the Shapley function
as follows:

φS(µ, X) =
∑

M⊆X\S

(n− s−m)!m!
(n− s + 1)!

(µ(S∪ {M}) − µ(M)),∀S ∈ X. (1)

Here n and m denote the cardinalities of X and M, respectively. As discussed in Zhang et al. [44],

we have φi(µ, X) ≥ 0 and
n∑

i=1
φi(µ, X) = 1, which can be true. Then, φi(µ, X) is called Shapley fuzzy

measure [44]. Moreover, Shapley fuzzy measures, which will be utilized in latter analysis, are additive
fuzzy measures.

2.2. PA Operator

The PA operator was developed by Yager [40] in the form of nonlinear weighted average
aggregation operator.

Definition 2 [40]. The PA operator is given as:

PA(ϑ1,ϑ2, . . . ,ϑn) =

n∑
i=1

(1 + F(ϑi))ϑi

n∑
i=1

(1 + F(ϑi))

. (2)

where ϑi(i = 1, 2, . . . , n) includes positive real numbers. F(ϑi) =
n∑

i=1, j,i
Sup

(
ϑi,ϑ j

)
and Sup

(
ϑi,ϑ j

)
denote the

support degree for ϑi from ϑ j. After that, the support degree satisfies the properties as follows:

(1) Sup
(
ϑi,ϑ j

)
∈ [0, 1];

(2) Sup
(
ϑi,ϑ j

)
= Sup

(
ϑ j,ϑi

)
;

(3) Sup
(
ϑi,ϑ j

)
≥ Sup(ϑs,ϑt), i f f

∣∣∣∣ϑi − ϑ j

∣∣∣∣<∣∣∣∣ϑs − ϑt

∣∣∣∣.
2.3. NSs and SVNSs

Definition 3 [13,14,50]. A NS ψ̃ in X = {x1, x2, . . . , xn} is characterized as: ψ̃ ={ 〈
x, T̃ψ̃(x), Ĩψ̃(x), F̃ψ̃(x)

〉∣∣∣∣x ∈ X
}
. Here T̃ψ̃(x), Ĩψ̃(x), and F̃ψ̃(x) denote truth-membership,

indeterminacy-membership and falsity-membership respectively. Furthermore, T̃ψ̃(x), Ĩψ̃(x), and F̃ψ̃(x)
are subsets of ]0−, 1+[, that is, T̃ψ̃(x) : X→]0−, 1+[ , Ĩψ̃(x) : X→]0−, 1+[ , and F̃ψ̃(x) : X→]0−, 1+[ to
satisfy the condition required for 0− ≤ supT̃ψ̃(x) + supĨψ̃(x) + supF̃ψ̃(x) ≤ 3+.

Since NSs can difficultly handle practical problems because of their nonstandard intervals, Ye [16]
defined SVNSs based on standard intervals and developed the corresponding operations for SVNSs.

Definition 4 [16]. An SVNS ψ in X = {x1, x2, . . . , xn} is defined as: ψ =
{ 〈

x, Tψ(x), Iψ(x), Fψ(x)
〉∣∣∣∣x ∈ X

}
.

Here Tψ(x), Iψ(x), and Fψ(x) are subsets in the standard interval of [0,1], i.e., Tψ(x) : X→ [0, 1] ,
Iψ(x) : X→ [0, 1] , and Fψ(x) : X→ [0, 1] . In particular, if X has only one element, then ψ is called a
single-valued neutrosophic number (SVNN). For convenience, an SVNN is denoted by ψ =

〈
Tψ, Iψ, Fψ

〉
.
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Definition 5 [16]. Let ψ =
〈
Tψ, Iψ, Fψ

〉
, ψ1 =

〈
Tψ1 , Iψ1 , Fψ1

〉
and ψ2 =

〈
Tψ2 , Iψ2 , Fψ2

〉
be three SVNNs,

and with λ > 0, the following operations can be defined:

(1) λψ =
〈
1−

(
1− Tψ

)λ
, 1−

(
1− Iψ

)λ
, 1−

(
1− Fψ

)λ〉
,λ > 0;

(2) ψλ =
〈
Tλψ, Iλψ, Fλψ

〉
,λ > 0;

(3) ψ1 ⊕ψ2 =
〈
Tψ1 + Tψ2 − Tψ1 · Tψ2 , Iψ1 + Iψ2 − Iψ1 · Iψ2 , Fψ1 + Fψ2 − Fψ1 · Fψ2

〉
;

(4) ψ1 ⊗ψ2 =
〈
Tψ1 · Tψ2 , Iψ1 · Iψ2 , Fψ1 · Fψ2

〉
.

However, the operations are unreasonable as previously outlined [32]. Then, Peng et al. [32]
developed the improved operations of SVNNs and the corresponding comparison method.

Definition 6 [32]. Let ψ =
〈
Tψ, Iψ, Fψ

〉
, ψ1 =

〈
Tψ1 , Iψ1 , Fψ1

〉
and ψ2 =

〈
Tψ2 , Iψ2 , Fψ2

〉
be three SVNNs, and

λ > 0. The SVNNs operations are defined in the following:

(1) λψ =
〈
1−

(
1− Tψ

)λ
, Iψλ, Fψλ

〉
;

(2) ψλ =
〈
Tψλ, 1−

(
1− Iψ

)λ
, 1−

(
1− Fψ

)λ〉
;

(3) ψ1 ⊕ψ2 =
〈
Tψ1 + Tψ2 − Tψ1 · Tψ2 , Iψ1 · Iψ2 , Fψ1 · Fψ2

〉
;

(4) ψ1 ⊗ψ2 =
〈
Tψ1 · Tψ2 , Iψ1 + Iψ2 − Iψ1 · Iψ2 , Fψ1 + Fψ2 − Fψ1 · Fψ2

〉
.

Example 1. Let ψ = 〈0.5, 0.1, 0.3〉, ψ1 = 〈0.7, 0.1, 0.1〉, and ψ2 = 〈0.5, 0.2, 0.3〉 be three SVNNs, and λ = 2.
Based on the operations presented in Definition 6, we can get the following results:

(1) λψ =
〈
1− (1− 0.5)2, 0.12, 0.32

〉
= 〈0.75, 0.01, 0.09〉;

(2) ψλ =
〈
0.52, 1− (1− 0.1)2, 1− (1− 0.3)2

〉
= 〈0.025, 0.19, 0.51〉;

(3) ψ1 ⊕ψ2 = 〈0.7 + 0.5− 0.7 · 0.5, 0.1 · 0.2, 0.1 · 0.3〉 = 〈0.85, 0.02, 0.03〉;
(4) ψ1 ⊗ψ2 = 〈0.7 · 0.5, 0.1 + 0.2− 0.1 · 0.2, 0.1 + 0.3− 0.1 · 0.3〉 = 〈0.35, 0.28, 0.37〉.

Definition 7 [32]. Let ψ1 =
〈
Tψ1 , Iψ1 , Fψ1

〉
and ψ2 =

〈
Tψ2 , Iψ2 , Fψ2

〉
be two SVNNs. Then the method of

comparison is defined as:

(1) If s(ψ1) > s(ψ2), then ψ1 is preferable to ψ2, represented by ψ1 � ψ2;
(2) If s(ψ1) = s(ψ2) and a(ψ1) > a(ψ2), then ψ1 is preferable to ψ2, represented by ψ1 � ψ2;
(3) If s(ψ1) = s(ψ2), a(ψ1) = a(ψ2) and c(ψ1) > c(ψ2), then ψ1 is preferable to ψ2, represented by

ψ1 � ψ2;
(4) If s(ψ1) = s(ψ2), a(ψ1) = a(ψ2) and c(ψ1) = c(ψ2), then ψ1 is indifferent to ψ2, represented by

ψ1 ∼ ψ2.
(5) where s(ψi) =

(
Tψi + 1− Iψi + 1− Fψi

)
/3, a(ψi) = Tψi − Fψi and c(ψi) = Tψi(i = 1, 2) denote the

score function, accuracy function and certainty function of SVNNs, respectively.

Example 2. Let ψ1 = 〈0.8, 0.1, 0.2〉 and ψ2 = 〈0.6, 0.2, 0.3〉 be two SVNNs, then we have s(ψ1) = 0.83 and
s(ψ2) = 0.7. Since s(ψ1) > s(ψ2), so ψ1 is preferable to ψ2, i.e., ψ1 � ψ2.

Definition 8. Let ψ1 =
〈
Tψ1 , Iψ1 , Fψ1

〉
and ψ2 =

〈
Tψ2 , Iψ2 , Fψ2

〉
be two SVNNs. The generalized normalized

single-valued neutrosophic distance between two SVNNs of ψ1 and ψ2 can be defined as:

dgnsvn(ψ1, ψ2) =
(

1
5

(∣∣∣Tψ1 − Tψ2

∣∣∣γ + ∣∣∣Iψ1 − Iψ2

∣∣∣γ + ∣∣∣Fψ1 − Fψ2

∣∣∣γ + ∣∣∣∣max
{
Tψ1 , Iψ2

}
−max

{
Iψ1 , Tψ2

}∣∣∣∣γ
+

∣∣∣∣max
{
Tψ1 , Fψ2

}
−max

{
Fψ1 , Tψ2

}∣∣∣∣γ))1/γ
(γ > 0).

(3)
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Especially, if γ = 1, then dgnsvn(ψ1, ψ2) may reduce to the normalized single-valued neutrosophic
Hamming distance, i.e.,

dgnsvn(ψ1, ψ2) =
1
5

(∣∣∣Tψ1 − Tψ2

∣∣∣+ ∣∣∣Iψ1 − Iψ2

∣∣∣+ ∣∣∣Fψ1 − Fψ2

∣∣∣+ ∣∣∣∣max
{
Tψ1 , Iψ2

}
−max

{
Iψ1 , Tψ2

}∣∣∣∣
+

∣∣∣∣max
{
Tψ1 , Fψ2

}
−max

{
Fψ1 , Tψ2

}∣∣∣∣). (4)

If γ = 2, then dgnsvn(ψ1, ψ2) may reduce to the normalized single-valued neutrosophic Euclidean distance,
i.e.,

dgnsvn(ψ1, ψ2) =
(

1
5

(∣∣∣Tψ1 − Tψ2

∣∣∣2 + ∣∣∣Iψ1 − Iψ2

∣∣∣2 + ∣∣∣Fψ1 − Fψ2

∣∣∣2 + ∣∣∣∣max
{
Tψ1 , Iψ2

}
−max

{
Iψ1 , Tψ2

}∣∣∣∣2
+

∣∣∣∣max
{
Tψ1 , Fψ2

}
−max

{
Fψ1 , Tψ2

}∣∣∣∣2))1/2
(γ > 0).

(5)

Example 3. Based on Example 2, and let γ = 1, then we have dgnsvn(ψ1, ψ2) =
1
5(|0.8− 0.6|+ |0.1− 0.2|+ |0.2− 0.3|+ |max{0.8, 0.2} −max{0.1, 0.6}|+ |max{0.8, 0.3} −max{0.2, 0.6}|)= 0.16.

3. Generalized Weighted Single-Valued Neutrosophic Power Shapley Choquet Operators

Based on the PA operator and Shapley fuzzy measure, the GWSVNPSCA operator and
GWSVNPSCG operator are defined respectively, and the corresponding properties are discussed
as well.

3.1. Generalized Weighted Single-Valued Neutrosophic Power Shapley Choquet Averaging Operator

Definition 9. Let ψ j =
〈
Tψ j , Iψ j , Fψ j

〉
( j = 1, 2, . . . , n) be a group of SVNNs, and φ(u, X) be a

Shapley fuzzy measure. Then, GWSVNPSCA operator with dimension n is a mapping GWSVNPSCA:
SVNNn

→ SVNN , and

GWSVNPSCA(ψ1,ψ2, . . . ,ψn) =


n
⊕

j=1

(
φs

Bσ( j)
(µ, X) −φs

Bσ( j+1)
(µ, X)

)(
1 + S

(
ψσ( j)

))
ψλ
σ( j)

n∑
j=1

(
φs

Bσ( j)
(µ, X) −φs

Bσ( j+1)
(µ, X)

)(
1 + S

(
ψσ( j)

))


1/λ

. (6)

Here, λ > 0, (σ(1), σ(2), . . . , σ(n)) is a permutation of ( j = 1, 2, . . . , n), while it can be presented as
ψσ(1) ≤ ψσ(2) ≤ . . . ≤ ψσ(n), Bσ( j) =

{
σ( j), σ( j + 1), . . . , σ(n)

}
, Bσ(n+1) = Φ, and φBσ(n+1)

(u, X) = 0.

Moreover, S
(
ψσ( j)

)
=

n∑
i=1, j,i

(
φBσ( j)

(µ, X) −φBσ( j+1)
(µ, X)

)
Sup

(
ψσ( j),ψσ(i)

)
, and Sup

(
ψσ( j),ψσ(i)

)
= 1 −

d
(
ψσ( j),ψσ(i)

)
presents the support for ψσ( j) from ψσ(i), that satisfies the conditions:

(1) Sup
(
ψσ(i),ψσ( j)

)
∈ [0, 1];

(2) Sup
(
ψσ(i),ψσ( j)

)
= Sup

(
ψσ( j),ψσ(i)

)
;

(3) Sup
(
ψσ(i),ψσ( j)

)
≥ Sup

(
ψσ(p),ψσ(q)

)
i f f d

(
ψσ(i),ψσ( j)

)
< d

(
ψσ(p),ψσ(q)

)
, here d is the distance measure

as defined in Definition 8.

Theorem 1. Let ψ j =
〈
Tψ j , Iψ j , Fψ j

〉
( j = 1, 2, . . . , n) be a group of SVNNs and φ(u, X) be the Shapley fuzzy

measure. Then the aggregated results by utilizing the GWSVNPSCA operator is also an SVNN, i.e.,
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GWSVNPSCA(ψ1,ψ2, . . . ,ψn) =

〈

1−

n∏
j=1

(
1− Tλψσ( j)

)
(φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X))(1+S(ψσ( j)))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψσ( j)))



1/λ

,

1−


1−

n∏
j=1

(
1−

(
1− Iψσ( j)

)λ)
(φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X))(1+S(ψσ( j)))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψσ( j)))



1/λ

,

1−


1−

n∏
j=1

(
1−

(
1− Fψσ( j)

)λ)
(φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X))(1+S(ψσ( j)))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψσ( j)))



1/λ

〉
.

(7)

Here, S
(
ψσ( j)

)
=

n∑
i=1, j,i

(
φs

Bσ( j)
(µ, X) −φs

Bσ( j+1)
(µ, X)

)
Sup

(
ψσ( j),ψσ(i)

)
and satisfies the conditions

mentioned in Definition 9.

Proof. To simplify the process, let ωσ( j) =

(
φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X)

)
(1+S(ψσ( j)))

n∑
j=1

(
φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X)

)
(1+S(ψσ( j)))

in the following proof.

By using the mathematical induction method, if n = 2, based on the operation laws in Definition 6,
we have:

ψσ(1)
λ =

〈
Tψσ(1)

λ, 1−
(
1− Iψσ(1)

)λ
, 1−

(
1− Fψσ(1)

)λ〉
,

ψσ(2)
λ =

〈
Tψσ(2)

λ, 1−
(
1− Iψσ(2)

)λ
, 1−

(
1− Fψσ(2)

)λ〉
,

ωσ(1)ψσ(1)
λ =

〈
1−

(
1− Tψσ(1)

λ
)ωσ(1) , (1− (

1− Iψσ(1)
)λ)ωσ(1)

,
(
1−

(
1− Fψσ(1)

)λ)ωσ(1)〉
,

ωσ(2)ψσ(2)
λ =

〈
1−

(
1− Tψσ(2)

λ
)ωσ(2) , (1− (

1− Iψσ(2)
)λ)ωσ(2)

,
(
1−

(
1− Fψσ(2)

)λ)ωσ(2)〉
,

ωσ(1)ψσ(1)
λ
⊕ωσ(2)ψσ(2)

λ =
〈
1−

(
1− Tψσ(1)

λ
)ωσ(1)

+ 1−
(
1− Tψσ(2)

λ
)ωσ(2)

−

(
1−

(
1− Tψσ(1)

λ
)ωσ(1))(1− (

1− Tψσ(2)
λ
)ωσ(2)),(

1−
(
1− Iψσ(1)

)λ)ωσ(1)
·

(
1−

(
1− Iψσ(2)

)λ)ωσ(2)
,
(
1−

(
1− Fψσ(1)

)λ)ωσ(1)
·

(
1−

(
1− Fψσ(2)

)λ)ωσ(2)〉
=

〈
1−

(
1− Tψσ(1)

λ
)ωσ(1)(1− Tψσ(2)

λ
)ωσ(2) , (1− (

1− Iψσ(1)
)λ)ωσ(1)

·

(
1−

(
1− Iψσ(2)

)λ)ωσ(2)
,
(
1−

(
1− Fψσ(1)

)λ)ωσ(1)
·

(
1−

(
1− Fψσ(2)

)λ)ωσ(2)〉
.

(
ωσ(1)ψσ(1)

λ
⊕ωσ(2)ψσ(2)

λ
)1/λ

=
〈(

1−
(
1− Tψσ(1)

λ
)ωσ(1)(1− Tψσ(2)

λ
)ωσ(2))1/λ

, 1−
(
1−

(
1−

(
1− Iψσ(1)

)λ)ωσ(1)
·

(
1−

(
1− Iψσ(2)

)λ)ωσ(2))1/λ
,

1−
(
1−

(
1−

(
1− Fψσ(1)

)λ)ωσ(1)
·

(
1−

(
1− Fψσ(2)

)λ)ωσ(2))1/λ〉
.

Apparently, if n = 2, then Equation (7) holds.
If n = k, Equation (7) holds, i.e.,

ωσ(1)ψσ(1)
λ
⊕ωσ(2)ψσ(2)

λ, . . . ,⊕ωσ(k)ψσ(k)λ

=

〈
1−

k∏
j=1

(
1− Tψσ( j)

λ
)ωσ( j) ,

k∏
j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
,

k∏
j=1

(
1−

(
1− Fψσ( j)

)λ)ωσ( j)
〉
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and

GWSVNPSCA(ψ1,ψ2, . . . ,ψk)

=

〈1−
k∏

j=1

(
1− Tλψσ( j)

)ωσ( j)
1/λ

, 1−

1−
k∏

j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
1/λ

, 1−

1−
k∏

j=1

(
1−

(
1− Fψσ( j)

)λ)ωσ( j)
1/λ〉

.

Then for n = k + 1, we have

ωσ(1)ψσ(1)
λ
⊕ωσ(2)ψσ(2)

λ, . . . ,⊕ωσ(k)ψσ(k)λ ⊕ωσ(k+1)ψσ(k+1)
λ =

〈〈
1−

k∏
j=1

(
1− Tψσ( j)

λ
)ωσ( j) ,

k∏
j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
,

k∏
j=1

(
1−

(
1− Fψσ( j)

)λ)ωσ( j)
〉
⊕

〈
1−

(
1− Tψσ(k+1)

λ
)ωσ(k+1) ,

(
1−

(
1− Iψσ(k+1)

)λ)ωσ(k+1)
,
(
1−

(
1− Fψσ(k+1)

)λ)ωσ(k+1)
〉

=

〈
1−

k∏
j=1

(
1− Tψσ( j)

λ
)ωσ( j)

+ 1−
(
1− Tψσ(k+1)

λ
)ωσ(k+1)

−

1−
k∏

j=1

(
1− Tψσ( j)

λ
)ωσ( j)

(1− (
1− Tψσ(k+1)

λ
)ωσ(k+1)

)
,

k∏
j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
(
1−

(
1− Iψσ(k+1)

)λ)ωσ(k+1)
,

k∏
j=1

(
1−

(
1− Fψσ( j)

)λ)ωσ( j)
(
1−

(
1− Fψσ(k+1)

)λ)ωσ(k+1)
〉

=

〈
1−

k+1∏
j=1

(
1− Tψσ( j)

λ
)ωσ( j) ,

k+1∏
j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
,

k+1∏
j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
〉
.

Thus,

GWSVNPSCA(ψ1,ψ2, . . . ,ψk+1) =
(
ωσ(1)ψσ(1)

λ
⊕ωσ(2)ψσ(2)

λ, . . . ,⊕ωσ(k)ψσ(k)λ ⊕ωσ(k+1)ψσ(k+1)
λ
)1/λ

=

〈1−
k+1∏
j=1

(
1− Tψσ( j)

λ
)ωσ( j)

1/λ

, 1−

1−
k+1∏
j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
1/λ

, 1−

1−
k+1∏
j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
1/λ〉

.

Thus, if n = k + 1, Equation (7) is held. In the other words, for any positive real number n,
Equation (7) is held. �

Example 4. Let ψ1 = 〈0.7, 0.1, 0.3〉 and ψ2 = 〈0.8, 0.2, 0.2〉 be two SVNNs, then we have s(ψ1) = 0.77
and s(ψ2) = 0.8, i.e., ψσ(1) = ψ1 and ψσ(2) = ψ2. Assume µ(∅) = 0, µ(

{
ψ1

}
) = 0.6, µ(

{
ψ2

}
) = 0.3, and

µ(
{
ψ1,ψ2

}
) = 1, then φψ1(µ, X) = 0.65, and φψ2(µ, X) = 0.35. Based on the single-valued neutrosophic

normalized Hamming distance presented in Definition 8, we can get Sup(ψ1,ψ2) = Sup(ψ1,ψ2) = 1 −
dgsvnn(ψ1,ψ2) = 0.9. Thus, let λ = 1, from Theorem 1, we have:

GWSVNPSCA(ψ1,ψ2) =

〈1−
(
1− Tψ1

) (φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))+(φs
ψ2

(µ,X)−0)(1+S(ψ2)) (
1− Tψ2

) (φs
ψ2

(µ,X)−0)(1+S(ψ2))

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))+(φs
ψ2

(µ,X)−0)(1+S(ψ2))

,

1−

1− Iψ1

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))+(φs
ψ2

(µ,X)−0)(1+S(ψ2)) Iψ2

(φs
ψ2

(µ,X)−0)(1+S(ψ2))

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))+(φs
ψ2

(µ,X)−0)(1+S(ψ2))

,

1−

1− Fψ1

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))+(φs
ψ2

(µ,X)−0)(1+S(ψ2)) Fψ2

(φs
ψ2

(µ,X)−0)(1+S(ψ2))

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))+(φs
ψ2

(µ,X)−0)(1+S(ψ2))


〉

=

〈(
1− (1− 0.7)

(0.65−0.35)(1+0.27)
(0.65−0.35)(1+0.27)+(0.35−0)(1+0.315) (1− 0.8)

(0.35−0)(1+0.315)
(0.65−0.35)(1+0.27)+(0.35−0)(1+0.315)

)
,

1−
(
1− 0.1

(0.65−0.35)(1+0.27)
(0.65−0.35)(1+0.27)+(0.35−0)(1+0.315) 0.2

(0.35−0)(1+0.315)
(0.65−0.35)(1+0.27)+(0.35−0)(1+0.315)

)
,

1−
(
1− 0.3

(0.65−0.35)(1+0.27)
(0.65−0.35)(1+0.27)+(0.35−0)(1+0.315) 0.2

(0.35−0)(1+0.315)
(0.65−0.35)(1+0.27)+(0.35−0)(1+0.315)

)〉
= 〈0.7597, 0.1461, 0.2403〉.

In the following, a number of properties of GWSVNPSCA operator are discussed.

Theorem 2 (Idempotency). Let ψ j =
〈
Tψ j , Iψ j , Fψ j

〉
( j = 1, 2, . . . , n) be a group of SVNNs. If ψ1 = ψ2 =

. . . = ψn = ψ =
〈
Tψ, Iψ, Fψ

〉
, then GSVNPSCA(ψ1,ψ2, . . . ,ψn) = ψ.
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Proof. Since ψ1 = ψ2 = . . . = ψn = ψ =
〈
Tψ, Iψ, Fψ

〉
, thus we have

GWSVNPSCA(ψ1,ψ2, . . . ,ψn) = GWSVNPSCA(ψ,ψ, . . . ,ψ) =
〈

1−

(
1− Tλψ

)
n∑

j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψ))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψ))



1/λ

,

1−


1−

(
1−

(
1− Iψ

)λ)
n∑

j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψ))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψ))



1/λ

,

1−


1−

(
1−

(
1− Fψ

)λ)
n∑

j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψ))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψ))



1/λ

〉

=

〈(
1− 1 + Tψλ

)1/λ
, 1−

(
1− 1 +

(
1− Iψ

)λ)1/λ
, 1−

(
1− 1 +

(
1− Fψ

)λ)1/λ
〉

=

〈(
Tψλ

)1/λ
, 1−

((
1− Iψ

)λ)1/λ
, 1−

((
1− Fψ

)λ)1/λ
〉
=

〈
Tψ, Iψ, Fψ

〉
.

Thus, GWSVNPSCA(ψ1,ψ2, . . . ,ψn) = ψ can be true. �

Theorem 3 (Permutability). Let ψ j =
〈
Tψ j , Iψ j , Fψ j

〉
( j = 1, 2, . . . , n) be a group of SVNNs. If ψ j =(

Tψ j
, Iψ j

, Fψ j

)
( j = 1, 2, . . . , n) accompanies with any permutation of ψ j =

(
Tψ j , Iψ j , Fψ j

)
( j = 1, 2, . . . , n),

then,
GWSVNPSCA

(
ψ1,ψ2, . . . ,ψn

)
= GWSVNPSCA(ψ1,ψ2, . . . ,ψn).

Proof. Since ψ j =
〈
Tψ j

, Iψ j
, Fψ j

〉
( j = 1, 2, . . . , n) is an any permutation of ψ j =(

Tψ j , Iψ j , Fψ j

)
( j = 1, 2, . . . , n), therefore ψσ( j) = ψσ( j)( j = 1, 2, . . . , n), i.e., Tψσ( j)

= Tψσ( j) , Iψσ( j)
= Iψσ( j)

and Fψσ( j)
= Fψσ( j) . Thus,
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GWSVNPSCA
(
ψ1,ψ2, . . . ,ψn

)
=

〈

1−

n∏
j=1

(
1− T

λ
ψσ( j)

)
(φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X))(1+S(ψσ( j)))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψσ( j)))



1/λ

,

1−


1−

n∏
j=1

(
1−

(
1− Iψσ( j)

)λ)
(φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X))(1+S(ψσ( j)))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψσ( j)))



1/λ

,

1−


1−

n∏
j=1

(
1−

(
1− Fψσ( j)

)λ)
(φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X))(1+S(ψσ( j)))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψσ( j)))



1
λ

〉

=

〈

1−

n∏
j=1

(
1− Tλψσ( j)

)
(φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X))(1+S(ψσ( j)))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψσ( j)))



1
λ

, 1−


1−

n∏
j=1

(
1−

(
1− Iψσ( j)

)λ)
(φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X))(1+S(ψσ( j)))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψσ( j)))



1/λ

,

1−


1−

n∏
j=1

(
1−

(
1− Fψσ( j)

)λ)
(φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X))(1+S(ψσ( j)))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψσ( j)))



1/λ

〉
= GWSVNPSCA(ψ1,ψ2, . . . ,ψn).

�

Theorem 4 (Boundedness). Let ψ j =
〈
Tψ j , Iψ j , Fψ j

〉
( j = 1, 2, . . . , n) be a group of SVNNs. If

ψ− =

〈
min

j

{
Tψ j

}
, max

j

{
Iψ j

}
, max

j

{
Fψ j

}〉
and ψ+ =

〈
max

j

{
Tψ j

}
, min

j

{
Iψ j

}
, min

j

{
Fψ j

}〉
, then ψ− ≤

GWSVNPSCA(ψ1,ψ2, . . . ,ψn) ≤ ψ+.

Proof. For simplicity, let ωσ( j) =

(
φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X)

)
(1+S(ψσ( j)))

n∑
j=1

(
φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X)

)
(1+S(ψσ( j)))

in the following proof.

Since min
j

{
Tψ j

}
≤ Tψσ( j) ≤ max

j

{
Tψ j

}
, i.e., min

j

{
Tψ j

λ
}
≤ Tψσ( j)

λ
≤ max

j

{
Tψ j

λ
}
,

Then −max
j

{
Tψ j

λ
}
≤ −Tψσ( j)

λ
≤ −min

j

{
Tψ j

λ
}
⇔ 1−max

j

{
Tψ j

λ
}
≤ 1− Tψσ( j)

λ
≤ 1−min

j

{
Tψ j

λ
}

⇔

(
1−max

j

{
Tψ j

λ
})ωσ( j)

≤

(
1− Tψσ( j)

λ
)ωσ( j)

≤

(
1−min

j

{
Tψ j

λ
})ωσ( j)

⇔ 1−max
j

{
Tψ j

λ
}
=

n∏
j=1

(
1−max

j

{
Tψ j

λ
})ωσ( j)

≤

n∏
j=1

(
1− Tψσ( j)

λ
)ωσ( j)

≤

n∏
j=1

(
1−min

j

{
Tψ j

λ
})ωσ( j)

= 1−min
j

{
Tψ j

λ
}

⇔ min
j

{
Tψ j

λ
}
− 1 ≤ −

n∏
j=1

(
1− Tψσ( j)

λ
)ωσ( j)

≤ max
j

{
Tψ j

λ
}
− 1⇔ min

j

{
Tψ j

λ
}
≤ 1−

n∏
j=1

(
1− Tψσ( j)

λ
)ωσ( j)

≤ max
j

{
Tψ j

λ
}
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⇔ min
j

{
Tψ j

}
=

(
min

j

{
Tψ j

λ
})1/λ

≤

1−
n∏

j=1

(
1− Tψσ( j)

λ
)ωσ( j)


1/λ

≤

(
max

j

{
Tψ j

λ
})1/λ

= max
j

{
Tψ j

}
Moreover, min

j

{
Iψ j

}
≤ Iψσ( j) ≤ max

j

{
Iψ j

}
⇔ 1−max

j

{
Iψ j

}
≤ 1− Iψσ( j) ≤ 1−min

j

{
Iψ j

}

⇔

(
1−max

j

{
Iψ j

})λ
≤

(
1− Iψσ( j)

)λ
≤

(
1−min

j

{
Iψ j

})λ

⇔ 1−
(
1−min

j

{
Iψ j

})λ
≤ 1−

(
1− Iψσ( j)

)λ
≤ 1−

(
1−max

j

{
Iψ j

})λ

⇔

1−
(
1−min

j

{
Iψ j

})λωσ( j)

≤

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
≤

1−
(
1−max

j

{
Iψ j

})λωσ( j)

⇔

n∏
j=1

1−
(
1−min

j

{
Iψ j

})λωσ( j)

≤

n∏
j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
≤

n∏
j=1

1−
(
1−max

j

{
Iψ j

})λωσ( j)

⇔

1−
(
1−min

j

{
Iψ j

})λ
n∑

j=1
ωσ( j)

≤

n∏
j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
≤

1−
(
1−max

j

{
Iψ j

})λ
n∑

j=1
ωσ( j)

⇔ 1−
(
1−min

j

{
Iψ j

})λ
≤

n∏
j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
≤ 1−

(
1−max

j

{
Iψ j

})λ

⇔

(
1−max

j

{
Iψ j

})λ
≤ 1−

n∏
j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
≤

(
1−min

j

{
Iψ j

})λ

⇔

(1−max
j

{
Iψ j

})λ1/λ

≤

1−
n∏

j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)


1/λ

≤

(1−min
j

{
Iψ j

})λ1/λ

⇔ 1−max
j

{
Iψ j

}
≤

1−
n∏

j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)


1/λ

≤ 1−min
j

{
Iψ j

}

⇔ min
j

{
Iψ j

}
= 1− 1 + min

j

{
Iψ( j)

}
≤ 1−

1−
n∏

j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)


1/λ

≤ 1− 1 + max
j

{
Iψ j

}
= max

j

{
Iψ j

}

Similarly, min
j

{
Fψ j

}
≤ 1−

1−
n∏

j=1

(
1−

(
1− Fψσ( j)

)λ)ωσ( j)
1/λ

≤ max
j

{
Fψ j

}
.

Thus, we have

⇔
1
3

(
min

j

{
Tψ j

}
+ 1−max

j

{
Iψ j

}
+ 1−max

j

{
Fψ j

})
≤

1
3


1−

n∏
j=1

(
1− Tψσ( j)

λ
)ωσ( j)

1/λ

+1−

1−

1−
n∏

j=1

(
1−

(
1− Iψσ( j)

)λ)ωσ( j)
1/λ

+1−

1−

1−
n∏

j=1

(
1−

(
1− Fψσ( j)

)λ)ωσ( j)
1/λ

 ≤ 1
3

(
max

j

{
Tψ j

}
+ 1−min

j

{
Iψ j

}
+ 1−min

j

{
Fψ j

})

i.e., s(ψ−) ≤ s(GWSVNPSCA(ψ1,ψ2, . . . ,ψn)) ≤ s(ψ+).
Hence, we can obtain ψ− ≤ GWSVNPSCA(ψ1,ψ2, . . . ,ψn) ≤ ψ+. �
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Theorem 5 (Monotonicity). Let ψ j =
〈
Tψ j , Iψ j , Fψ j

〉
( j = 1, 2, . . . , n) and ψ j =〈

Tψ j
, Iψ j

, Fψ j

〉
( j = 1, 2, . . . , n) be two groups of SVNNs. If Tψ j ≥ Tψ j

, Iψ j ≤ Iψ j
and Fψ j ≤ Fψ j

for

all j = 1, 2, . . . , n, then

GWSVNPSCA(ψ1,ψ2, . . . ,ψn) ≥ GWSVNPSCA
(
ψ1,ψ2, . . . ,ψn

)
.

Proof. According to Theorem 4, Theorem 5 can be confirmed. Therefore, the process of treatment is
omitted here. �

Besides, GWSVNPSCA operator, which defined by combing the advantages of Shapley fuzzy
measure and PA aggregation operator, can reduce the effects of abnormal data and simultaneously
consider an interrelationship among data and criteria. It is more appropriate in aggregation data
because of different parameter.

3.2. Generalized Weighted Single-Valued Neutrosophic Power Shapley Choquet Geometric Operator

Definition 10. Let ψ j =
〈
Tψ j , Iψ j , Fψ j

〉
( j = 1, 2, . . . , n) be a group of SVNNs, and φ(u, X) be the Shapley

fuzzy measure. Then GWSVNPSCG operator of dimension n is a mapping GWSVNPSCG: SVNNn
→ SVNN ,

and

GWSVNPSCG(ψ1,ψ2, . . . ,ψn) =
1
λ


n
⊗

j=1

(
φs

Bσ( j)
(µ, X) −φs

Bσ( j+1)
(µ, X)

)(
1 + S

(
ψσ( j)

))
λψ

σ( j)

n∑
j=1

(
φs

Bσ( j)
(µ, X) −φs

Bσ( j+1)
(µ, X)

)(
1 + S

(
ψσ( j)

))
. (8)

whereλ > 0, (σ(1), σ(2), . . . , σ(n)) is a permutation of ( j = 1, 2, . . . , n) satisfyingψσ(1) ≤ ψσ(2) ≤ . . . ≤ ψσ(n),
Bσ( j) =

{
σ( j), σ( j + 1), . . . , σ(n)

}
and Bσ(n+1) = Φ,φBσ(n+1)

(u, X) = 0.

Theorem 6. Let ψ j =
〈
Tψ j , Iψ j , Fψ j

〉
( j = 1, 2, . . . , n) be a group of SVNNs, and φ(u, X) be the Shapley fuzzy

measure. Next, the aggregated results by utilizing GWSVNPSCG operator are also an SVNN, i.e.,

GWSVNPSCG(ψ1,ψ2, . . . ,ψn) =

〈
1−


1−

n∏
j=1

(
1−

(
1− Tψσ( j)

)λ)
(φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X))(1+S(ψσ( j)))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψσ( j)))



1/λ

,


1−

n∏
j=1

(
1− Iλψσ( j)

)
(φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X))(1+S(ψσ( j)))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψσ( j)))



1/λ

,


1−

n∏
j=1

(
1− Fλψσ( j)

)
(φs

Bσ( j)
(µ,X)−φs

Bσ( j+1)
(µ,X))(1+S(ψσ( j)))

n∑
j=1

(φs
Bσ( j)

(µ,X)−φs
Bσ( j+1)

(µ,X))(1+S(ψσ( j)))



1/λ

〉
.

(9)

Proof. The proof is omitted here. �
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Example 5. Based on Example 4 and Theorem 6, the following results can be obtained:

GWSVNPSCG(ψ1,ψ2) =

〈
1−

1− Tψ1

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))+(φs
ψ2

(µ,X)−0)(1+S(ψ2))

Tψ2

(φs
ψ2

(µ,X)−0)(1+S(ψ2))

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))+(φs
ψ2

(µ,X)−0)(1+S(ψ2))

,

1−
(
1− Iψ1

) (φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))+(φs
ψ2

(µ,X)−0)(1+S(ψ2))
(
1− Iψ2

) (φs
ψ2

(µ,X)−0)(1+S(ψ2))

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))+(φs
ψ2

(µ,X)−0)(1+S(ψ2))

,1−
(
1− Fψ1

) (φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))+(φs
ψ2

(µ,X)−0)(1+S(ψ2))
(
1− Fψ2

) (φs
ψ2

(µ,X)−0)(1+S(ψ2))

(φs
ψ1

(µ,X)−φs
ψ2

(µ,X))(1+S(ψ1))+(φs
ψ2

(µ,X)−0)(1+S(ψ2))


〉

=

〈
1−

(
1− 0.7

(0.65−0.35)(1+0.27)
(0.65−0.35)(1+0.27)+(0.35−0)(1+0.315) 0.8

(0.35−0)(1+0.315)
(0.65−0.35)(1+0.27)+(0.35−0)(1+0.315)

)
,(

1− (1− 0.1)
(0.65−0.35)(1+0.27)

(0.65−0.35)(1+0.27)+(0.35−0)(1+0.315) (1− 0.2)
(0.35−0)(1+0.315)

(0.65−0.35)(1+0.27)+(0.35−0)(1+0.315)

)
,(

1− (1− 0.3)
(0.65−0.35)(1+0.27)

(0.65−0.35)(1+0.27)+(0.35−0)(1+0.315) (1− 0.2)
(0.35−0)(1+0.315)

(0.65−0.35)(1+0.27)+(0.35−0)(1+0.315)

)〉
= 〈0.753, 0.1561, 0.247〉.

Similarly, GWSVNPSCG operator has the following properties.

Theorem 7 (Idempotency). Let ψ j =
〈
Tψ j , Iψ j , Fψ j

〉
( j = 1, 2, . . . , n) be a group of SVNNs. If ψ1 = ψ2 =

. . . = ψn = ψ =
〈
Tψ, Iψ, Fψ

〉
, then GWSVNPSCG(ψ1,ψ2, . . . ,ψn) = ψ.

Theorem 8 (Permutability). Let ψ j =
〈
Tψ j , Iψ j , Fψ j

〉
( j = 1, 2, . . . , n) be a group of SVNNs. If ψ j =(

Tψ j
, Iψ j

, Fψ j

)
( j = 1, 2, . . . , n) is any permutation of ψ j =

(
Tψ j , Iψ j , Fψ j

)
( j = 1, 2, . . . , n), then,

GWSVNPSCG
(
ψ1,ψ2, . . . ,ψn

)
= GWSVNPSCG(ψ1,ψ2, . . . ,ψn).

Theorem 9 (Boundedness). Let ψ j =
〈
Tψ j , Iψ j , Fψ j

〉
( j = 1, 2, . . . , n) be a group of SVNNs. If

ψ− =

〈
min

j

{
Tψ j

}
, max

j

{
Iψ j

}
, max

j

{
Fψ j

}〉
and ψ+ =

〈
max

j

{
Tψ j

}
, min

j

{
Iψ j

}
, min

j

{
Fψ j

}〉
, thus, ψ− ≤

GSVNPSCG(ψ1,ψ2, . . . ,ψn) ≤ ψ+.

Theorem 10 (Monotonicity). Let ψ j =
〈
Tψ j , Iψ j , Fψ j

〉
( j = 1, 2, . . . , n) and ψ j =〈

Tψ j
, Iψ j

, Fψ j

〉
( j = 1, 2, . . . , n) be two groups of SVNNs. If Tψ j ≥ Tψ j

, Iψ j ≤ Iψ j
and Fψ j ≤ Fψ j

for

all j = 1, 2, . . . , n, then

GWSVNPSCG(ψ1,ψ2, . . . ,ψn) ≥ GWSVNPSCG
(
ψ1,ψ2, . . . ,ψn

)
.

4. A Single-Valued Neutrosophic MCDM Approach with Incomplete Weight Information

Assume ψ =
{
ψ1,ψ2, . . . ,ψn

}
is a group of alternatives and C = {c1, c2, . . . , cm} includes

corresponding criteria. R =
(
ψi j

)
n×m

is the single-valued neutrosophic decision matrix, and ψi j =〈
Tψi j , Iψi j , Fψi j

〉
(i = 1, 2, . . . , n; j = 1, 2, . . . , m) can be provided by the DM with respect to ψi for criterion

c j being expressed by SVNNs. If the weight of criteria for the Shapley fuzzy measure would be known,
then the corresponding aggregation operators can be directly used to obtain the aggregated values;
otherwise, if it would be partly known or fully unknown, next, the weights of criteria should be initially
determined. The scheme of proposed method can be presented in Figure 1, and the procedure aiming
to determine the optimal alternative(s) is provided in the following.
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Phase 1. Construction and normalization of the decision matrix

In this phase, the criteria for each alternative are assessed by DMs. The decision-matrix can be
constructed accordingly. Moreover, the criteria always involves benefit type and cost type in MCDM
problems. If the criteria are benefit-based, then, there is no need to normalize the decision matrix;
otherwise, the cost-based criteria should be transformed into corresponding benefit-based criteria as:

ψi j =

 ψi j, for benefit criteria c j(
ψi j

)c
, for cos t criteria c j

, (i = 1, 2, . . . , n; j = 1, 2, . . . , m). (10)

where,
(
ψi j

)c
=

〈
Fi j, 1− Ii j, Ti j

〉
is the complement of ψi j.

Then, the normalized decision matrix R =
(
ψi j

)
n×m

can be obtained.

Phase 2. Determinations of the Shapley fuzzy measures

Step 2.1. Determination of ideal solutions

Let ψ
+

=
(
ψ
+

1 ,ψ
+

2 , . . . ,ψ
+

n

)
be positive ideal solution, and ψ

−

=
(
ψ
−

1 ,ψ
−

2 , . . . ,ψ
−

n

)
be negative

ideal solution, respectively. Here, ψ
+

j =
(
max

i
Ti j, min

i
Ii j, min

i
Fi j

)
and ψ

−

j =
(
min

i
Ti j, max

i
Ii j, max

i
Fi j

)
(i = 1, 2, . . . , n; j = 1, 2, . . . , m).

Step 2.2. Calculation of closeness coefficients

Based on the technique presented for order preference by similarity to ideal solution (TOPSIS)
method [51], the closeness coefficient of candidate from positive ideal solution can be calculated as
follows:

Di j
+
(
ψi j,ψ

+
)
=

di j

(
ψi j,ψ

+
)

di j

(
ψi j,ψ

+
)
+ di j

(
ψi j,ψ

−
) (i = 1, 2, . . . , n; j = 1, 2, . . . , m). (11)

where, di j

(
ψi j, ψ

+
)

can be obtained by using Equation (3).

Step 2.3. Determination of Shapley fuzzy measures

According to TOPSIS method [52], the smaller Di j
+
(
ψi j,ψ

+
)
, the better ψi j is. If the weight

information of criteria would be partly known, then, an optimal model based on the Shapley fuzzy
measure can be constructed as:
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min
n∑

j=1
Di j

+
(
ψi j,ψ

+
)
φc j(µ, C)

s.t.


µ(C) = 1
µ(E) ≤ µ(F), ∀E, F ∈ C and E ⊆ F
µ
(
C j

)
∈ G j, µ

(
C j

)
≥ 0, j = 1, 2, . . . , n

(12)

where, φc j(µ, C) denotes the integral weight of the criterion c j, and G j represents the weight information.
Next, fuzzy measure and corresponding the Shapley fuzzy measure can be obtained by solving

the mode (12).

Phase 3. Aggregation the preference information

Step 3.1. Determination of the supports

From Definition 9, we can achieve the supports Sup
(
ψi j,ψip

)
as:

Sup
(
ψi j,ψip

)
= 1− d

(
ψi j,ψip

)
, i = 1, 2, . . . , n; j, p = 1, 2, . . . , m; j , p. (13)

where, Sup
(
ψi j,ψip

)
represents the support for ψi j from ψip, satisfying the conditions provided in

Definition 9. Besides, d
(
ψi j,ψi j

)
can be calculated by using the distance presented in Definition 8.

Step 3.2. Determination the weighted supports

The weighted support S
(
ψi j

)
of ψi j from ψip(p = 1, 2, . . . , m and p , j) can be calculated using the

Shapley fuzzy measure of the criterion c j( j = 1, 2, . . . , m).

S
(
ψi j

)
=

m∑
p=1,p, j

(
φs

Bσ( j)
(µ, X) −φs

Bσ( j+1)
(µ, X)

)
Sup

(
ψi j,ψip

)
(p = 1, 2, . . . , m). (14)

Step 3.3. Determination of the weights

From Step 3.2, we can determine the weightsπi j( j = 1, 2, . . . , m) associated withψi j( j = 1, 2, . . . , m)

as:

πi j =

(
φs

Bσ( j)
(µ, X) −φs

Bσ( j+1)
(µ, X)

)(
1 + S

(
ψi j

))
m∑

j=1

(
φs

Bσ( j)
(µ, X) −φs

Bσ( j+1)
(µ, X)

)(
1 + S

(
ψi j

)) ( j = 1, 2, . . . , m). (15)

Here πi j ≥ 0( j = 1, 2, . . . , m) and
m∑

j=1
πi j = 1.

Step 3.4. Calculation of the global values

By using GWSVNPSCW operator, i.e., Equation (8), the global value αi(i = 1, 2, . . . , n) of candidate
ψi(i = 1, 2, . . . , n) can be obtained.

Step 3.5. Calculation of the values of score, accuracy, and certainty

Based on Definition 7, the values of score s(αi), accuracy a(αi), and certainty c(αi) of ψi (i =
1, 2, . . . , n) can be achieved.

Step 3.6. Ranking the alternatives

According to Step 3.5, all candidates ψi (i = 1, 2, . . . , n) can be ranked and the optimal one can
be selected.



Mathematics 2019, 7, 1081 15 of 27

5. Tourism Attraction Selection

In this section, a MCDM problem under single-valued environment is presented to illustrate the
efficacy of the proposed method by selecting an appropriate tourism attraction. With the widespread
popularity of the mobile Internet and the increasing demand of tourists regarding the quality of tourism
services, online tourism, mobile tourism, and other services have gradually risen. Personalized tourism
recommendations can provide tourism products for a user, reflecting his/her needs and preferences
and help him/her promptly make tourism decisions. In the personalized tourism recommendation
system, accurate and effective recommendations are provided mainly through four criteria related
to preference information, including constraints, tourism resource bank, user’s tourism demand,
and user’s preference for tourism products.

c1: Constraints are described as some objective conditions that affect the user’s decision making
about tourism, including the age or physical condition of user, the gender or income of user, and weather
conditions related to tourist attractions, carrying children and the elderly, etc.

c2: The tourist resource bank contains six aspects of the tourist products, including food, residence,
tourism, entertainment, and purchase. It also contains the data related to various kinds of tourism
products. The tourist resource bank is of great importance to analyze, produce, and make up the
recommended results. Generally speaking, tourist attractions’ recommendation can collect the names of
scenic spots and tickets, categories of scenic spots, grades, longitude and latitude directions, and so on.

c3: Tourism demand refers to the user’s demand for tourism products that they would like to
purchase, that is, a subjective condition, such as the user’s tourism days, hotel’s condition, etc.

c4: The user’s preference for tourism products can be obtained by analyzing the tourist’s historical
tourism data (such as the tourist photos uploaded by the user, the user’s comments or rating on
the tourism products), the pages on the tourism website, purchase or transaction records of tourism
products, etc.

According to the four criteria presented above, users should select the best tourist attraction
according to their own and actual situation of the tourist attractions. Apparently, four criteria
are correlated with each other. Suppose five tourist attractions (candidates) are taken into
consideration, which are represented by ψi(i = 1, 2, 3, 4, 5). During assessment, four criteria,
namely: c1: constraints; c2: the tourist resource bank; c3: tourism demand; c4: preferences
are considered. The corresponding weights of these four criteria are partly known, given as
H = {0.10 ≤ w1 ≤ 0.15, 0.10 ≤ w2 ≤ 0.20, 0.15 ≤ w3 ≤ 0.35, 0.20 ≤ w4 ≤ 0.45}. The evaluation of five
candidates ψi(i = 1, 2, 3, 4, 5) is performed using SVNNs by the DM based on criterion ck(k = 1, 2, 3, 4).
Then, the single-valued neutrosophic decision matrix R = (ψkl)5×4 is established and shown in Table 1.

Table 1. Decision-making matrix.

c1 c2 c3 c4

ψ1 (0.75,0.15,0.20) (0.68,0.13,0.25) (0.64,0.11,0.15) (0.65,0.09,0.18)
ψ2 (0.62,0.21,0.17) (0.75,0.10,0.23) (0.58,0.20,0.22) (0.82,0.10,0.09)
ψ3 (0.68,0.05,0.24) (0.71,0.20,0.17) (0.61,0.23,0.21) (0.74,0.2,0.05)
ψ4 (0.72,0.11,0.21) (0.79,0.10,0.23) (0.73,0.14,0.2) (0.67,0.13,0.10)
ψ5 (0.76,0.23,0.19) (0.65,0.16,0.22) (0.77,0.13,0.20) (0.71,0.06,0.22)

5.1. The Decision-Making Process

The decision-making process, by using the proposed method, is as follows.

Phase 1. Construction and normalization of the decision matrix

Since the assessment values are provided by DMs in form of SVNNs and the criteria are
benefit-based, as a result, the normalized decision matrix R = R =

(
ψi j

)
n×m

is obtained.
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Phase 2. Determination of Shapley fuzzy measures

Step 2.1. Determination of ideal solutions

From Table 1, we can achieve positive ideal solution ψ
+
=

(
ψ
+

1 ,ψ
+

2 , . . . ,ψ
+

n

)
and negative ideal

solution ψ
−

=
(
ψ
−

1 ,ψ
−

2 , . . . ,ψ
−

n

)
, as displayed in Table 2.

Table 2. Positive ideal solution and negative ideal solution.

¯
ψ

+ ¯
ψ
−

c1 (0.76,0.05,0.17) (0.62,0.23,0.24)
c2 (0.79,0.10,0.17) (0.65,0.10,0.17)
c3 (0.67,0.11,0.15) (0.58,0.23,0.22)
c4 (0.82,0.06,0.05) (0.64,0.20,0.22)

Step 2.2. Calculation of the closeness coefficient

Let λ = 2, the closeness coefficient of alternative from positive ideal solution can be determined
as given in Table 3.

Table 3. Closeness coefficient.

c1 c2 c3 c4

ψ1 0.3040 0.7055 0.5648 0.7342
ψ2 0.7996 0.3132 0.9207 0.1437
ψ3 0.4276 0.5658 0.8533 0.4606
ψ4 0.3197 0.1857 0.2473 0.6565
ψ5 0.4225 0.8359 0.1352 0.5942

Step 2.3. Determination of the Shapley fuzzy measures

Then the optimal Shapley fuzzy measure model on the basis of criteria can be constructed as:

min− 0.0914µ(c1) − 0.0359µ(c1, c2) − 0.0139µ(c1, c2, c3) − 0.0579µ(c1, c2, c4) − 0.0167µ(c1, c3)

−0.0195µ(c1, c3, c4) − 0.00387µ(c1, c4) + 0.0195µ(c2) + 0.0387µ(c2, c3) + 0.0914µ(c2, c3, c4)+

0.0167µ(c2, c4) + 0.0579µ(c3) + 0.0359µ(c3, c4) + 0.0139µ(c4) + 2.5475

s.t.



µ(c1, c2, c3, c4) = 1
µ(E) ≤ µ(F), ∀E, F ∈ C and E ⊆ F
0.1 ≤ µ(c1) ≤ 0.15
0.10 ≤ µ(c2) ≤ 0.2
0.15 ≤ µ(c3) ≤ 0.35
0.25 ≤ µ(c1) ≤ 0.45

With the help of MATLAB software, the mathematical programming model presented above can
be solved, and the fuzzy measure on the basis of the criteria is µ(c1) = µ(c2) = µ(c1, c2) = 0.1,

µ(c2, c3) = µ(c3, c4) = µ(c2, c3, c4) = µ(c1, c3, c4) = µ(c1, c2, c3) = µ(c1, c2, c3, c4) = 1,

µ(c4) = µ(c1, c4) = µ(c2, c4) = µ(c1, c2, c4) = 0.20, µ(c3) = µ(c1, c3) = 0.35.

Form Definition 1, the corresponding Shapley fuzzy measure can be calculated.

φs
{c1}

= 0.025,φs
{c2}

= 0.1333,φs
{c3}

= 0.6583,φs
{c4}

= 0.1833,φs
{c1,c2}

= 0.1417,φs
{c1,c3}

= 0.6667,
φs
{c1,c4}

= 0.1917,φs
{c2,c3}

= 0.8833,φs
{c2,c4}

= 0.4083,φs
{c3,c4}

= 0.9333,φs
{c1,c2,c3}

= 0.9000,
φs
{c1,c2,c4}

= 0.4250,φs
{c1,c3,c4}

= 0.9500,φs
{c2,c3,c4}

= 0.9500,φs
{c1,c2,c3,c4}

= 1.
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Phase 3. Aggregation of the preference information

Step 3.1. Determination of the supports

From Definition 9, we can achieve the supports Sup
(
ψi j,ψip

)
as follows:

Sup(ψ11,ψ12) = Sup(ψ12,ψ11) = 0.6485, Sup(ψ11,ψ13) = Sup(ψ13,ψ11) = 0.6316,
Sup(ψ11,ψ14) = Sup(ψ14,ψ11) = 0.6322, Sup(ψ12,ψ13) = Sup(ψ13,ψ12) = 0.6840,
Sup(ψ12,ψ14) = Sup(ψ14,ψ12) = 0.6854, Sup(ψ13,ψ14) = Sup(ψ14,ψ13) = 0.6794,
Sup(ψ21,ψ22) = Sup(ψ22,ψ21) = 0.6552, Sup(ψ21,ψ23) = Sup(ψ23,ψ21) = 0.7422,
Sup(ψ21,ψ24) = Sup(ψ24,ψ21) = 0.5870, Sup(ψ22,ψ23) = Sup(ψ23,ψ22) = 0.6502,
Sup(ψ22,ψ24) = Sup(ψ24,ψ22) = 0.5779, Sup(ψ23,ψ24) = Sup(ψ24,ψ23) = 0.5928,
Sup(ψ31,ψ32) = Sup(ψ32,ψ31) = 0.6808, Sup(ψ31,ψ33) = Sup(ψ33,ψ31) = 0.7053,
Sup(ψ31,ψ34) = Sup(ψ34,ψ31) = 0.6525, Sup(ψ32,ψ33) = Sup(ψ33,ψ32) = 0.6860,
Sup(ψ32,ψ34) = Sup(ψ34,ψ32) = 0.6445, Sup(ψ33,ψ34) = Sup(ψ34,ψ33) = 0.6581,
Sup(ψ41,ψ42) = Sup(ψ42,ψ41) = 0.6047, Sup(ψ41,ψ43) = Sup(ψ43,ψ41) = 0.6480,
Sup(ψ41,ψ44) = Sup(ψ44,ψ41) = 0.6470, Sup(ψ42,ψ43) = Sup(ψ43,ψ42) = 0.6147,
Sup(ψ42,ψ44) = Sup(ψ44,ψ42) = 0.6047, Sup(ψ43,ψ44) = Sup(ψ44,ψ43) = 0.6415,

Sup(ψ51,ψ52) = Sup(ψ52,ψ51) = 0.6564, Sup(ψ51,ψ53) = Sup(ψ53,ψ51) = 0.6460,
Sup(ψ51,ψ54) = Sup(ψ54,ψ51) = 0.6522, Sup(ψ52,ψ53) = Sup(ψ53,ψ52) = 0.6284,
Sup(ψ52,ψ54) = Sup(ψ54,ψ52) = 0.6665, Sup(ψ53,ψ54) = Sup(ψ54,ψ53) = 0.6203.

Step 3.2. Determination of the weighted supports

The weighted support of each assessment value could be obtained, as shown in Table 4.

Table 4. Weighted supports.

c1 c2 c3 c4

ψ1 0.6168 0.2604 0.6917 0.7351
ψ2 0.5908 0.4907 0.8300 0.3231
ψ3 0.5727 0.7460 0.7015 0.3391
ψ4 0.5672 0.4969 0.8333 0.3664
ψ5 0.2288 0.4747 0.8603 0.6942

Step 3.3. Determination of the weights

Next, the weights πi j associated with the ψi j on the basis of the criterion c j could be achieved,
as presented in Table 5.

Table 5. Weights.

c1 c2 c3 c4

ψ1 0.0215 0.7062 0.2323 0.0400
ψ2 0.1623 0.2126 0.0128 0.6122
ψ3 0.1695 0.0069 0.1994 0.6242
ψ4 0.1218 0.2629 0.0130 0.6023
ψ5 0.7043 0.2452 0.0118 0.0388

Step 3.4. Calculation of the global values

By using GWSVNPSCW operator and λ = 2, the global assessment value αi(i = 1, 2, . . . , n) of
candidate ψi(i = 1, 2, . . . , n) can be obtained as:
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α1 = GSVNPSCOA(ψ11,ψ12,ψ13,ψ14) =

〈1−
4∏

j=1

(
1− T2

ψ1σ( j)

)π1 j
1/2

,

1−

1−
4∏

j=1

(
1−

(
1− Iψ1σ( j)

)λ)π1 j
1/2

,

1−

1−
4∏

j=1

(
1−

(
1− Fψ1σ( j)

)λ)π1 j
1/2〉

=
〈(

1−
(
1− T2

11

)π11
(
1− T2

13

)π13
(
1− T2

14

)π14
(
1− T2

12

)π12
)1/2

,

1−
(
1−

(
1− (1− I11)

2
)π11

(
1− (1− I13)

2
)π13

(
1− (1− I14)

2
)π14

(
1− (1− I12)

2
)π12

)1/2
,

1−
(
1−

(
1− (1− F11)

2
)π11

(
1− (1− F13)

2
)π13

(
1− (1− F14)

2
)π14

(
1− (1− F12)

2
)π12

)1/2
〉

= 〈0.6719, 0.1236, 0.2173〉.

α2 = 〈0.7814, 0.1134, 0.1224〉; α3 = 〈0.7088, 0.1608, 0.0862〉; α4 = 〈0.7147, 0.1189, 0.1365〉;

α5 = 〈0.7357, 0.1975, 0.1981〉.

Step 3.5. Calculation of the values of score, accuracy, and certainty

According to Definition 7, the values of score s(αi)(i = 1, 2, 3, 4, 5) can be calculated as follows:

s(α1) = 0.7770; s(α2) = 0.8485; s(α3) = 0.8206; s(α4) = 0.8198; s(α5) = 0.7800.

Since the values of score are different, thus there is no need to calculate the values of accuracy
and certainty.

Step 3.6. Ranking the candidates

Apparently, s(α2) > s(α3) > s(α4) > s(α5) > s(α1), thus, we have ψ2 � ψ3 � ψ4 � ψ5 � ψ1. The
optimal attraction is ψ2 while the worst one is ψ1.

If the GWSVNPSCG operator is used in Step 3.4 to aggregate the preference information of each
candidates, then, the final ranking is ψ2 � ψ3 � ψ4 � ψ5 � ψ1. The best attraction is ψ2 as well.

5.2. Sensitivity Analysis

In order to discuss the influence of different values γ and λ on the final ranking, sensitivity
analysis is carried out. If GWSVNPSCW and GWSVNPSCG operators are used respectively in the Step
3.4 and γ,λ ∈ (0, 10], then the results of the two cases are shown in Tables 6 and 7 and Figures 2–6.

For GWSVNPSCW operator, if γ = λ = 1, 2, 10, accordingly, the final ranking is ψ2 � ψ3 � ψ4 �

ψ5 � ψ1; however, if γ = λ = 4, 6, 8, the final ranking is ψ2 � ψ4 � ψ3 � ψ5 � ψ1, as shown in Table 6.
Although the position of ψ3 and ψ4 is different as two parameters changes, the optimal attraction is
always ψ2, while the worst one is ψ1. Moreover, from the score values presented in Table 6, it can be
seen that the difference between the first position and the second position is greater as two parameters
change, demonstrating the rationality of the alternative ψ2 as an optimal scheme. For GWSVNPSCG
operator, if γ = λ = 1, 2, therefore, the final ranking is ψ2 � ψ4 � ψ3 � ψ1 � ψ5; if γ = λ = 4, 6, as a
result, the final ranking is ψ2 � ψ4 � ψ5 � ψ1 � ψ3; however, if γ = λ = 8, 10, thus, the final ranking
is ψ2 � ψ4 � ψ1 � ψ5 � ψ3, as shown in Table 7. Although the position of ψ1,ψ3, and ψ5 is different,
the optimal attraction is ψ2. Besides, in order to further understand the influence of parameters on final
rankings, the trend of score values of five candidates are presented with two parameters in the range
of (0, 1] by using GWSVNPSCW and GWSVNPSCG operators, as shown in Figures 1–5. It can be seen
that the fluctuation tendency of score values, as displayed in Figure 3, indicates that the candidate ψ2

is always the best one.
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Table 6. Score values by using GWSVNPSCW operator.

Parameter ψ1 ψ2 ψ3 ψ4 ψ5 Final Rankings

γ = λ = 1 0.7769 0.8360 0.8351 0.8217 0.7808 ψ2 � ψ3 � ψ4 � ψ5 � ψ1
γ = λ = 2 0.7770 0.8485 0.8206 0.8198 0.7800 ψ2 � ψ3 � ψ4 � ψ5 � ψ1
γ = λ = 4 0.7818 0.8547 0.8093 0.8135 0.8045 ψ2 � ψ4 � ψ3 � ψ5 � ψ1
γ = λ = 6 0.7825 0.8561 0.8120 0.8144 0.8062 ψ2 � ψ4 � ψ3 � ψ5 � ψ1
γ = λ = 8 0.7832 0.8574 0.8148 0.8153 0.8080 ψ2 � ψ4 � ψ3 � ψ5 � ψ1
γ = λ = 10 0.7839 0.8587 0.8176 0.8163 0.8096 ψ2 � ψ3 � ψ4 � ψ5 � ψ1

Table 7. Score values by using GWSVNPSCG operator.

Parameter ψ1 ψ2 ψ3 ψ4 ψ5 Final Rankings

γ = λ = 1 0.7778 0.8219 0.8126 0.8137 0.7720 ψ2 � ψ4 � ψ3 � ψ1 � ψ5
γ = λ = 2 0.7728 0.8284 0.7876 0.8072 0.7727 ψ2 � ψ4 � ψ3 � ψ1 � ψ5
γ = λ = 4 0.7743 0.8205 0.7661 0.7981 0.7763 ψ2 � ψ4 � ψ5 � ψ1 � ψ3
γ = λ = 6 0.7717 0.8044 0.7572 0.7935 0.7718 ψ2 � ψ4 � ψ5 � ψ1 � ψ3
γ = λ = 8 0.7696 0.7906 0.7510 0.7904 0.7687 ψ2 � ψ4 � ψ1 � ψ5 � ψ3
γ = λ = 10 0.7679 0.7882 0.7464 0.7798 0.7662 ψ2 � ψ4 � ψ1 � ψ5 � ψ3
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Figure 3. Score values of ψ2 with γ,λ ∈ (0, 10] by using two proposed operators.
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Figure 4. Score values of ψ3 with γ,λ ∈ (0, 10] by using two proposed operators.

5.3. Comparative Analysis

In order to examine the effectiveness of the developed method, results achieved by using
GWSVNPSCA operator are compared to a number of existing methods based on aggregation operators
[16,31,35,36,39,52]. Since the majority of available methods cannot truly resolve situations where the
weight information is partly known, the weight is determined as w = (0.15, 0.20, 0.30, 0.35)T for the
comparative analysis.

For the proposed method, the determined weights could be utilized to aggregate preference
information in Phase 3 and γ = 2, For the method based on prioritized operator [39], we assume that the
prioritization of the criteria satisfies c1 � c2 � c3 � c4. For the methods based on Bonferroni mean [31],
Frank operator [36], and Hamacher operator [52], the corresponding parameters are determined as
p = q = 1 and γ = 2, respectively. Then, the results could be obtained as shown in Figure 7.
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According to the results presented in Figure 7, we can conclude the following achievements.
Firstly, the final ranking by using the developed method is the same as those previously presented
methods [31], and the final order isψ2 � ψ4 � ψ3 � ψ5 � ψ1. Moreover, the developed method includes
PA operator that can highly reduce the effects of abnormal assessment values. Secondly, although the
positions of ψ3, ψ5 and ψ1 based on the proposed method are different from other previously reported
methods [35,36,39,52]. the optimal alternative is always ψ2, Finally, the result based on algebraic
operator [16] is ψ4 � ψ2 � ψ5 � ψ3 � ψ1, which is not consistent with other methods. The main
reason for this discrepancy is that the rules of corresponding operation are unreasonable as previously
discussed [35].

5.4. Managerial Implications

In this study, an MCDM method based on the single-valued neutrosophic aggregation operators
is proposed to handle tourism attraction selection problems. Moreover, this study investigates a
sensitivity analysis and comparison analysis to prove the validity of the developed method. The results
indicated that ψ2 is the optimal one. The management implications of the developed method can
be concluded in the following. First, the evaluation criteria of tourism attraction selection consist of
constraints, tourism resource bank, user’s tourism demand, and user’s preference for tourism products,
which can meet the requirements of personalized tourism recommendation. Second, DMs can express
their preference information from three perspectives, i.e., truth, indeterminacy, and falsity, which can
precisely describe the uncertain information. Third, the proposed aggregation operators consider the
interrelationship among criteria, which can make the final results more in accordance with the actual
situation. For example, the constraints c1, tourism demand c3, and tourism preference c4 are correlated
with each other in the real decision-making environment. If the correlation cannot be considered in the
decision-making process, then the accuracy of recommendations will be attenuated to some extent.
Last, it is difficult for DMs to provide the weight information of criteria in the form of crisp values
directly. Thus, the proposed method with incompletely weight information has important theoretical
significance for managers to improve the accuracy of recommendations.

6. Conclusions

In this study, a single-valued neutrosophic MCDM problem with interdependent characteristics
is investigated. Firstly, according to the power aggregation operator and Shapley fuzzy measure,
the GWSVNPSCA and GWSVNPSCG operators are accordingly defined, and the corresponding special
cases are discussed as well. Secondly, based on the developed aggregation operators, an integrated
MCDM approach is proposed to effectively solve single-valued neutrosophic problems where the
weights of the criteria were incompletely known. A mathematical programming model based on fuzzy
measure is established to obtain the optimal Shapley fuzzy measure. Then, the developed operators are
used to aggregate the preference information. Eventually, a theoretical example is presented to testify
the effectiveness of the developed approach, in which it is revealed that the results are reasonable and
credible. The main advantages of this research can be concluded in two aspects. On the one hand,
the developed aggregation operators can take the interrelationship among criteria into account and
also simultaneously reduce the effects of abnormal assessment values. On the other hand, the proposed
MCDM methods can solve single-valued neutrosophic problems where the weight information is
incompletely known or completely known. The limitation of this paper is that it cannot consider the
multiple DMs in the decision-making process. In the future, the other fuzzy measures of SVNNs and
their corresponding group decision-making methods should be further investigated.
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