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Abstract: Fullerenes are molecules that can be presented in the form of cage-like polyhedra, consisting
only of carbon atoms. Fullerene graphs are mathematical models of fullerene molecules. The transmission
of a vertex v of a graph is a local graph invariant defined as the sum of distances from v to all the other
vertices. The number of different vertex transmissions is called the Wiener complexity of a graph. Some
calculation results on the Wiener complexity and the Wiener index of fullerene graphs of order n ≤ 232
and IPR fullerene graphs of order n ≤ 270 are presented. The structure of graphs with the maximal
Wiener complexity or the maximal Wiener index is discussed, and formulas for the Wiener index of
several families of graphs are obtained.

Keywords: graph; fullerene; Wiener index; Wiener complexity

1. Introduction

A fullerene is a spherically shaped molecule consisting of carbon atoms in which every carbon ring
forms a pentagon or a hexagon. Every atom of a fullerene has bonds with exactly three neighboring atoms.
The molecule may be a hollow sphere, ellipsoid, tube, or many other shapes and sizes. Fullerenes are
the subject of intense research in chemistry, and they have found promising technological applications,
especially in nanotechnology and materials science [1,2].

Molecular graphs of fullerenes are called fullerene graphs. A fullerene graph is a 3-connected planar
graph in which every vertex has degree 3, and every face has size 5 or 6. By Euler’s polyhedral formula,
the number of pentagonal faces is always 12. It is known that fullerene graphs having n vertices exist
for all even n ≥ 24 and for n = 20. The number of all non-isomorphic fullerene graphs can be found
in [3–5]. The set of fullerene graphs with n vertices will be denoted as Fn. The number of faces of
graphs in Fn is f = n/2 + 2 and, therefore, the number of hexagonal faces is n/2− 10. Despite the fact
that the number of pentagonal faces is very small compared to the number of hexagonal faces, their
location is crucial to the shape and properties of fullerene molecules. Fullerene graphs without adjacent
pentagons, i.e., each pentagon is surrounded only by hexagons, satisfy the isolated pentagon rule (IPR),
and are called IPR fullerene graphs. They are considered as molecular graphs of thermodynamic stable
fullerene compounds. The number of all non-isomorphic IPR fullerene graphs was reported, for example,
in [5,6]. Mathematical studies of fullerenes include applications of topological and graph theory methods,
information theory approaches, design of combinatorial and computational algorithms, etc. (see selected
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articles [3,5–27]). A comprehensive bibliography on mathematical methods and its applications can be
found in [1,2,4,12,28,29]. The set of IPR fullerene graphs with n vertices will be denoted as F∗n .

The vertex set of a graph G is denoted by V(G). The number of vertices of G is called its order.
The distance d(u, v) between vertices u, v ∈ V(G) is the number of edges in a shortest path connecting
u and v in G. The maximal distance between vertices of a graph G is called the diameter D(G) of G.
Vertices are diametrical if the distance between them is equal to the diameter of a graph. By transmission of
v ∈ V(G), we mean the sum of distances from vertex v to all the other vertices of G, tr(v) = ∑u∈V(G) d(v, u).
Transmissions of vertices are used for the design of many distance-based topological indices [30]. Usually,
a topological index is a graph invariant that maps a family of graphs to a set of numbers such that values
of the invariant coincide for isomorphic graphs. The Wiener index is a topological index defined as a half of
the sum of vertex transmissions:

W(G) = ∑
{u,v}⊆V(G)

d(u, v) =
1
2 ∑

v∈V(G)

tr(v).

It was introduced as a structural descriptor for tree-like organic molecules by Harold Wiener [31]. The
definition of the index in terms of distances between vertices of a graph was given by Haruo Hosoya [32].
The Wiener index that has found important applications in chemistry (see books and reviews [33–41]).
Various aspects of the theory and practice of the Wiener index of fullerene graphs are discussed in many
works [7,8,11–13,15–20,22,24,42].

The number of different vertex transmissions in a graph G is known as the Wiener complexity [43] (or
the Wiener dimension [7]), CW(G). This graph invariant can be regarded as a measure of transmission variety.
A graph is called transmission irregular if all vertices of the graph have pairwise different transmissions,
i.e., it has the largest possible Wiener complexity. It is obvious that a transmission irregular graph has
the identity automorphism group. Various properties of transmission irregular graphs were studied
in [43–45]. It was shown that almost all graphs are not transmission irregular. Several infinite families
of transmission irregular graphs were constructed for trees, 2-connected graphs, and 3-connected cubic
graphs in [44,46–49].

In this paper, we present some results of studies of the Wiener complexity and the Wiener index of
fullerene graphs. In particular, we are interested in two questions: does a transmission irregular fullerene
graph exist and can a graph with the maximal Wiener complexity has the maximal Wiener index?

2. Wiener Complexity of Fullerene Graphs

The Wiener complexity of fullerene graphs was examined for fullerene and IPR-fullerene graphs with
n ≤ 232 and n ≤ 270 vertices, respectively. A typical distribution of the numbers of fullerene graphs with
fixed number of vertices with respect to values of CW is shown in Figure 1. The number of graphs of F196

(100 faces) is 177,175,687. Denote by Cn the maximal Wiener complexity among all fullerene graphs with n
vertices, i.e., Cn = max{CW(G) |G ∈ F}, where F = Fn or F = F∗n . Let gn be a difference between order
and the Wiener complexity, gn = n− Cn. If a transmission irregular graph exists, then gn = 0. It is obvious
that a transmission irregular graph has the identity automorphism group. The behavior of gn when the
number of vertices n increases is shown in Figure 2. The bottom and top lines correspond to all fullerene
graphs and to IPR fullerene graphs, respectively. Explicit values of Cn can be found in Tables 1 and 2.

Proposition 1. There do not exist transmission irregular fullerene graphs with n ≤ 232 vertices and IPR fullerene
graphs with n ≤ 270 vertices.
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Figure 1. Distribution of fullerene graphs of F196 with respect to their Wiener complexity CW (N is the
number of graphs).

Figure 2. Difference gn between order and the maximal Wiener complexity of fullerene graphs (bottom
line) and IPR fullerene graphs (top line) of order n ≤ 232.

Since the almost all fullerene graphs have no symmetries, we believe that transmission irregular
graphs exist for a large number of vertices (when the interval of possible values of transmissions will be
sufficiently large with respect to the number of vertices).

Problem 1. Does there exist a transmission irregular fullerene graph (IPR fullerene graph)? If yes, then what is the
smallest order of such graphs?

3. Graphs with the Maximal Wiener Complexity

In this section, we study the following problem: can the Wiener index of a fullerene graph with the
maximal Wiener complexity be maximal? Denote by Wn the maximal Wiener index among all fullerene
graphs with n vertices, i.e., Wn = max{W(G) |G ∈ F}, where F = Fn or F = F∗n .
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Table 1. Maximal Wiener complexity and Wiener indices of fullerene graphs.

n Cn W D Wn CW D t n Cn W D Wn CW D t

20 1 500 5 500 1 5 84 70 19,939 13 21,754 21 15 c1
24 2 804 5 804 2 5 20,076 13
26 2 987 6 987 2 6 b 86 73 21,404 13 23,467 8 16 b
28 5 1198 6 1198 5 6 21,521 13
30 7 1431 6 1435 3 6 a 21,593 13
32 9 1688 6 1696 3 7 b 88 73 22,359 13 24,714 21 16 c2
34 10 1973 7 1978 10 7 22,421 13

1978 7 22,604 13
36 14 2288 7 2298 8 7 c1 22,616 13
38 18 2627 7 2651 4 8 b 22,619 13
40 19 3001 7 3035 4 8 a 22,750 14
42 22 3397 8 3415 19 8 d1 22,939 14
44 25 3830 8 3888 4 9 b 90 79 23,923 14 27,155 9 17 a
46 25 4285 8 4322 19 9 d2 92 80 25,731 15 28,256 8 17 b

4289 8 94 82 26,793 14 28,910 44 17 d2
4289 8 96 84 28,274 14 31,418 24 17 c1
4291 8 28,317 15

48 30 4795 9 4858 12 9 c1 98 86 30,068 15 33,651 9 18 b
50 35 5310 9 5455 5 9 a 100 89 31,196 15 36,580 10 19 a
52 36 5876 9 5994 13 10 c2 102 89 32984 15 36,206 47 18 d1
54 37 6475 9 6558 22 10 d1 33,070 15
56 40 7114 10 7352 5 11 b 33,226 15
58 43 7782 10 7910 25 11 d2 33,505 15

7822 10 104 91 34,402 15 39,688 9 19 b
60 44 8437 10 8880 6 11 a 34,529 15

8466 10 36,801 17
8490 10 106 93 36,648 16 40,278 47 19 d2

62 46 9202 10 9651 6 12 b 36,664 16
9220 11 37,594 17
9250 11 108 96 38,033 15 43,578 27 19 c1

64 49 9988 11 10,410 15 12 c2 110 98 40,154 16 48,005 11 21 a
9993 11 41,419 17

10,003 11 112 100 41,940 17 48,234 27 20 c2
10,013 11 114 102 43,885 16 49,318 52 20 d1
10,016 11 116 102 45,437 16 53,832 10 21 b

66 50 10,814 11 11,126 30 12 d1 46,632 17
10,842 11 46,798 17

68 56 11,714 11 12,376 6 13 b 47,927 18
70 56 12,589 11 13,505 7 13 a 118 106 47,059 15 54,310 50 21 d2
72 56 13,407 11 14,298 18 13 c1 47,489 16

13,448 11 47,697 16
13,453 11 120 110 49,143 16 61,630 12 23 a
13,567 12 49,606 17
13,578 12 122 109 51,344 16 62,011 11 22 b
13,766 12 51,456 16

74 61 14,521 12 15,563 7 14 b 51,933 17
76 63 15,867 13 16,554 18 14 c2 52,974 17
78 64 16,834 13 17,398 37 14 d1 53,070 17

16,877 13 124 111 54,105 17 64,170 30 22 c2
80 66 17,727 13 19,530 8 15 a 55,050 18

17,832 13 55,789 18
82 71 19,075 13 19,918 38 15 d2 57,358 19

57,473 19
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Table 1. Cont.

n Cn W D Wn CW D t n Cn W D Wn CW D t

126 115 57,238 18 65,286 57 22 d1 186 177 167,300 26 198,046 82 32 d1
128 117 60,434 18 70,976 11 23 b 188 177 154,868 21 211,776 16 33 b
130 118 63,736 19 77,655 13 25 a 190 180 169,849 24 235,405 19 37 a

63,922 19 192 181 163,370 22 222,778 48 33 c1
65,396 20 194 183 187,947 27 231,763 17 34 b

132 121 62,917 17 76,538 33 23 c1 191,290 27
134 123 64,935 17 80,763 12 24 b 196 184 174,774 23 236,394 48 34 c2

65,225 17 178,192 24
68,161 19 178,529 25

136 124 69,838 19 83,274 33 24 c2 179,284 25
138 127 72,311 19 84,398 62 24 d1 184,011 24

73,771 19 198 187 177,296 23 237,198 87 34 d1
140 131 73,644 19 96,280 14 27 a 189,530 25
142 131 79,852 20 91,518 56 25 d2 200 189 180,683 23 273,830 20 39 a
144 132 77,934 18 97,914 36 25 c1 192,365 25

78,924 18 202 193 210,388 28 251,318 71 35 d2
146 134 86,095 20 102,947 13 26 b 204 192 189,450 22 265,274 51 35 c1

86,287 21 206 195 221,909 28 275,427 18 36 b
87,298 21 221,995 28
87,442 21 222,097 28

148 136 86,432 20 105,834 36 26 c2 208 198 201,644 23 280,554 51 36 c2
150 138 87,886 19 117,705 15 29 a 210 199 238,572 29 316,255 21 41 a

88,860 19 212 199 207,617 23 299,176 18 37 b
92,732 21 207,975 23
93,898 21 209,707 23

152 141 92,988 20 115,416 13 27 b 211,942 24
154 144 97,359 21 115,270 59 27 d2 215,779 24
156 144 95,579 19 122,938 39 27 c1 228,285 26

96,997 19 228,507 26
98,864 21 228,922 26

158 147 100,055 19 128,851 14 28 b 214 202 226,652 25 297,030 74 37 d2
160 148 103,952 20 142,130 16 31 a 247,352 29

108,170 22 250,978 29
162 151 104,909 19 133,206 72 28 d1 216 204 220,131 23 312,858 54 37 c1

116,278 23 226,928 25
164 153 110,088 20 143,288 14 29 b 240,920 27
166 155 117,531 21 142,838 62 29 d2 270,770 33

119,485 23 218 209 260,324 30 324,251 19 38 b
168 157 114,316 18 151,898 42 29 c1 220 211 233,711 25 362,880 22 43 a

126,632 23 222 211 240,755 26 330,406 97 38 d1
170 159 123,193 22 169,755 17 33 a 273,605 30

130,548 24 273,701 30
172 160 129,708 22 162,474 42 30 c2 273,813 30
174 164 131,354 23 163,478 77 30 d1 224 214 248,633 27 350,688 19 39 b
176 165 130,105 20 175,312 15 31 b 226 217 288,789 31 347,998 77 39 d2
178 167 141,743 23 174,510 65 31 d2 228 218 258,913 25 365,818 57 39 c1

150,696 25 230 221 269,286 27 413,905 23 45 a
180 168 139,697 21 200,780 18 35 a 295,719 31
182 171 144,410 21 192,971 16 32 b 232 221 292,719 28 384,714 57 40 c2
184 172 146,581 22 197,130 45 32 c2

147,054 21
153,615 23
154,923 23
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Table 2. Maximal Wiener complexity and Wiener indices of IPR fullerene graphs.

n Cn W D Wn CW D t n Cn W D Wn CW D t

60 1 8340 9 8340 1 9 156 130 94,028 17 95,340 37 18 c
70 5 12,375 10 12,375 5 10 158 132 97,061 17 98,238 72 18 d
72 4 13,284 10 13,284 5 10 160 135 100,031 17 103,500 9 19 a2
74 6 14,275 10 14,275 6 10 162 136 103,213 17 104,799 72 18 d
76 13 15,248 10 15,294 4 10 103,842 18
78 14 16,305 11 16,365 8 11 164 137 106,920 18 108,598 40 19 c
80 17 17,412 11 17,600 1 11 a2 166 141 109,926 18 111,660 77 18 d
82 19 18,533 11 18,633 7 11 168 142 113,094 17 116,100 18 19 b3
84 25 19,664 11 19,734 10 11 113,725 18
86 39 20,864 11 21,007 14 11 170 145 116,472 17 121,575 10 20 a1
88 36 22,097 11 22,244 14 11 116,713 18
90 39 23,406 12 23,546 15 11 a1 117,141 19

23,445 12 172 146 120,328 18 123,010 41 20 c
92 41 24,761 12 24,890 13 11 120,379 18
94 48 26,111 12 26,262 21 12 120,404 18
96 49 27,589 12 27,738 6 11 120,859 18
98 55 29,016 12 29,164 24 12 174 148 123,729 18 126,254 78 19 d

100 55 30,567 12 30,770 10 13 a2 123,765 18
30,590 12 123,767 18
30,551 13 124,309 19

102 59 32,133 13 32,275 28 12 176 150 127,275 18 130,684 44 20 c
104 65 33,677 12 33,946 7 13 127,354 18
106 69 35,406 13 35,547 32 13 127,583 18
108 70 37,097 13 37,296 26 13 178 156 131,619 19 134,008 82 20 d
110 72 38,849 13 39,055 7 14 a1 180 155 135,137 19 141,540 10 21 a2
112 74 40,689 13 40,878 10 13 135,577 19
114 76 42,494 13 42,753 17 13 182 158 138,427 19 142,031 78 20 d

42,500 13 184 159 142,077 18 146,918 45 21 c
116 80 44,426 14 44,616 9 13 142,114 18

44,434 13 186 163 146,825 19 151,887 20 21 b1
118 81 46,334 13 46,629 33 13 147,381 20 151,887 26 21 b2
120 87 48,386 14 48,820 7 15 a2 188 165 150,899 20 155,512 46 21 c
122 89 50,445 14 50,691 26 14 190 169 154,949 20 163,615 11 22 a1

50,473 14 192 170 158,798 19 164,434 47 22 c
124 91 52,593 14 52,830 11 13 194 171 162,674 19 168,005 88 21 d

52,635 14 162,770 19
126 93 54,737 14 54,950 52 14 196 176 167,808 20 173,708 46 22 c
128 96 57,026 15 57,240 32 15 c 198 175 171,657 20 177,339 92 22 d
130 97 59,208 14 60,095 8 16 a1 200 180 176,651 20 187,780 11 23 a2

59,221 15 202 178 180,593 20 186,984 94 22 d
59,328 15 180,818 21

132 100 61,579 15 62,097 14 16 b3 181,279 21
61,609 15 62,097 20 16 b4 182,321 20

134 102 63,929 15 64,270 57 16 d 204 180 185,306 20 194,376 22 23 b3
64,087 15 185,306 20 194,376 28 23 b4

136 105 66,439 16 66,880 33 16 c 185,410 21
138 108 68,859 15 69,285 57 16 d 206 183 188,946 20 196,937 92 22 d

68,865 15 208 186 196,192 21 203,528 50 23 c
68,911 16 210 188 199,403 21 214,255 12 24 a1
69,075 16 199,484 21
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Table 2. Cont.

n Cn W D Wn CW D t n Cn W D Wn CW D t

140 111 71,543 16 72,860 8 17 a2 212 189 203,781 20 214,178 51 24 c
142 114 74,058 16 74,558 64 16 d 204,706 21
144 117 76,661 16 77,480 34 17 c 205,041 21
146 117 79,350 16 80,068 65 17 d 214 191 209,844 21 217,915 95 23 d
148 119 82,141 16 83,160 35 17 c 209,858 21
150 127 85,249 17 87,335 9 18 a1 209,885 21
152 124 88,004 17 89,106 38 18 c 210,112 21
154 127 90,792 16 91,921 68 18 d 216 192 213,004 20 225,212 51 24 c

90,969 17 213,920 21
91,173 17

218 195 218,701 21 228,952 102 23 d 244 223 294,943 23 313,078 58 27 c
219,051 21 246 225 298,839 23 316,562 117 26 d
219,302 21 248 228 310,038 25 327,240 60 27 c
219,702 22 250 228 313,548 24 344,535 14 28 a1

220 197 223,863 21 243,020 12 25 a2 252 231 323,180 25 341,826 63 28 c
224,835 21 328,878 26
226,742 22 254 233 324,097 23 345,088 121 26 d

222 199 230,922 22 244,209 24 25 b1 256 235 328,374 23 356,860 63 28 c
244,209 28 25 b2 328,471 23

224 202 235,105 21 248,358 55 25 c 329,926 24
226 204 237,981 21 252,089 101 24 d 258 237 336,694 24 368,499 30 29 b1
228 205 246,587 22 260,504 53 25 c 368,499 26 29 b2
230 208 252,526 23 274,295 13 26 a1 260 240 348,484 25 383,700 14 29 a2
232 210 260,165 23 273,042 57 26 c 262 242 349,765 24 374,298 123 27 d

262,089 23 264 242 357,069 24 388,198 65 29 c
234 213 262,982 23 276,696 107 25 d 358,221 24
236 215 267,862 22 285,996 58 26 c 360,379 24
238 216 275,410 23 289,583 111 25 d 362,260 25

276,644 23 266 246 364,584 25 391,052 127 28 d
240 219 282,476 23 308,060 13 27 a2 268 247 380,916 26 404,536 67 29 c
242 222 292,194 25 302,885 114 26 d 270 250 375,313 24 425,775 15 30 a1

Numerical data for the Wiener indices of fullerene graphs in Tables 1 and 2 show that Wiener indices
of graphs with maximal Cn are not maximal. Here, three columns Cn, W, and D contain the maximal
Wiener complexity, the Wiener index, and the diameter of graphs with Cn, respectively. Three columns Wn,
CW , and D contain the maximal Wiener index of graphs with n vertices, the Wiener complexity, and the
diameter of graphs with Wn. Based on data of the tables, one can make the following observations for the
corresponding graphs:

• Values of the maximal Wiener complexity Cn of all fullerene graphs do not decrease except for one
case: C202 = 193 and C204 = 192. For IPR fullerene graphs, we have four exceptions (see pairs C86, C88;
C150, C152; C196, C198, and C200, C202).

• Wiener indices of fullerene and IPR fullerene graphs with maximal Cn (| Fn| > 1) are not maximal
except graphs of order n = 28 with W = 1198 (| F28| = 2).

• Several fullerene or IPR fullerene graphs of fixed n may have the maximal complexity Cn.
• Almost all fullerene graphs with fixed Cn have distinct Wiener indices except for two graphs of

order 46 with Cn = 25 and W = 4289 and two IPR fullerene graphs of order 204 with Cn = 180 and
W = 185,306.

• Given n, only one fullerene graph has the maximal Wiener index while there are pairs of IPR fullerene
graphs with the same maximal W (see graphs of order 132, 186, 204, 222, and 258).
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• The diameter D of graphs with fixed Cn is less than or equal to the diameter of graphs with a maximal
Wiener index for all fullerene graphs (with seven exceptions for IPR fullerene graphs of order 90, 92,
96, 100, 102, 116, and 124).

• Fullerene graphs with the maximal Wiener index Wn have the maximal diameter among all fullerenes.
The values of the Wiener complexity of these graphs CW can vary greatly. This can be partially
explained by the appearance of symmetries in graphs with Wn.

It is of interest how the pentagons are distributed among hexagons for fullerene graphs of Fn with the
maximal Wiener complexity Cn, n ≤ 232. Does there exist any regularity in the distribution of pentagons?
Table 3 gives some information on the occurrence of pentagonal parts of a particular size in these graphs
(an isolated pentagon forms a part). Here, N is the number of graphs in which pentagons form Np isolated
connected parts. The considered fullerene graphs contain at most eight isolated parts.

Table 3. The number of graphs with Np isolated pentagonal parts.

Np 1 2 3 4 5 6 7 8
N 9 8 27 66 45 42 9 1

Table 4 shows how many fullerene graphs with the maximal Wiener complexity have isolated
pentagons. Here, N is the number of graphs having Ni isolated pentagons. These fullerene graphs contain
at most five isolated pentagons.

Table 4. The number graphs with Ni isolated pentagons.

Ni 0 1 2 3 4 5
N 23 56 50 47 26 5

Does there exist an IPR fullerene graph with maximal Wiener complexity Cn (lines of Figure 2 will
have an intersection for gn 6= 0)? We believe that the answer to this question will be positive for sufficiently
large n.

4. Fullerene Graphs with the Maximal Wiener Index

The Wiener index of fullerene graphs was studied in [7,8,12,13,15–20,42]. A class of fullerene graphs
of tubular shapes is called nanotubical fullerene graphs. They have cylindrical shape with the two ends
capped by subgraphs containing six pentagons and possibly some hexagons called caps (see an illustration
in Figure 3).

Figure 3. Construction of a nanotubical fullerene graph with two caps.

Consider fullerene graphs with the maximal Wiener indices (see Table 1). Five graphs of F20–F28 and
F34 contain one pentagonal part and the other 102 graphs possess two pentagonal parts. Two pentagonal
parts of every fullerene graph are the same and contain diametrical vertices. Therefore, such graphs are
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nanotubical fullerene graphs with caps containing identical pentagonal parts. All diagrams of the parts are
depicted in Figure 4. Cap of types a–c have symmetries. The number of fullerene graphs having a given
part is shown near diagrams.

Characteristics of the corresponding nanotubes are reported in [9]. We assume that a type of a cap is
determined by the type of its pentagonal part. Types of caps of fullerene graphs are presented in column t
of Table 1. Constructive approaches for enumeration of various caps were proposed in [25,26]. Consider
every kind of cap type.

1. Type a. Caps of type a define (5,0)-nanotubical fullerene graphs. The structure of graphs of this
infinite family Ta is clear from an example in Figure 5a. Analytical formulas for diameter and the Wiener
index of such fullerene graphs were obtained in [7,18]. To indicate the order of graph G, we will use
notation Gn. We rewrite the formulas in terms of n.

a b c d

21 28 27 26

Figure 4. Pentagonal parts of caps for nanotubical fullerene graphs with the maximal Wiener index.

Proposition 2 ([7,18]). Let Gn be a nanotubical fullerene graph with caps of type a. It has n = 10k vertices, k ≥ 2.
Then, CW(Gn) = k, D(Gn) = 2k− 1, and W(G20) = 500, W(G30) = 1435, W(G40) = 3035, and for n ≥ 50,

W(Gn) =
1

30

(
n3 + 1175n− 20,100

)
.

Based on numerical data of Table 1, the similar results have been obtained for fullerene graphs of
order n ≤ 232 with caps of the other three types.

v

v

v

v
v

v

a b

Figure 5. Structure of fullerene graphs with caps of types (a) and (b).

2. Type b. Caps of type b define (3,3)-nanotubical fullerene graphs. The structure of graphs of the
corresponding family Tb is clear from examples of Figure 5b. Vertices marked by v should be identified in
every graph. Table 1 contains 28 such graphs.
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Proposition 3. Let Gn be a nanotubical fullerene graph with caps of type b. It has n = 6k− 4 ≤ 232 vertices,
k ≥ 5. Then, CW(Gn) = dk/2e, D(Gn) = k + 1, and for n ≥ 26,

W(Gn) =
1
36

(
n3 + 27n2 + 156n− 4352

)
.

Two caps of type b have adjacent pentagonal rings only for k = 5 . If fullerene graphs with caps of
types a and b have the same number of vertices (n = 10k), then the graph with caps of type a has the
maximal Wiener index.

3. Type c. Caps of type c define (4,2)-nanotubical fullerene graphs. Fullerene graphs with caps of
type c will be splitted into two disjoint families, Tc = Tc1 ∪ Tc2. The corresponding graphs are marked in
column t of Table 1 by c1 (14 graphs) and c2 (13 graphs). The numbers of vertices of graphs of Tc1 and
Tc2 are given in Table 5. The orders of graphs of Tc do not coincide with the orders of graphs from the set
Ta ∪ Tb. By analysis of 3D-models of fullerene graphs, it is possible to determine the mutual position of
their pentagonal parts. As an example, fragments of graphs with n = 84 (case c1) and n = 88 (case c2)
vertices are depicted in Figure 6.

Table 5. Parameters of fullerene graphs with n ≤ 232 vertices and caps of types c and d (k ≥ 0).

Family Tc1 Family Tc2

n CW D n CW D

60k + 96 15k + 24 10k + 17 60k + 76 15k + 18 10k + 14
60k + 48 15k + 12 10k + 9 60k + 88 15k + 21 10k + 16
60k + 72 15k + 18 10k + 13 60k + 112 15k + 27 10k + 20
60k + 84 15k + 21 10k + 15 60k + 64 15k + 15 10k + 12

Family Td1 Family Td2

n CW D n CW D

60k + 126 25k + 57 10k + 12 60k + 106 15k + 47 10k + 19
60k + 78 25k + 37 10k + 4 60k + 118 15k + 50 10k + 21
60k + 102 25k + 47 10k + 8 60k + 142 15k + 56 10k + 25
60k + 114 25k + 52 10k + 10 60k + 94 15k + 44 10k + 17

c1 c2

d1 d2

Figure 6. Mutual position of pentagonal parts for caps of types c and d.
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Proposition 4.
(a) Let Gn be a nanotubical fullerene graph of family Tc1. Then, for 36 ≤ n ≤ 232,

W(Gn) =
1
36

(
n3 + 24n2 + 336n− 7128

)
.

(b) Let Gn be a nanotubical fullerene graph of family Tc2. Then, for 52 ≤ n ≤ 232,

W(Gn) =
1
36

(
n3 + 24n2 + 336n− 7192

)
.

The Wiener complexity and the diameter of Gn are shown in Table 5.

4. Type d. Caps of type d define (5,1)-nanotubical fullerene graphs. Such graphs will be also splitted
into two disjoint families, Td = Td1 ∪ Td2. The both families have 13 members (see graphs with marks d1
and d2 in column t of Table 1). The numbers of vertices of graphs of Td1 and Td2 are shown in Table 5. The
orders of graphs of Td do not coincide with the orders of graphs from the set Ta ∪ Tb ∪ Tc. An example of
the mutual position of pentagonal parts of graphs from these families with n = 78 and n = 82 vertices are
shown in Figure 6.

Proposition 5.
(a) Let Gn be a nanotubical fullerene graph of family Td1. Then, W(G42) = 3415 and for 54 ≤ n ≤ 232,

W(Gn) =
1
36

(
n3 + 15n2 + 1068n− 22, 788

)
.

(b) Let Gn be a nanotubical fullerene graph of family Td2. Then, W(G46) = 4322 and for 58 ≤ n ≤ 232,

W(Gn) =
1
36

(
n3 + 15n2 + 1068n− 22, 756

)
.

The Wiener complexity and the diameter of Gn are shown in Table 5.

The above considerations of fullerene graphs with n ≤ 232 vertices lead to the following conjectures
for all fullerene graphs.

Conjecture 1. If a fullerene graph of an arbitrary sufficiently large order has the maximal Wiener index, then it is a
nanotubical fullerene graph with caps of types a–d and its Wiener index is given by Propositions 2–5.

Conjecture 2. The Wiener complexity and the diameter of fullerene graphs of an arbitrary sufficiently large order
having the maximal Wiener index are given in Propositions 2–5.

5. IPR Fullerene Graphs with the Maximal Wiener Index

Numerical data for the Wiener indices of IPR fullerene graphs of order n ≤ 270 are presented in
Table 2. The structure of the table is the same as for fullerene graphs. Graphs with maximal Wiener
index (column Wn) are nanotubical fullerene graphs with two identical caps. All caps are defined by four
fragments shown in Figure 7. Caps of type a–c have no symmetries. The number of fullerene graphs
having a given cap is shown near diagrams. Note that it is difficult to separate caps from each other when
IPR fullerene graphs have a shape close to spherical one. Therefore, caps of types b, c, d can be recognized
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only for fullerene graphs of a sufficiently large number of vertices when graphs became nanotubical.
A type of cap is indicated in column t of Table 2. Consider graphs with these caps.

1. Type a. Caps of type a define (5,5)-nanotubical fullerene graphs. Caps of this type can be positioned
relative to each other in two ways. The structure of the corresponding graphs of this infinite families
Ta = Ta1 ∪ Ta2 is described by examples in Figure 8. Analytical formulas for the Wiener index of these
graphs are presented in [17]. We rewrite the formulas in terms of n.

a b c d

20 11 26 25

Figure 7. Pentagonal parts of caps in nanotubical IPR fullerene graphs with the maximal Wiener index.

Proposition 6 ([17]).
(a) Let Gn be a nanotubical IPR fullerene graph of family Ta1. It has n = 10k vertices, k ≥ 11 and k is odd. Then,
CW(Gn) = (k + 3)/2, D(Gn) = k + 3, and

W(Gn) =
1

60

(
n3 + 75n2 + 1820n− 95, 400

)
.

(b) Let Gn be a nanotubical IPR fullerene graph of family Ta2. It has n = 10k vertices, k ≥ 12 and k is even. Then,
CW(Gn) = (k + 2)/2, D(Gn) = k + 3, and

W(Gn) =
1

60

(
n3 + 75n2 + 1820n− 97, 200

)
.

Figure 8. IPR fullerene graphs G110 ∈ Ta1 (left) and G120 ∈ Ta2 (right) with caps of type a.

2. Type b. Caps of type b define (9,0)-nanotubical fullerene graphs. The caps can be positioned
relative to each other in four ways b1 − b4 as shown in Figure 9. Since graphs with fragments of cases
b1, b2 and b3, b4 almost always have the same Wiener index, we split graphs into two infinite families.
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Graphs having structures b1, b2 and b3, b4 form family Tb12 and Tb34, respectively. Each family contains
two graphs with the same maximal Wiener index for fixed n. Table 6 shows the number of vertices of the
families. The difference between n of the neighboring graphs is 36. The numbers in table’s sells are the
number of hexagonal rings (k) in the fragments connecting two caps (see Figure 9). The graph of order 168
with caps of type b4 has almost maximal Wiener index, W = 116,097, while the maximal Wiener index is
W = 116,100. Remember that the graph of order 150 with the maximal Wiener index, W = 87,335, has caps
of type a. The graph of order 150 with caps of type b1 has the second maximal Wiener index, W = 86,379,
and the graph of type b2 has the third maximal Wiener index, W = 86,373. The graphs of order 240 with
caps of types b3 and b4 have the second maximal Wiener index, W = 302,034 (the graph with the caps of
type a gives maximum W).

Table 6. IPR fullerene graphs with caps of type b.

Tb12 Tb34

n 150 186 222 258 132 168 204 240 276

b1 2 3 4 5
b2 2 3 4 5

b3 2 3 4 5 6
b4 2 3 4 5 6

Proposition 7.
(a) Let Gn be a nanotubical IPR fullerene graph of family Tb12. It has n = 36k + 150 ≤ 270 vertices, k ≥ 0. Then,
D(Gn) = 4k + 17 and

W(Gn) =
1

46, 656

(
859n3 + 3330n2 + 10, 767, 924n− 559, 139, 976

)
.

(b) Let Gn be a nanotubical IPR fullerene graph of family Tb34. It has n = 168 + 36k ≤ 270 vertices, k ≥ 0. Then,
D(Gn) = 4k + 19 and

W(Gn) =
1

46, 656

(
863n3 + 720n2 + 11, 329, 200n− 598, 893, 696

)
.

3. Types c and d. Caps of types c and d generate many cases of their mutual arrangement. By analyzing
the structure of fullerene graphs, we have preliminarily identified several families. The number of
vertices of eight families of graphs with the caps of type c can be written as n = n0 + 36k, k ≥ 0, where
n0 ∈ {128, 136, 140, 144, 148, 152, 156, 160}. For nine families of graphs with the caps of type d, we have
n = n0 + 44k, k ≥ 0, where n0 ∈ {130, 134, 138, 146, 150, 154, 158, 162, 166}.

Conjecture 3. If an IPR fullerene graph of an arbitrary sufficiently large order has the maximal Wiener index, then
it is a nanotubical fullerene graph with caps of types a–d and its Wiener index is given by Propositions 6 and 7 for
graphs of types a and b.
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Figure 9. Mutual positions of caps of type b in IPR fullerene graphs.

6. Conclusions

Problems of finding fullerene graphs with the maximal Wiener complexity and Wiener index are
studied. Numerical data show that graphs with the maximal Wiener complexity may exist for quite a
large number of vertices. Some basic properties of fullerene graphs having the maximal Wiener index
are established. We hope that the presented considerations will stimulate further study of the extremal
fullerene graphs with respect to the Wiener index.
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It is worth noting that, according to experimental studies, it was observed that there are no
theoretically well founded correlations between the Wiener index and the predicted energetic stability of
fullerene isomers in some cases [11,22]. In order to improve the prediction accuracy, Ori et al. defined a
topological efficiency index ρ derived from the Wiener index [24].
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