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Abstract: This study deals with the numerical solution of the non-linear differential equations (DEs)
arising in the study of hydrodynamics and hydro-magnetic stability problems using a new cubic
B-spline scheme (CBS). The main idea is that we have modified the boundary value problems (BVPs)
to produce a new system of linear equations. The algorithm developed here is not only for the
approximation solutions of the 10th order BVPs but also estimate from 1st derivative to 10th derivative
of the exact solution as well. Some examples are illustrated to show the feasibility and competence of
the proposed scheme.
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1. Introduction

Recent research in the field of hydrodynamic and hydromagnetics stability have found the
presence of a family of problems in differential equations (DEs) of a high order, and which have real
mathematical interest. There are various approximate (numerical) methods in the literature that have
been used for the solution of boundary value problems (BVPs). The existence and uniqueness to
finding the solution of higher order BVPs are systematically examined in [1]. The BVPs of higher
order DEs have been examined due to their significance and the potential for applications in applied
sciences. To find the analytical solutions of such BVPs analytically is very tough and are available in
very few cases. Very few researchers have tried the numerical solution of 10th order BVPs. Some of the
approximate techniques have been established over the years to the numerical solution for these kinds
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of BVPs. In [2,3], the authors has solved 10th and 12th order BVPs using the Adomian decomposition
method (ADM) involving Green’s function. The homotopy perturbation approach was utilized in [4]
to solve BVPs of 10th order. When a uniform magnetic field is applied across the fluid in the direction
of gravity, the instability sets now as ordinary convection and it is modeled by 10th order BVPs as
discussed in [5]. In [6], established approximate techniques for solving the 10th order non-linear BVPs
occurring in thermal instability.

Numerical methods for the solution of non-linear BVPs of order 2 m were found in [7]. An effective
numerical procedure DTM for solving some linear and non-linear BVPs of 10th order is discussed in [8].
In [9,10], the BVPs of 9th and 10th order are considered by adopting homotopy perturbation technique
and the modified-variational iteration technique. Also the variational iterative technique was adopted
in [11] for solving the 10th order BVPs. Wazwaz [12–15] proposed modified form of ADM for solving
6th, 8th, 10th and 12th order.

The study of non-polynomial spline [16] of 11th degree is a key element to solve 10th order
BVPs. In [17], it is depicted that the DEs that describe the 10th order model to incorporate a 3rd order
model of enlistment machine, two equations for dynamic power control, two equations for receptive
power control, and three equations for edge pitch control. A 10th order nonlinear dynamic model
was developed in [18] to turn mobile robots that incorporate slip between the driven wheels and the
ground. Based on binary six-point and eight-point approximating subdivision scheme, two collocation
algorithms are constructed by [19,20] to find the solution of BVPs. The 4th order linear BVPs using a
new cubic B-spline were solved in [21]. Authors explained the 10th and 12th order BVPs by using the
Galerkin weighted residual technique in [22]. The 5th, 6th and 8th order linear and non-linear BVPs
by using the cubic B-spline scheme (CBS) method were solved in [23–25]. The higher (10th and 11th)
degree splines were tested in [26,27] for solving 10th order BVPs. In [28] they practiced 2nd order finite
difference schemes for the mathematical solutions of the 8th, 10th and 12th order Eigen-value problems.
Galerkin method with septic B-spline and quintic B-spline was adopted in [29,30] for solving 10th

order BVPs. Quintic B-spline and septic-B spline collocation methods was discussed in [31,32] to find
solution of a 10th order BVPs.

For discrete methods, e.g., Adomian decomposition, shooting, homotopy perturbation, finite
differences and variational-iterative technique, only give discrete approximate values of the unknown
y(x). For fitting curve to data we require further data processing methods. To overcome these
disadvantages, we introduced a new CBS scheme for the solution of 10th order BVPs. The algorithm
developed here is not only for the approximation solutions of the 10th order boundary value
problems(BVPs) employing CBS but also estimate derivatives of 1st order to 10th order (where
boundary conditions (BCs) are defined) of the exact solution as well.

The rest of the paper is organized as follows. The construction of CBS is presented in Section 2.
In Section 3, the CBS scheme is utilized as an interpolating function in the solution of 10th order
nonlinear BVPs. The results and discussion are presented in Section 4. Also some problems are
considered in this section to show the efficiency of the CBS scheme. Finally, the concluding remarks
are given in the final section.

2. The Construction of CBS

In this section, we construct the CBS basis functions for solving numerically the non-linear
equations arising in the study of hydrodynamics and hydro-magnetic stability problems. To find the
approximate solution at nodal points defined in the region [a, b]. For an interval Ω = [a, b], we divide
it into n sub-intervals Ωi = [κi, κi+1]; i = 0, 1, 2, ...,n− 1, by the equidistant knots. For this range, we
select equidistant points such that

Ωı = κı = a + ıh, (1)

such that
Ω = {a = κ0, ..., κn = b}, (2)
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i.e., κı = a + ıh, (ı = 0, ...,n) and h = b−a
n .

Assume S3(Ω) = {p(t) ∈ C2[a, b]} such that p(t) converted to to cubic-polynomial on
separately sub interval(κı, κı+1). The basis function is defined as

Mı(κ) =
1

6h3



(κ − κı−2)
3, if κ ∈ [κı−2, κı−1],

h3 + 3h2(κ − κı−1) + 3h(κ − κı−1)
2 − 3

(κ − κı−1)
3, if κ ∈ [κı−1, κı],

h3 + 3h2(κı+1 − κ) + 3h(κı+1 − κ)2 − 3
(κı+1 − κ)3, if κ ∈ [κı, κı+1],

(κı+2 − κ)3, if κ ∈ [κı+1, κı+2],

0, otherwise,

for (ı = 2, 3, 4, ..., n− 2). Considering one and all Mı(κ) is also a piece-wise cubic with knots at Ω ,
simultaneously Mı(κ) ∈ S3(Ω).

Assume Ψ = {Mı}; (ı = −1, 0, 1, 2 . . . n, n + 1) be linearly independent and let M3(Ω) = spanΨ.
Thus M3(Ω) is (n + 3) dimensional and M3(Ω) = S3(Ω). Let s(κ) be the cubic-B spline function
interpolating at the nodal points and s(κ) ∈ S3(Ω). Then s(κ) can be written as

s(κ) =
n+1

∑
ı=−1

ı Mı(κ).

Consequently now for a function w(κ), there happened to be a distinctive cubic-B spline
s(κ) = ∑n+1

ı=−1 ı Mı(κ), satisfying the interpolating conditions:

w(κı) = s(κı) =
ı−1 + 4ı + ı+1

6
, (3)

for ı = 0, . . . , n.
The values of Mı(κ), and its derivatives Mı

(1)(κ), Mı
(2)(κ) at nodal points are required and these

derivatives are tabulated in Table 1.

Table 1. Values of Mı(κ) and its derivatives.

Mı (κ) Mı
(1) (κ) Mı

(2) (κ)

κı−2, κı+2 0 0 0
κı−1 1/6 1/2h 1/h2

κı 4/6 0 −2/h2

κı+1 1/6 −1/2h 1/h2

otherwise 0 0 0

Assume mı = s(1)(κı) and ℵı = s(2)(κı) then from

mı = s(1)(κı) = w(1)(κı)−
1

180
h4w(5)(κı) + O(h6) (4)

w(1)(κ) = s(1)(κı) =
ı+1 − ı−1

2h
(5)

ℵı = s(2)(κı) = w(2)(κı)−
1
12

h2w(4)(κı) +
1

360
h4w(6)(κı) + O(h6) (6)
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w(2)(κ) = s(2)(κı) =
ı+1 − 2ı + ı−1

h2 , (7)

ℵı may be used to determine numerical-difference formulas for w(3)(κı), w(4)(κı) such that (ı = 1 to n−
1), for w(5)(κı), w(6)(κı) such that (ı = 2 to n− 2), for w(7)(κı), w(8)(κı) such that (ı = 3 to n− 3) and
w(9)(κı), w(10)(κı) such that (ı = 4 to n− 4) like so the errors can be obtained by using Taylor-series

ℵı+1 −ℵı−1
2h = s(3)(κı−)+s(3)(κı+)

2 = w(3)(κı) +
1

12 h2w(5)(κı) + O(h4);
w(3)(κ) = s(3)(κı) =

ı+2−2ı+1+2ı−1−ı−2
2h3 ,

ℵı+1−2ℵı+ℵı−1
h2 = s(3)(κı−)−s(3)(κı+)

h = w(4)(κı)− 1
720 h4w(8)(κı) + O(h6);

w(4)(κ) = s(4)(κı) =
ı+2−4ı+1+6ı−4ı−1+ı−2

h4 ,
ℵı+2−2ℵı+1+2ℵı−1−ℵı−2

2h3 = w(5)(κı) + O(h2);
w(5)(κ) = s(5)(κı) =

ı+3−4ı+2+5ı+1+5ı−1+4ı−2−ı−3
2h5 .

(8)

Similarly (see [31]),
w(6) (κı) = s(6) (κı) = ı+3−6ı+2+15ı+1−20ı+15ı−1−6ı−2+ı−3

h6 ,

w(7) (κı)=s(7) (κı)=
ı+4−6ı+3+14ı+2−14ı+1+14ı−1−14ı−2+6ı−3−ı−4

2h7 ,
w(8)(κı) = s(8)(κı) =

1
h8 (ı+4 − 8ı+3 + 28ı+2 − 56ı+1 + 70ı − 56ı−1 + 28ı−2 − 8ı−3 + ı−4),

w(9) (κı)=s(9) (κı)=
1

2h9 (ı+5−8ı+4+27ı+3−48ı+2+42ı+1−42ı−1+48ı−2−27ı−3+8 ı−4−ı−5).

(9)

3. The 10th Order Nonlinear BVPs

In this section, we consider the 10th order nonlinear BVPs arising in the study of hydrodynamics
stability and visco-elastic flows.

w(10)(κ) = f (κ, w(κ), w(1)(κ), w(2)(κ), w(3)(κ), w(4)(κ), w(5)(κ), w(6)(κ), w(7)(κ),

w(8)(κ), w(9)(κ)), κ ∈ [a, b],
(10)

with BCs
w(a) = λ0, w(1)(a) = λ1, w(2)(a) = λ2,

w(3)(a) = λ3, w(4)(a) = λ4, w(b) = χ0,

w(1)(b) = χ1, w(2)(b) = χ2, w(3)(b) = χ3,

w(4)(b) = χ4,

(11)

where λ0, λ1, λ2, λ3, λ4 and χ0, χ1, χ2, χ3, χ4 are given real constants, (aı(κ); ı = 1, 2, ..., 10) and f
is continuous in interval [a, b].
The Taylor, series for w(10)(κı) at the preferred collocation points alongside central difference (see [31]),
we have

w(10)(κı)=
1
h6

(
wı+3

(4)(κı)−6wı+2
(4)(κı)+15wı+1

(4)(κı)−20wı
(4)(κı)+15

wı−1
(4)(κı)−6wı−2

(4)(κı)+wı−3
(4)(κı)

)
.

(12)

Equation (9) can be written as
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ℵı−2 − 2ℵı−3+ℵı−4

h2 = w(4)(κı−3)−
1

720
h4w(8)(κı−3) + O(h6),

ℵı−1 − 2ℵı−2+ℵı−3

h2 = w(4)(κı−2)−
1

720
h4w(8)(κı−2) + O(h6),

ℵı − 2ℵı−1+ℵı−2

h2 = w(4)(κı−1)−
1

720
h4w(8)(κı−1) + O(h6),

ℵı+2 − 2ℵı+1+ℵı

h2 = w(4)(κı+1)−
1

720
h4w(8)(κı+1) + O(h6),

ℵı+3 − 2ℵı+2+ℵı+1

h2 = w(4)(κı+2)−
1

720
h4w(8)(κı+2) + O(h6),

ℵı+4 − 2ℵı+3+ℵı+2

h2 = w(4)(κı+3)−
1

720
h4w(8)(κı+3) + O(h6).

(13)

Substituting Equation (13) into Equation (12), we obtain

1
h8 (ℵı+4−8ℵı+3+28ℵı+2 − 56ℵı+1 +70ℵı−56ℵı−1+ 28ℵı−2−8ℵı−3 +ℵı−4)

=w(10)(κı)+O(h2).
(14)

Since ℵı =
ı+1−2ı+ı−1

h2 so, Equation (14) becomes

w(10)(κı)=
1
h8

( ı+5−2ı+4+ı+3
h2 −8(

ı+4−2ı+3+ı+2
h2 )+28(

ı+3−2ı+2+ı+1
h2 )− 56(

ı+2−2ı+1+ı
h2 )

+70(
ı+1−2ı+ı−1

h2 )− 56(
ı−2ı−1+ı−2

h2 )+ 28(
ı−1−2ı−2+ı−3

h2 )− 8(
ı−2−2ı−3+ı−4

h2 )+

ı−3−2ı−4+ı−5
h2

)
.

(15)

After some simplifications the above equation becomes

w(10) (κı)=s(10) (κı)=
1

h10

(
ı+5−10ı+4+45ı+3−120ı+2+210ı+1−252ı

+210ı−1−120ı−2+45ı−3−10 ı−4+ı−5

)
.

(16)

Let w(κı) = s(κı) = ∑n+1
ı=−1 ı Mı(κı) be the accurate solution of non-linear 10th order BVPs

w(10)(κı) = f (κı, w(κı), w(1)(κı), w(2)(κı), w(3)(κı), w(4)(κı),

w(5)(κı), w(6)(κı), w(7)(κı), w(8)(κı), w(9)(κı)), κı ∈ [a, b].
(17)

Imposing Equations (3), (5), (7), (8) and (9) into Equation (17), we have

1
h10 (ı+5−10ı+4+45ı+3−120ı+2+210ı+1−252ı+210ı−1−120ı−2+45ı−3

−10 ı−4+ı−5) = fı

(
κı,

1
6
(ı−1 + 4ı + ı+1),

1
2h

(ı+1 − ı−1),
1
h2 (ı+1 − 2ı + ı−1),

1
2h3 (ı+2 − 2ı+1 + 2ı−1 − ı−2),

1
h4 (ı+2 − 4ı+1 + 6ı − 4ı−1 + ı−2),

1
2h5 (ı+3

−4ı+2 + 5ı+1 + 5ı−1 + 4ı−2 − ı−3),
1
h6 (ı+3 − 6ı+2 + 15ı+1 − 20ı + 15ı−1

−6ı−2 + ı−3),
1

2h7 (ı+4 − 6ı+3 + 14ı+2 − 14ı+1 + 14ı−1 − 14ı−2 + 6ı−3 − ı−4),

1
h8 (ı+4−8ı+3+28ı+2−56ı+1+70ı−56ı−1+28ı−2−8ı−3+ı−4),

1
2h9 (ı+5−8ı+4

+27ı+3−48ı+2+42ı+1−42ı−1+48ı−2−27ı−3+8 ı−4−ı−5)
)

, κ ∈ [a, b].

(18)
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Equation (18) we will produce a new system consisting of (n − 7) linear equations
(ı = 4, 5, ..., n− 4) with (n+ 3) unknowns ı where (ı = −1, 0, ..., n + 1), therefore ten further equations
are required. From given BCs at κ = a, we have five equations:

w(a) = λ0 ⇒ −1 + 40 + 1 = 6λ0

w(1)(a) = λ1 ⇒ − −1 + 1 = 2λ1h

w(2)(a) = λ2 ⇒ −1 − 20 + 1 = λ2h2

w(3)(a) = λ3 ⇒ 2 − 21 + 2−1 − −2 = 2λ3h3

w(4)(a) = λ4 ⇒ 2 − 41 + 60 − 4−1 + −2 = λ4h4,

(19)

similarly from κ = b there will be other five equations

w(b) = χ0 ⇒ n−1 + 4n + n+1 = 6χ0

w(1)(b) = χ1 ⇒ − n−1 + n+1 = 2χ1h

w(2)(b) = χ2 ⇒ n−1 − 2n + n+1 = χ2h2

w(3)(b) = χ3 ⇒ n+2 − 2n+1 + 2n−1 − n−2 = 2χ 3h3

w(4)(b) = χ4 ⇒ n+2 − 4n+1 + 6n − 4n−1 + n−2 = χ 4h4.

(20)

Omitting the order of the error of terms, the exact solution w(κı) = s(κı) = ∑n+1
ı=−1 ı Mı(κı) is

accomplished by finding solution of the discussed above linear system of (n + 3) equations in (n + 3)
unknowns considering the Equations (18)–(20).

4. Convergence Analysis

Let ŵ(κ) be the exact solution of the Equations (10)–(12) and also ŝ(κ) be the CBS approximation
to ŵ(κ). Therefore, we have

ŵ(κı) = ŝ(κı) =
n+1

∑
ı=−1

̂ı Mı(κı), (21)

where

̂ = ̂imath =
[

̂−1, ̂0, ̂1, ..., ̂n+1

]T
.

Also, we have assume that s′(κ) be the computed cubic B spline approximation to ŝ(κ), namely

w′(κı) = s′(κı) =
n+1

∑
i=−1

′i Mı(κı),

′ = ′ i =
[

′−1, ′0, ′1, ..., ′n+1

]T
.

To approximate the error ‖ŵ(κı))− ŝ(κı))‖∞ we have to estimate error ‖ŵ(κı))− s′(κı))‖∞ and
‖w′(κı))− ŝ(κı))‖∞ seperately

The system of (n + 3)× (n + 3) matrix can be written as:

B = G.

Then, we have
B ̂ = Ĝ (22)

and
B′ = G′. (23)
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Now, by subtracting Equations (22) and (23), we obtain

B(′ − ̂) = G′ − Ĝ,

where B is an (n + 3)× (n + 3)-dimensional band matrix,
and

G =
[

G−1, G0, G1, ..., Gn+1

]T
,

where T denoting transpose.
We can write

(′ − ̂) = B−1(G′ − Ĝ). (24)

Taking the infinity norm from Equation (24), we obtain

‖(′ − ̂)‖∞ = ‖B−1‖∞‖G′ − Ĝ‖∞.

The B-spline M = Mı = {M−1, M0, M1, ..., Mn+1} satisfy the following property

∣∣∣ n+1

∑
i=−1

′i Mı(κı)
∣∣∣ ≤ 1.

Using [24]
‖B−1‖∞‖G′ − Ĝ‖∞ ≤ [h2.

‖(′ − ̂)‖∞ ≤ [h2. (25)

s′(κı))− ŝ(κı) = (′ − ̂)
n+1

∑
i=−1

Mı(κı).

‖s′(κı)− ŝ(κı)‖∞ = ‖(′ − ̂)
n+1

∑
i=−1

Mı(κı)‖∞.

‖s′(κı)− ŝ(κı)‖∞ ≤ ‖(′ − ̂)‖∞|
n+1

∑
i=−1

Mı(κı)| ≤ [h2. (26)

‖ŵ(κı)− s′(κı)‖∞ ≤ ρh4. (27)

‖ŵ(κı)− ŝ(κı)‖∞ ≤ ‖ŵ(κı)− s′(κı)‖∞ + ‖s′(κı)− ŝ(κı)‖∞. (28)

Using Equations (26) and (27) in Equation (28)

‖ŵ(κı)− ŝ(κı)‖∞ ≤ [h2 + ρh4 = `h2.

which proves that this method is second order convergent and ‖ŵ(κ)− ŝ(κ)‖∞ ≤ `h2.

5. Results and Discussions

To test the accuracy of CBS method, three problems are discussed and compared with the existing
methods in this section.

5.1. Problem 1

We consider the following DEs arising in viscoelastic flows and hydrodynamic stability problems
as given in [29,31]

w(10)(κ) =
14175

4
( + w(κ) + 1)11; 0 ≤ κ ≤ 1;
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subject to BCs;

w (0) = w (1) = 0, w(1) (0) = −1
2
= −w(2) (0) , w(1) (1) = 1,

w(2) (1) = 4, w(3) (0) =
3
4

, w(3) (1) = 12, w(4) (0) =
3
2

, w(4) (1) = 48.

the exact solution of given equation is w (κ) = 2
2−κ − κ− 1. The values of fifteen unknowns i from the

Equations (18)–(20) are

−2 = 0.10849167, 3 = −0.12456626, 8 = −0.13626667,
−1 = 0.05166667, 4 = −0.15061957, 9 = -0.08666667,
0 = −0.00083333, 5 = −0.16684713, 10 = −0.0066667,
1 = −0.04833333, 6 = −0.17169449, 11 = 0.11333333,
2 = −0.09000833, 7 = −0.16277005, 12 = 0.28773333.

Tables 2 and 3 analyzed the exact solution and cubic B-spline scheme (CBS) solution of problem 1
at h = 1

10 and h = 1
5 respectively. Figures 1–3 analyze the exact solution with cubic B-spline scheme

(CBS) solution of problem 1 at h = 1
10 and h = 1

5 graphically. Table 4 analyze the errors at those
derivatives where boundary conditions (BCs) are defined in problem 1 at h = 1

10 .

Figure 1. Problem 1 at h = 1
10 .
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Table 2. Analyzing exact solution and cubic B-spline scheme (CBS) solution of problem 1 at h = 1
10 .

κ Exact Solution CBS Solution Absolute Error

0 0 0 0× 100

0.1 −0.0473684 −0.0473665 1.900× 10−06

0.2 −0.0888889 −0.0888822 6.670× 10−05

0.3 −0.1235294 −0.1235488 3.810× 10−05

0.4 −0.1500000 −0.1509819 1.020× 10−04

0.5 −0.1666667 −0.1669504 1.720× 10−04

0.6 −0.1714286 −0.1714992 2.030× 10−05

0.7 −0.1615385 −0.1615302 1.700× 10−06

0.8 −0.1333333 −0.1333172 9.160× 10−05

0.9 −0.0818182 −0.0818000 2.180× 10−05

1 0 0 0× 100

Table 3. Analyzing exact solution and CBS solution of problem 1 at h = 1
5 .

κ Exact Solution CBS Solution Absolute Error of CBS

0 0 0 0× 100

0.2 −0.0888889 −0.0888000 8.890× 10−05

0.4 −0.1500000 −0.1500222 2.980× 10−05

0.6 −0.1714286 −0.1714778 1.150× 10−05

0.8 −0.1333333 −0.1333000 3.730× 10−05

1 0 0 0× 100

Figure 2. Problem 1 at h = 1
5 .
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Figure 3. Problem 1 at h = 1
10 and h = 1

5 .

Table 4. Errors at derivatives where boundary conditions (BCs) are defined in problem 1 at h = 1
10 .

κ CBS-Solution of
w(1)(κ)

CBS-Solution of
w(2)(κ)

CBS-Solution of
w(3)(κ)

CBS-Solution of
w(4)(κ)

0 −0.5 0.5 0.75 1.5
0.1 −0.4459 0.5825 1.0585 1.93853
0.2 −0.3812 0.7117 1.3398 2.54026
0.3 −0.3031 0.8505 1.3543 3.38062
0.4 −0.2114 0.9826 1.4378 4.57764
0.5 −0.1054 1.1380 1.9730 6.32099
0.6 0.0204 1.3772 3.0994 8.92485
0.7 0.1771 1.7579 4.6624 12.92780
0.8 0.3805 2.3097 6.4105 19.29012
0.9 0.6480 3.0400 8.4517 29.80422
1 1 4 12 48

5.2. Problem 2

We consider the following problem as given in [16]

w(10)(κ) = 9!(e−10w(κ) − 2
(1 + κ)10 ); 0 ≤ κ ≤ e1/2−1

subject to BCs;

w (0) = 0, w
(

e1/2−1
)
=

1
2

, w(1) (0) = −w(2) (0) = 1, w(1)
(

e1/2−1
)
= e(

−1
2 ),

w(2)
(

e1/2−1
)
= −e(−1), w(3) (0) = 2, w(3)

(
e1/2−1

)
= 2e(−

3
2 ),

w(4) (0) = −6, w(4)
(

e1/2−1
)
= −6e(−2),

the exact solution of a given equation is w (κ) = ln(1 + κ) where the domain [0, e1/2−1] for h =

2−ie1/2−1.
The values of fifteen unknowns i from Equations (18)–(20) are
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−2 = −0.13805879, 3 = 0.1782805 , 8 = 0.4183388 ,
−1 = −0.0662749 , 4 = 0.2311044 , 9 = 0.4601370 ,
0 = 0.0007014 , 5 = 0.2812925 , 10 = 0.5002580 ,
1 = 0.0634693 , 6 = 0.3290924 , 11 = 0.5388309 ,
2 = 0.1225218 , 7 = 0.3747130 , 12 = 0.57597018 .

Tables 5 and 6 analyzed the exact solution and cubic B-spline scheme (CBS) solution of problem 2
at h = 0.064872 and h = 0.12974426 respectively. Figures 4–6 analyze the exact solution with cubic
B-spline scheme (CBS) solution of problem 2 at h = 0.064872 and h = 0.12974426 graphically. Table 7
analyze the errors at those derivatives where boundary conditions (BCs) are defined in problem 2 at
h = 0.064872.

Table 5. Analyzing exact solution and CBS-solution of problem 2 at h = 0.064872.

κ Exact Solution CBS Solution Absolute Error of CBS

0 0 0 0× 100

0.065 0.06285473 0.0628501 4.650× 10−06

0.13 0.12199129 0.1219728 1.850× 10−05

0.195 0.17782512 0.1777914 3.370× 10−05

0.259 0.23070570 0.2306651 4.060× 10−05

0.324 0.28092982 0.2808945 3.530× 10−05

0.389 0.32875164 0.3287292 2.250× 10−05

0.454 0.37439053 0.3743805 1.000× 10−05

0.519 0.41803711 0.4180342 2.920× 10−06

0.584 0.45985807 0.4598575 5.980× 10−07

0.648 0.5 0.5 0× 100

Figure 4. Problem 1 at h = 0.064872 .
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Figure 5. Problem 2 at h = 0.064872 and h = 0.12974426.

Figure 6. Problem 1 at h = 0.12974426.

Table 6. Analyzing the exact solution and CBS solution of problem 2 at h = 0.12974426.

κ Exact Solution CBS Solution Absolute Error of CBS

0 0 0 0× 100

0.130 0.1219912 0.1219138 7.750× 10−05

0.259 0.2307057 0.2304804 2.250× 10−04

0.389 0.3287516 0.3286773 7.430× 10−05

0.519 0.41803711 0.4180281 8.960× 10−06

0.649 0.5 0.5 0× 100
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Table 7. Errors at derivatives where BCs are defined in problem 2 at h = 0.064872.

κ CBS Solution of
w(1)(κ)

CBS Solution of
w(2)(κ)

CBS Solution of
w(3)(κ)

CBS Solution of
w(4)(κ)

0 1 −1 2 −6
0.065 0.93893 −0.88288 1.67530 −4.66533031
0.13 0.88490 −0.78264 1.42971 −3.68168892
0.195 0.83690 −0.69738 1.20485 −2.94393959
0.259 0.79396 −0.62632 1.00104 −2.38195984
0.324 0.75524 −0.56751 0.83630 −1.94791017
0.389 0.72004 −0.51781 0.72045 −1.60848492
0.454 0.68786 −0.47403 0.64400 −1.34006674
0.519 0.65840 −0.43426 0.58187 −1.12562522
0.584 0.63139 −0.39854 0.51160 −0.95268994
0.648 0.60653 −0.36788 0.44626 −0.81200035

5.3. Problem 3

We consider the following equation as given in [29,33]

w(10)(κ) + e−κ(w(κ))2 = e−3κ + e−κ ; 0 ≤ z ‘ ≤ 1

subject to BCs;
w (0) = w(2) (0) = w(4) (0) = −w(1) (0) = −w(3) (0) = 1,

w (0) = w(2) (0) = w(4) (0) = −w(1) (0) = −w(3) (0) = e−1

the exact solution of given equation is w (κ) = e−κ . The values of fifteen unknowns i the Equations
(18)–(20) are

−2 = 1.21938333, 3 = −0.73961579, 8 = −0.44858605,
−1 = 1.10333333, 4 = −0.66924328, 9 = 0.405893650,
0 = 0.99833333, 5 = 0.605557470, 10 = 0.36726630,
1 = −0.9033333, 6 = 0.547923909, 11 = 0.33231776,
2 = −0.5333053, 7 = 0.495772367, 12 = 0.30069852 .

Tables 8 and 9 analyzed the exact solution and cubic B-spline scheme (CBS) solution of problem 3
at h = 1

10 and h = 1
5 respectively. Figures 7–9 analyze the exact solution with cubic B-spline scheme

(CBS) solution of problem 3 at h = 1
10 and h = 1

5 graphically. Table 10 analyze the errors at those
derivatives where boundary conditions (BCs) are defined in problem 3 at h = 1

10 .

Table 8. Analyzing exact solution and CBS solution of problem 3 at h = 1
10 .

κ Exact
Solution

CBS Solution Absolute Error of
CBS

0 1 1 0
0.1 0.9048374 0.9048417 4.250× 10−06

0.2 0.8187308 0.8187471 1.630× 10−05

0.3 0.7408182 0.7408483 3.010× 10−05

0.4 0.6703200 0.6703577 3.770× 10−05

0.5 0.6065307 0.6065662 3.550× 10−05

0.6 0.5488116 0.5488376 2.590× 10−05

0.7 0.4965853 0.4965999 1.460× 10−05

0.8 0.4493290 0.4493350 6.080× 10−06

0.9 0.4065697 0.4065712 1.500× 10−06

1 0.3678794 0.3678794 0
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Figure 7. Problem 1 at h = 1
10 .

Figure 8. Problem 3 at h = 1
10 and h = 1

5 .

Table 9. Analyzing exact solution and CBS solution of problem 3 at h = 1
5 .

κ Exact Solution CBS Absolute Error of CBS

0 1 1 0× 100

0.2 0.8187308 0.8188000 6.920× 10−05

0.4 0.6703200 0.6705188 1.990× 10−04

0.6 0.5488116 0.5489132 1.020× 10−04

0.8 0.4493290 0.4493525 2.350× 10−05

1 0.3678794 0.3678794 0× 100
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Table 10. Errors at derivatives where BCs are defined in problem 3 at h = 1
10 .

κ CBS Solution of w(2)(κ), w(4)(κ) CBS Solution of w(1)(κ), w(3)(κ)

0 1 −1
0.1 0.90482409 −0.90484731
0.2 0.81870008 −0.81872330
0.3 0.74077662 −0.74079984
0.4 0.67027318 −0.67029640
0.5 0.60648354 −0.60650676
0.6 0.54876876 −0.54879198
0.7 0.49655070 −0.49657392
0.8 0.44930633 −0.44932955
0.9 0.40656241 −0.40658563
1 0.36787944 −0.36787944

Figure 9. Problem 1 at h = 1
10 and h = 1

5 .

6. Conclusions

In this study, we present new scheme using CBS of some non-linear differential equations arising
in visco-elastic flows and hydrodynamic stability problems. The proper selection for the choice of the
scheme and an appropriate of adjustment BCs may cause elasticity for the betterment of the results.
The new CBS scheme proposed in this study is very simple to apply in solving the non-linear DEs
compared with some existing schemes. An advantage of using the CBS scheme is that it gives a spline
function on each new time line which can be applied to achieve the numerical solutions at any stage in
the space direction.
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