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Abstract

:

Fullerenes are molecules that can be presented in the form of cage-like polyhedra, consisting only of carbon atoms. Fullerene graphs are mathematical models of fullerene molecules. The transmission of a vertex v of a graph is a local graph invariant defined as the sum of distances from v to all the other vertices. The number of different vertex transmissions is called the Wiener complexity of a graph. Some calculation results on the Wiener complexity and the Wiener index of fullerene graphs of order   n ≤ 232   and IPR fullerene graphs of order   n ≤ 270   are presented. The structure of graphs with the maximal Wiener complexity or the maximal Wiener index is discussed, and formulas for the Wiener index of several families of graphs are obtained.
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1. Introduction


A fullerene is a spherically shaped molecule consisting of carbon atoms in which every carbon ring forms a pentagon or a hexagon. Every atom of a fullerene has bonds with exactly three neighboring atoms. The molecule may be a hollow sphere, ellipsoid, tube, or many other shapes and sizes. Fullerenes are the subject of intense research in chemistry, and they have found promising technological applications, especially in nanotechnology and materials science [1,2].



Molecular graphs of fullerenes are called fullerene graphs. A fullerene graph is a 3-connected planar graph in which every vertex has degree 3, and every face has size 5 or 6. By Euler’s polyhedral formula, the number of pentagonal faces is always 12. It is known that fullerene graphs having n vertices exist for all even   n ≥ 24   and for   n = 20  . The number of all non-isomorphic fullerene graphs can be found in [3,4,5]. The set of fullerene graphs with n vertices will be denoted as   F n  . The number of faces of graphs in   F n   is   f = n / 2 + 2   and, therefore, the number of hexagonal faces is   n / 2 − 10  . Despite the fact that the number of pentagonal faces is very small compared to the number of hexagonal faces, their location is crucial to the shape and properties of fullerene molecules. Fullerene graphs without adjacent pentagons, i.e., each pentagon is surrounded only by hexagons, satisfy the isolated pentagon rule (IPR), and are called IPR fullerene graphs. They are considered as molecular graphs of thermodynamic stable fullerene compounds. The number of all non-isomorphic IPR fullerene graphs was reported, for example, in [5,6]. Mathematical studies of fullerenes include applications of topological and graph theory methods, information theory approaches, design of combinatorial and computational algorithms, etc. (see selected articles [3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27]). A comprehensive bibliography on mathematical methods and its applications can be found in [1,2,4,12,28,29]. The set of IPR fullerene graphs with n vertices will be denoted as   F n *  .



The vertex set of a graph G is denoted by   V ( G )  . The number of vertices of G is called its order. The distance   d ( u , v )   between vertices   u , v ∈ V ( G )   is the number of edges in a shortest path connecting u and v in G. The maximal distance between vertices of a graph G is called the diameter   D ( G )   of G. Vertices are diametrical if the distance between them is equal to the diameter of a graph. By transmission of   v ∈ V ( G )  , we mean the sum of distances from vertex v to all the other vertices of G,   t r  ( v )  =  ∑  u ∈ V ( G )   d  ( v , u )   . Transmissions of vertices are used for the design of many distance-based topological indices [30]. Usually, a topological index is a graph invariant that maps a family of graphs to a set of numbers such that values of the invariant coincide for isomorphic graphs. The Wiener index is a topological index defined as a half of the sum of vertex transmissions:


  W  ( G )  =  ∑  { u , v } ⊆ V ( G )   d  ( u , v )  =  1 2   ∑  v ∈ V ( G )   t r  ( v )  .  











It was introduced as a structural descriptor for tree-like organic molecules by Harold Wiener [31]. The definition of the index in terms of distances between vertices of a graph was given by Haruo Hosoya [32]. The Wiener index that has found important applications in chemistry (see books and reviews [33,34,35,36,37,38,39,40,41]). Various aspects of the theory and practice of the Wiener index of fullerene graphs are discussed in many works [7,8,11,12,13,15,16,17,18,19,20,22,24,42].



The number of different vertex transmissions in a graph G is known as the Wiener complexity [43] (or the Wiener dimension [7]),    C W   ( G )   . This graph invariant can be regarded as a measure of transmission variety. A graph is called transmission irregular if all vertices of the graph have pairwise different transmissions, i.e., it has the largest possible Wiener complexity. It is obvious that a transmission irregular graph has the identity automorphism group. Various properties of transmission irregular graphs were studied in [43,44,45]. It was shown that almost all graphs are not transmission irregular. Several infinite families of transmission irregular graphs were constructed for trees, 2-connected graphs, and 3-connected cubic graphs in [44,46,47,48,49].



In this paper, we present some results of studies of the Wiener complexity and the Wiener index of fullerene graphs. In particular, we are interested in two questions: does a transmission irregular fullerene graph exist and can a graph with the maximal Wiener complexity has the maximal Wiener index?




2. Wiener Complexity of Fullerene Graphs


The Wiener complexity of fullerene graphs was examined for fullerene and IPR-fullerene graphs with   n ≤ 232   and   n ≤ 270   vertices, respectively. A typical distribution of the numbers of fullerene graphs with fixed number of vertices with respect to values of   C W   is shown in Figure 1. The number of graphs of   F 196   (100 faces) is 177,175,687. Denote by   C n   the maximal Wiener complexity among all fullerene graphs with n vertices, i.e.,    C n  = max  {  C W   ( G )   |  G ∈ F }   , where   F =  F n    or   F =  F n *   . Let   g n   be a difference between order and the Wiener complexity,    g n  = n −  C n   . If a transmission irregular graph exists, then    g n  = 0  . It is obvious that a transmission irregular graph has the identity automorphism group. The behavior of   g n   when the number of vertices n increases is shown in Figure 2. The bottom and top lines correspond to all fullerene graphs and to IPR fullerene graphs, respectively. Explicit values of   C n   can be found in Table 1 and Table 2.



Proposition 1.

There do not exist transmission irregular fullerene graphs with   n ≤ 232   vertices and IPR fullerene graphs with   n ≤ 270   vertices.





Since the almost all fullerene graphs have no symmetries, we believe that transmission irregular graphs exist for a large number of vertices (when the interval of possible values of transmissions will be sufficiently large with respect to the number of vertices).



Problem 1.

Does there exist a transmission irregular fullerene graph (IPR fullerene graph)? If yes, then what is the smallest order of such graphs?






3. Graphs with the Maximal Wiener Complexity


In this section, we study the following problem: can the Wiener index of a fullerene graph with the maximal Wiener complexity be maximal? Denote by   W n   the maximal Wiener index among all fullerene graphs with n vertices, i.e.,    W n  = max  { W  ( G )   |  G ∈ F }   , where   F =  F n    or   F =  F n *   .



Numerical data for the Wiener indices of fullerene graphs in Table 1 and Table 2 show that Wiener indices of graphs with maximal   C n   are not maximal. Here, three columns   C n  , W, and D contain the maximal Wiener complexity, the Wiener index, and the diameter of graphs with   C n  , respectively. Three columns   W n  ,   C W  , and D contain the maximal Wiener index of graphs with n vertices, the Wiener complexity, and the diameter of graphs with   W n  . Based on data of the tables, one can make the following observations for the corresponding graphs:




	
Values of the maximal Wiener complexity   C n   of all fullerene graphs do not decrease except for one case:    C 202  = 193   and    C 204  = 192  . For IPR fullerene graphs, we have four exceptions (see pairs    C 86  ,  C 88   ;    C 150  ,  C 152   ;    C 196  ,  C 198   , and    C 200  ,  C 202   ).



	
Wiener indices of fullerene and IPR fullerene graphs with maximal   C n   (  |  F n   | > 1   ) are not maximal except graphs of order   n = 28   with   W = 1198   (  |  F 28   | = 2   ).



	
Several fullerene or IPR fullerene graphs of fixed n may have the maximal complexity   C n  .



	
Almost all fullerene graphs with fixed   C n   have distinct Wiener indices except for two graphs of order 46 with    C n  = 25   and   W = 4289   and two IPR fullerene graphs of order 204 with    C n  = 180   and   W =   185,306.



	
Given n, only one fullerene graph has the maximal Wiener index while there are pairs of IPR fullerene graphs with the same maximal W (see graphs of order 132, 186, 204, 222, and 258).



	
The diameter D of graphs with fixed   C n   is less than or equal to the diameter of graphs with a maximal Wiener index for all fullerene graphs (with seven exceptions for IPR fullerene graphs of order 90, 92, 96, 100, 102, 116, and 124).



	
Fullerene graphs with the maximal Wiener index   W n   have the maximal diameter among all fullerenes. The values of the Wiener complexity of these graphs   C W   can vary greatly. This can be partially explained by the appearance of symmetries in graphs with   W n  .








It is of interest how the pentagons are distributed among hexagons for fullerene graphs of   F n   with the maximal Wiener complexity   C n  ,   n ≤ 232  . Does there exist any regularity in the distribution of pentagons? Table 3 gives some information on the occurrence of pentagonal parts of a particular size in these graphs (an isolated pentagon forms a part). Here, N is the number of graphs in which pentagons form   N p   isolated connected parts. The considered fullerene graphs contain at most eight isolated parts.



Table 4 shows how many fullerene graphs with the maximal Wiener complexity have isolated pentagons. Here, N is the number of graphs having   N i   isolated pentagons. These fullerene graphs contain at most five isolated pentagons.



Does there exist an IPR fullerene graph with maximal Wiener complexity   C n   (lines of Figure 2 will have an intersection for    g n  ≠ 0  )? We believe that the answer to this question will be positive for sufficiently large n.




4. Fullerene Graphs with the Maximal Wiener Index


The Wiener index of fullerene graphs was studied in [7,8,12,13,15,16,17,18,19,20,42]. A class of fullerene graphs of tubular shapes is called nanotubical fullerene graphs. They have cylindrical shape with the two ends capped by subgraphs containing six pentagons and possibly some hexagons called caps (see an illustration in Figure 3).



Consider fullerene graphs with the maximal Wiener indices (see Table 1). Five graphs of   F 20  –  F 28   and   F 34   contain one pentagonal part and the other 102 graphs possess two pentagonal parts. Two pentagonal parts of every fullerene graph are the same and contain diametrical vertices. Therefore, such graphs are nanotubical fullerene graphs with caps containing identical pentagonal parts. All diagrams of the parts are depicted in Figure 4. Cap of types a–c have symmetries. The number of fullerene graphs having a given part is shown near diagrams.



Characteristics of the corresponding nanotubes are reported in [9]. We assume that a type of a cap is determined by the type of its pentagonal part. Types of caps of fullerene graphs are presented in column t of Table 1. Constructive approaches for enumeration of various caps were proposed in [25,26]. Consider every kind of cap type.



1. Type a. Caps of type a define (5,0)-nanotubical fullerene graphs. The structure of graphs of this infinite family   T a   is clear from an example in Figure 5a. Analytical formulas for diameter and the Wiener index of such fullerene graphs were obtained in [7,18]. To indicate the order of graph G, we will use notation   G n  . We rewrite the formulas in terms of n.



Proposition 2

([7,18]). Let   G n   be a nanotubical fullerene graph with caps of type a. It has   n = 10 k   vertices,   k ≥ 2  . Then,    C W   (  G n  )  = k  ,   D (  G n  ) = 2 k − 1  , and   W (  G 20  ) = 500  ,   W (  G 30  ) = 1435  ,   W (  G 40  ) = 3035  , and for   n ≥ 50  ,


     W (  G n  )    =     1 30    n 3  + 1175 n − 20,100  .     













Based on numerical data of Table 1, the similar results have been obtained for fullerene graphs of order   n ≤ 232   with caps of the other three types.



2. Type b. Caps of type b define (3,3)-nanotubical fullerene graphs. The structure of graphs of the corresponding family   T b   is clear from examples of Figure 5b. Vertices marked by v should be identified in every graph. Table 1 contains 28 such graphs.



Proposition 3.

Let   G n   be a nanotubical fullerene graph with caps of type b. It has   n = 6 k − 4 ≤ 232   vertices,   k ≥ 5  . Then,    C W   (  G n  )  =  ⌈ k / 2 ⌉   ,   D (  G n  ) = k + 1  , and for   n ≥ 26  ,


      W (  G n  )    =     1 36    n 3  + 27  n 2  + 156 n − 4352  .      













Two caps of type b have adjacent pentagonal rings only for   k = 5  . If fullerene graphs with caps of types a and b have the same number of vertices (  n = 10 k  ), then the graph with caps of type a has the maximal Wiener index.



3. Type c. Caps of type c define (4,2)-nanotubical fullerene graphs. Fullerene graphs with caps of type c will be splitted into two disjoint families,    T c  =  T  c 1   ∪  T  c 2    . The corresponding graphs are marked in column t of Table 1 by   c 1   (14 graphs) and   c 2   (13 graphs). The numbers of vertices of graphs of   T  c 1    and   T  c 2    are given in Table 5. The orders of graphs of   T c   do not coincide with the orders of graphs from the set    T a  ∪  T b   . By analysis of 3D-models of fullerene graphs, it is possible to determine the mutual position of their pentagonal parts. As an example, fragments of graphs with   n = 84   (case   c 1  ) and   n = 88   (case   c 2  ) vertices are depicted in Figure 6.



Proposition 4.






	(a) 

	
Let   G n   be a nanotubical fullerene graph of family   T  c 1   . Then, for   36 ≤ n ≤ 232  ,


      W (  G n  )    =     1 36    n 3  + 24  n 2  + 336 n − 7128  .      












	(b) 

	
Let   G n   be a nanotubical fullerene graph of family   T  c 2   . Then, for   52 ≤ n ≤ 232  ,


      W (  G n  )    =     1 36    n 3  + 24  n 2  + 336 n − 7192  .      

















The Wiener complexity and the diameter of   G n   are shown in Table 5.





4. Type d. Caps of type d define (5,1)-nanotubical fullerene graphs. Such graphs will be also splitted into two disjoint families,    T d  =  T  d 1   ∪  T  d 2    . The both families have 13 members (see graphs with marks   d 1   and   d 2   in column t of Table 1). The numbers of vertices of graphs of   T  d 1    and   T  d 2    are shown in Table 5. The orders of graphs of   T d   do not coincide with the orders of graphs from the set    T a  ∪  T b  ∪  T c   . An example of the mutual position of pentagonal parts of graphs from these families with   n = 78   and   n = 82   vertices are shown in Figure 6.



Proposition 5.






	(a) 

	
Let   G n   be a nanotubical fullerene graph of family   T  d 1   . Then,   W (  G 42  ) = 3415   and for   54 ≤ n ≤ 232  ,


      W (  G n  )    =     1 36    n 3  + 15  n 2  + 1068 n − 22,788  .      












	(b) 

	
Let   G n   be a nanotubical fullerene graph of family   T  d 2   . Then,   W (  G 46  ) = 4322   and for   58 ≤ n ≤ 232  ,


      W (  G n  )    =     1 36    n 3  + 15  n 2  + 1068 n − 22,756  .      

















The Wiener complexity and the diameter of   G n   are shown in Table 5.





The above considerations of fullerene graphs with   n ≤ 232   vertices lead to the following conjectures for all fullerene graphs.



Conjecture 1.

If a fullerene graph of an arbitrary sufficiently large order has the maximal Wiener index, then it is a nanotubical fullerene graph with caps of types a–d and its Wiener index is given by Propositions 2–5.





Conjecture 2.

The Wiener complexity and the diameter of fullerene graphs of an arbitrary sufficiently large order having the maximal Wiener index are given in Propositions 2–5.






5. IPR Fullerene Graphs with the Maximal Wiener Index


Numerical data for the Wiener indices of IPR fullerene graphs of order   n ≤ 270   are presented in Table 2. The structure of the table is the same as for fullerene graphs. Graphs with maximal Wiener index (column   W n  ) are nanotubical fullerene graphs with two identical caps. All caps are defined by four fragments shown in Figure 7. Caps of type a–c have no symmetries. The number of fullerene graphs having a given cap is shown near diagrams. Note that it is difficult to separate caps from each other when IPR fullerene graphs have a shape close to spherical one. Therefore, caps of types   b , c , d   can be recognized only for fullerene graphs of a sufficiently large number of vertices when graphs became nanotubical. A type of cap is indicated in column t of Table 2. Consider graphs with these caps.



1. Type a. Caps of type a define (5,5)-nanotubical fullerene graphs. Caps of this type can be positioned relative to each other in two ways. The structure of the corresponding graphs of this infinite families    T a  =  T  a 1   ∪  T  a 2     is described by examples in Figure 8. Analytical formulas for the Wiener index of these graphs are presented in [17]. We rewrite the formulas in terms of n.



Proposition 6

([17]).



(a) Let   G n   be a nanotubical IPR fullerene graph of family   T  a 1   . It has   n = 10 k   vertices,   k ≥ 11   and k is odd. Then,    C W   (  G n  )  =  ( k + 3 )  / 2  ,   D (  G n  ) = k + 3  , and


      W (  G n  )    =     1 60    n 3  + 75  n 2  + 1820 n − 95,400  .      











(b) Let   G n   be a nanotubical IPR fullerene graph of family   T  a 2   . It has   n = 10 k   vertices,   k ≥ 12   and k is even. Then,    C W   (  G n  )  =  ( k + 2 )  / 2  ,   D (  G n  ) = k + 3  , and


      W (  G n  )    =     1 60    n 3  + 75  n 2  + 1820 n − 97,200  .      













2. Type b. Caps of type b define (9,0)-nanotubical fullerene graphs. The caps can be positioned relative to each other in four ways    b 1  −  b 4    as shown in Figure 9. Since graphs with fragments of cases    b 1  ,  b 2    and    b 3  ,  b 4    almost always have the same Wiener index, we split graphs into two infinite families. Graphs having structures    b 1  ,  b 2    and    b 3  ,  b 4    form family   T  b 12    and   T  b 34   , respectively. Each family contains two graphs with the same maximal Wiener index for fixed n. Table 6 shows the number of vertices of the families. The difference between n of the neighboring graphs is 36. The numbers in table’s sells are the number of hexagonal rings (k) in the fragments connecting two caps (see Figure 9). The graph of order 168 with caps of type   b 4   has almost maximal Wiener index,   W =   116,097, while the maximal Wiener index is   W =   116,100. Remember that the graph of order 150 with the maximal Wiener index,   W =   87,335, has caps of type a. The graph of order 150 with caps of type   b 1   has the second maximal Wiener index,   W =   86,379, and the graph of type   b 2   has the third maximal Wiener index,   W =   86,373. The graphs of order 240 with caps of types   b 3   and   b 4   have the second maximal Wiener index,   W =   302,034 (the graph with the caps of type a gives maximum W).



Proposition 7.






	(a) 

	
Let   G n   be a nanotubical IPR fullerene graph of family   T  b 12   . It has   n = 36 k + 150 ≤ 270   vertices,   k ≥ 0  . Then,   D (  G n  ) = 4 k + 17   and


      W (  G n  )    =     1  46,656    859  n 3  + 3330  n 2  + 10,767,924 n − 559,139,976  .      












	(b) 

	
Let   G n   be a nanotubical IPR fullerene graph of family   T  b 34   . It has   n = 168 + 36 k ≤ 270   vertices,   k ≥ 0  . Then,   D (  G n  ) = 4 k + 19   and


      W (  G n  )    =     1  46,656    863  n 3  + 720  n 2  + 11,329,200 n − 598,893,696  .      



















3. Types c and d. Caps of types c and d generate many cases of their mutual arrangement. By analyzing the structure of fullerene graphs, we have preliminarily identified several families. The number of vertices of eight families of graphs with the caps of type c can be written as   n =  n 0  + 36 k  ,   k ≥ 0  , where    n 0  ∈  { 128 , 136 , 140 , 144 , 148 , 152 , 156 , 160 }   . For nine families of graphs with the caps of type d, we have   n =  n 0  + 44 k  ,   k ≥ 0  , where    n 0  ∈  { 130 , 134 , 138 , 146 , 150 , 154 , 158 , 162 , 166 }   .



Conjecture 3.

If an IPR fullerene graph of an arbitrary sufficiently large order has the maximal Wiener index, then it is a nanotubical fullerene graph with caps of types a–d and its Wiener index is given by Propositions 6 and 7 for graphs of types a and b.






6. Conclusions


Problems of finding fullerene graphs with the maximal Wiener complexity and Wiener index are studied. Numerical data show that graphs with the maximal Wiener complexity may exist for quite a large number of vertices. Some basic properties of fullerene graphs having the maximal Wiener index are established. We hope that the presented considerations will stimulate further study of the extremal fullerene graphs with respect to the Wiener index.



It is worth noting that, according to experimental studies, it was observed that there are no theoretically well founded correlations between the Wiener index and the predicted energetic stability of fullerene isomers in some cases [11,22]. In order to improve the prediction accuracy, Ori et al. defined a topological efficiency index  ρ  derived from the Wiener index [24].
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Figure 1. Distribution of fullerene graphs of   F 196   with respect to their Wiener complexity   C W   (N is the number of graphs). 
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Figure 2. Difference   g n   between order and the maximal Wiener complexity of fullerene graphs (bottom line) and IPR fullerene graphs (top line) of order   n ≤ 232  . 
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Figure 3. Construction of a nanotubical fullerene graph with two caps. 
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Figure 4. Pentagonal parts of caps for nanotubical fullerene graphs with the maximal Wiener index. 
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Figure 5. Structure of fullerene graphs with caps of types (a) and (b). 
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Figure 6. Mutual position of pentagonal parts for caps of types c and d. 
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Figure 7. Pentagonal parts of caps in nanotubical IPR fullerene graphs with the maximal Wiener index. 
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Figure 8. IPR fullerene graphs    G 110  ∈  T  a 1     (left) and    G 120  ∈  T  a 2     (right) with caps of type a. 
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Figure 9. Mutual positions of caps of type b in IPR fullerene graphs. 
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Table 1. Maximal Wiener complexity and Wiener indices of fullerene graphs.
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	n
	    C n    
	W
	D
	    W n    
	    C W    
	D
	t
	
	n
	    C n    
	W
	D
	    W n    
	    C W    
	D
	t





	20
	1
	500
	5
	500
	1
	5
	
	
	84
	70
	19,939
	13
	21,754
	21
	15
	   c 1   



	24
	2
	804
	5
	804
	2
	5
	
	
	
	
	20,076
	13
	
	
	
	



	26
	2
	987
	6
	987
	2
	6
	b
	
	86
	73
	21,404
	13
	23,467
	8
	16
	b



	28
	5
	1198
	6
	1198
	5
	6
	
	
	
	
	21,521
	13
	
	
	
	



	30
	7
	1431
	6
	1435
	3
	6
	a
	
	
	
	21,593
	13
	
	
	
	



	32
	9
	1688
	6
	1696
	3
	7
	b
	
	88
	73
	22,359
	13
	24,714
	21
	16
	   c 2   



	34
	10
	1973
	7
	1978
	10
	7
	
	
	
	
	22,421
	13
	
	
	
	



	
	
	1978
	7
	
	
	
	
	
	
	
	22,604
	13
	
	
	
	



	36
	14
	2288
	7
	2298
	8
	7
	   c 1   
	
	
	
	22,616
	13
	
	
	
	



	38
	18
	2627
	7
	2651
	4
	8
	b
	
	
	
	22,619
	13
	
	
	
	



	40
	19
	3001
	7
	3035
	4
	8
	a
	
	
	
	22,750
	14
	
	
	
	



	42
	22
	3397
	8
	3415
	19
	8
	   d 1   
	
	
	
	22,939
	14
	
	
	
	



	44
	25
	3830
	8
	3888
	4
	9
	b
	
	90
	79
	23,923
	14
	27,155
	9
	17
	a



	46
	25
	4285
	8
	4322
	19
	9
	   d 2   
	
	92
	80
	25,731
	15
	28,256
	8
	17
	b



	
	
	4289
	8
	
	
	
	
	
	94
	82
	26,793
	14
	28,910
	44
	17
	   d 2   



	
	
	4289
	8
	
	
	
	
	
	96
	84
	28,274
	14
	31,418
	24
	17
	   c 1   



	
	
	4291
	8
	
	
	
	
	
	
	
	28,317
	15
	
	
	
	



	48
	30
	4795
	9
	4858
	12
	9
	   c 1   
	
	98
	86
	30,068
	15
	33,651
	9
	18
	b



	50
	35
	5310
	9
	5455
	5
	9
	a
	
	100
	89
	31,196
	15
	36,580
	10
	19
	a



	52
	36
	5876
	9
	5994
	13
	10
	   c 2   
	
	102
	89
	32984
	15
	36,206
	47
	18
	   d 1   



	54
	37
	6475
	9
	6558
	22
	10
	   d 1   
	
	
	
	33,070
	15
	
	
	
	



	56
	40
	7114
	10
	7352
	5
	11
	b
	
	
	
	33,226
	15
	
	
	
	



	58
	43
	7782
	10
	7910
	25
	11
	   d 2   
	
	
	
	33,505
	15
	
	
	
	



	
	
	7822
	10
	
	
	
	
	
	104
	91
	34,402
	15
	39,688
	9
	19
	b



	60
	44
	8437
	10
	8880
	6
	11
	a
	
	
	
	34,529
	15
	
	
	
	



	
	
	8466
	10
	
	
	
	
	
	
	
	36,801
	17
	
	
	
	



	
	
	8490
	10
	
	
	
	
	
	106
	93
	36,648
	16
	40,278
	47
	19
	   d 2   



	62
	46
	9202
	10
	9651
	6
	12
	b
	
	
	
	36,664
	16
	
	
	
	



	
	
	9220
	11
	
	
	
	
	
	
	
	37,594
	17
	
	
	
	



	
	
	9250
	11
	
	
	
	
	
	108
	96
	38,033
	15
	43,578
	27
	19
	   c 1   



	64
	49
	9988
	11
	10,410
	15
	12
	   c 2   
	
	110
	98
	40,154
	16
	48,005
	11
	21
	a



	
	
	9993
	11
	
	
	
	
	
	
	
	41,419
	17
	
	
	
	



	
	
	10,003
	11
	
	
	
	
	
	112
	100
	41,940
	17
	48,234
	27
	20
	   c 2   



	
	
	10,013
	11
	
	
	
	
	
	114
	102
	43,885
	16
	49,318
	52
	20
	   d 1   



	
	
	10,016
	11
	
	
	
	
	
	116
	102
	45,437
	16
	53,832
	10
	21
	b



	66
	50
	10,814
	11
	11,126
	30
	12
	   d 1   
	
	
	
	46,632
	17
	
	
	
	



	
	
	10,842
	11
	
	
	
	
	
	
	
	46,798
	17
	
	
	
	



	68
	56
	11,714
	11
	12,376
	6
	13
	b
	
	
	
	47,927
	18
	
	
	
	



	70
	56
	12,589
	11
	13,505
	7
	13
	a
	
	118
	106
	47,059
	15
	54,310
	50
	21
	   d 2   



	72
	56
	13,407
	11
	14,298
	18
	13
	   c 1   
	
	
	
	47,489
	16
	
	
	
	



	
	
	13,448
	11
	
	
	
	
	
	
	
	47,697
	16
	
	
	
	



	
	
	13,453
	11
	
	
	
	
	
	120
	110
	49,143
	16
	61,630
	12
	23
	a



	
	
	13,567
	12
	
	
	
	
	
	
	
	49,606
	17
	
	
	
	



	
	
	13,578
	12
	
	
	
	
	
	122
	109
	51,344
	16
	62,011
	11
	22
	b



	
	
	13,766
	12
	
	
	
	
	
	
	
	51,456
	16
	
	
	
	



	74
	61
	14,521
	12
	15,563
	7
	14
	b
	
	
	
	51,933
	17
	
	
	
	



	76
	63
	15,867
	13
	16,554
	18
	14
	   c 2   
	
	
	
	52,974
	17
	
	
	
	



	78
	64
	16,834
	13
	17,398
	37
	14
	   d 1   
	
	
	
	53,070
	17
	
	
	
	



	
	
	16,877
	13
	
	
	
	
	
	124
	111
	54,105
	17
	64,170
	30
	22
	   c 2   



	80
	66
	17,727
	13
	19,530
	8
	15
	a
	
	
	
	55,050
	18
	
	
	
	



	
	
	17,832
	13
	
	
	
	
	
	
	
	55,789
	18
	
	
	
	



	82
	71
	19,075
	13
	19,918
	38
	15
	   d 2   
	
	
	
	57,358
	19
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	57,473
	19
	
	
	
	



	126
	115
	57,238
	18
	65,286
	57
	22
	   d 1   
	
	186
	177
	167,300
	26
	198,046
	82
	32
	   d 1   



	128
	117
	60,434
	18
	70,976
	11
	23
	b
	
	188
	177
	154,868
	21
	211,776
	16
	33
	b



	130
	118
	63,736
	19
	77,655
	13
	25
	a
	
	190
	180
	169,849
	24
	235,405
	19
	37
	a



	
	
	63,922
	19
	
	
	
	
	
	192
	181
	163,370
	22
	222,778
	48
	33
	   c 1   



	
	
	65,396
	20
	
	
	
	
	
	194
	183
	187,947
	27
	231,763
	17
	34
	b



	132
	121
	62,917
	17
	76,538
	33
	23
	   c 1   
	
	
	
	191,290
	27
	
	
	
	



	134
	123
	64,935
	17
	80,763
	12
	24
	b
	
	196
	184
	174,774
	23
	236,394
	48
	34
	   c 2   



	
	
	65,225
	17
	
	
	
	
	
	
	
	178,192
	24
	
	
	
	



	
	
	68,161
	19
	
	
	
	
	
	
	
	178,529
	25
	
	
	
	



	136
	124
	69,838
	19
	83,274
	33
	24
	   c 2   
	
	
	
	179,284
	25
	
	
	
	



	138
	127
	72,311
	19
	84,398
	62
	24
	   d 1   
	
	
	
	184,011
	24
	
	
	
	



	
	
	73,771
	19
	
	
	
	
	
	198
	187
	177,296
	23
	237,198
	87
	34
	   d 1   



	140
	131
	73,644
	19
	96,280
	14
	27
	a
	
	
	
	189,530
	25
	
	
	
	



	142
	131
	79,852
	20
	91,518
	56
	25
	   d 2   
	
	200
	189
	180,683
	23
	273,830
	20
	39
	a



	144
	132
	77,934
	18
	97,914
	36
	25
	   c 1   
	
	
	
	192,365
	25
	
	
	
	



	
	
	78,924
	18
	
	
	
	
	
	202
	193
	210,388
	28
	251,318
	71
	35
	   d 2   



	146
	134
	86,095
	20
	102,947
	13
	26
	b
	
	204
	192
	189,450
	22
	265,274
	51
	35
	   c 1   



	
	
	86,287
	21
	
	
	
	
	
	206
	195
	221,909
	28
	275,427
	18
	36
	b



	
	
	87,298
	21
	
	
	
	
	
	
	
	221,995
	28
	
	
	
	



	
	
	87,442
	21
	
	
	
	
	
	
	
	222,097
	28
	
	
	
	



	148
	136
	86,432
	20
	105,834
	36
	26
	   c 2   
	
	208
	198
	201,644
	23
	280,554
	51
	36
	   c 2   



	150
	138
	87,886
	19
	117,705
	15
	29
	a
	
	210
	199
	238,572
	29
	316,255
	21
	41
	a



	
	
	88,860
	19
	
	
	
	
	
	212
	199
	207,617
	23
	299,176
	18
	37
	b



	
	
	92,732
	21
	
	
	
	
	
	
	
	207,975
	23
	
	
	
	



	
	
	93,898
	21
	
	
	
	
	
	
	
	209,707
	23
	
	
	
	



	152
	141
	92,988
	20
	115,416
	13
	27
	b
	
	
	
	211,942
	24
	
	
	
	



	154
	144
	97,359
	21
	115,270
	59
	27
	   d 2   
	
	
	
	215,779
	24
	
	
	
	



	156
	144
	95,579
	19
	122,938
	39
	27
	   c 1   
	
	
	
	228,285
	26
	
	
	
	



	
	
	96,997
	19
	
	
	
	
	
	
	
	228,507
	26
	
	
	
	



	
	
	98,864
	21
	
	
	
	
	
	
	
	228,922
	26
	
	
	
	



	158
	147
	100,055
	19
	128,851
	14
	28
	b
	
	214
	202
	226,652
	25
	297,030
	74
	37
	   d 2   



	160
	148
	103,952
	20
	142,130
	16
	31
	a
	
	
	
	247,352
	29
	
	
	
	



	
	
	108,170
	22
	
	
	
	
	
	
	
	250,978
	29
	
	
	
	



	162
	151
	104,909
	19
	133,206
	72
	28
	   d 1   
	
	216
	204
	220,131
	23
	312,858
	54
	37
	   c 1   



	
	
	116,278
	23
	
	
	
	
	
	
	
	226,928
	25
	
	
	
	



	164
	153
	110,088
	20
	143,288
	14
	29
	b
	
	
	
	240,920
	27
	
	
	
	



	166
	155
	117,531
	21
	142,838
	62
	29
	   d 2   
	
	
	
	270,770
	33
	
	
	
	



	
	
	119,485
	23
	
	
	
	
	
	218
	209
	260,324
	30
	324,251
	19
	38
	b



	168
	157
	114,316
	18
	151,898
	42
	29
	   c 1   
	
	220
	211
	233,711
	25
	362,880
	22
	43
	a



	
	
	126,632
	23
	
	
	
	
	
	222
	211
	240,755
	26
	330,406
	97
	38
	   d 1   



	170
	159
	123,193
	22
	169,755
	17
	33
	a
	
	
	
	273,605
	30
	
	
	
	



	
	
	130,548
	24
	
	
	
	
	
	
	
	273,701
	30
	
	
	
	



	172
	160
	129,708
	22
	162,474
	42
	30
	   c 2   
	
	
	
	273,813
	30
	
	
	
	



	174
	164
	131,354
	23
	163,478
	77
	30
	   d 1   
	
	224
	214
	248,633
	27
	350,688
	19
	39
	b



	176
	165
	130,105
	20
	175,312
	15
	31
	b
	
	226
	217
	288,789
	31
	347,998
	77
	39
	   d 2   



	178
	167
	141,743
	23
	174,510
	65
	31
	   d 2   
	
	228
	218
	258,913
	25
	365,818
	57
	39
	   c 1   



	
	
	150,696
	25
	
	
	
	
	
	230
	221
	269,286
	27
	413,905
	23
	45
	a



	180
	168
	139,697
	21
	200,780
	18
	35
	a
	
	
	
	295,719
	31
	
	
	
	



	182
	171
	144,410
	21
	192,971
	16
	32
	b
	
	232
	221
	292,719
	28
	384,714
	57
	40
	   c 2   



	184
	172
	146,581
	22
	197,130
	45
	32
	   c 2   
	
	
	
	
	
	
	
	
	



	
	
	147,054
	21
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	153,615
	23
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	154,923
	23
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Table 2. Maximal Wiener complexity and Wiener indices of IPR fullerene graphs.
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	n
	    C n    
	W
	D
	    W n    
	    C W    
	D
	t
	
	n
	    C n    
	W
	D
	    W n    
	    C W    
	D
	t





	60
	1
	8340
	9
	8340
	1
	9
	
	
	156
	130
	94,028
	17
	95,340
	37
	18
	c



	70
	5
	12,375
	10
	12,375
	5
	10
	
	
	158
	132
	97,061
	17
	98,238
	72
	18
	d



	72
	4
	13,284
	10
	13,284
	5
	10
	
	
	160
	135
	100,031
	17
	103,500
	9
	19
	   a 2   



	74
	6
	14,275
	10
	14,275
	6
	10
	
	
	162
	136
	103,213
	17
	104,799
	72
	18
	d



	76
	13
	15,248
	10
	15,294
	4
	10
	
	
	
	
	103,842
	18
	
	
	
	



	78
	14
	16,305
	11
	16,365
	8
	11
	
	
	164
	137
	106,920
	18
	108,598
	40
	19
	c



	80
	17
	17,412
	11
	17,600
	1
	11
	   a 2   
	
	166
	141
	109,926
	18
	111,660
	77
	18
	d



	82
	19
	18,533
	11
	18,633
	7
	11
	
	
	168
	142
	113,094
	17
	116,100
	18
	19
	   b 3   



	84
	25
	19,664
	11
	19,734
	10
	11
	
	
	
	
	113,725
	18
	
	
	
	



	86
	39
	20,864
	11
	21,007
	14
	11
	
	
	170
	145
	116,472
	17
	121,575
	10
	20
	   a 1   



	88
	36
	22,097
	11
	22,244
	14
	11
	
	
	
	
	116,713
	18
	
	
	
	



	90
	39
	23,406
	12
	23,546
	15
	11
	   a 1   
	
	
	
	117,141
	19
	
	
	
	



	
	
	23,445
	12
	
	
	
	
	
	172
	146
	120,328
	18
	123,010
	41
	20
	c



	92
	41
	24,761
	12
	24,890
	13
	11
	
	
	
	
	120,379
	18
	
	
	
	



	94
	48
	26,111
	12
	26,262
	21
	12
	
	
	
	
	120,404
	18
	
	
	
	



	96
	49
	27,589
	12
	27,738
	6
	11
	
	
	
	
	120,859
	18
	
	
	
	



	98
	55
	29,016
	12
	29,164
	24
	12
	
	
	174
	148
	123,729
	18
	126,254
	78
	19
	d



	100
	55
	30,567
	12
	30,770
	10
	13
	   a 2   
	
	
	
	123,765
	18
	
	
	
	



	
	
	30,590
	12
	
	
	
	
	
	
	
	123,767
	18
	
	
	
	



	
	
	30,551
	13
	
	
	
	
	
	
	
	124,309
	19
	
	
	
	



	102
	59
	32,133
	13
	32,275
	28
	12
	
	
	176
	150
	127,275
	18
	130,684
	44
	20
	c



	104
	65
	33,677
	12
	33,946
	7
	13
	
	
	
	
	127,354
	18
	
	
	
	



	106
	69
	35,406
	13
	35,547
	32
	13
	
	
	
	
	127,583
	18
	
	
	
	



	108
	70
	37,097
	13
	37,296
	26
	13
	
	
	178
	156
	131,619
	19
	134,008
	82
	20
	d



	110
	72
	38,849
	13
	39,055
	7
	14
	   a 1   
	
	180
	155
	135,137
	19
	141,540
	10
	21
	   a 2   



	112
	74
	40,689
	13
	40,878
	10
	13
	
	
	
	
	135,577
	19
	
	
	
	



	114
	76
	42,494
	13
	42,753
	17
	13
	
	
	182
	158
	138,427
	19
	142,031
	78
	20
	d



	
	
	42,500
	13
	
	
	
	
	
	184
	159
	142,077
	18
	146,918
	45
	21
	c



	116
	80
	44,426
	14
	44,616
	9
	13
	
	
	
	
	142,114
	18
	
	
	
	



	
	
	44,434
	13
	
	
	
	
	
	186
	163
	146,825
	19
	151,887
	20
	21
	   b 1   



	118
	81
	46,334
	13
	46,629
	33
	13
	
	
	
	
	147,381
	20
	151,887
	26
	21
	   b 2   



	120
	87
	48,386
	14
	48,820
	7
	15
	   a 2   
	
	188
	165
	150,899
	20
	155,512
	46
	21
	c



	122
	89
	50,445
	14
	50,691
	26
	14
	
	
	190
	169
	154,949
	20
	163,615
	11
	22
	   a 1   



	
	
	50,473
	14
	
	
	
	
	
	192
	170
	158,798
	19
	164,434
	47
	22
	c



	124
	91
	52,593
	14
	52,830
	11
	13
	
	
	194
	171
	162,674
	19
	168,005
	88
	21
	d



	
	
	52,635
	14
	
	
	
	
	
	
	
	162,770
	19
	
	
	
	



	126
	93
	54,737
	14
	54,950
	52
	14
	
	
	196
	176
	167,808
	20
	173,708
	46
	22
	c



	128
	96
	57,026
	15
	57,240
	32
	15
	c
	
	198
	175
	171,657
	20
	177,339
	92
	22
	d



	130
	97
	59,208
	14
	60,095
	8
	16
	   a 1   
	
	200
	180
	176,651
	20
	187,780
	11
	23
	   a 2   



	
	
	59,221
	15
	
	
	
	
	
	202
	178
	180,593
	20
	186,984
	94
	22
	d



	
	
	59,328
	15
	
	
	
	
	
	
	
	180,818
	21
	
	
	
	



	132
	100
	61,579
	15
	62,097
	14
	16
	   b 3   
	
	
	
	181,279
	21
	
	
	
	



	
	
	61,609
	15
	62,097
	20
	16
	   b 4   
	
	
	
	182,321
	20
	
	
	
	



	134
	102
	63,929
	15
	64,270
	57
	16
	d
	
	204
	180
	185,306
	20
	194,376
	22
	23
	   b 3   



	
	
	64,087
	15
	
	
	
	
	
	
	
	185,306
	20
	194,376
	28
	23
	   b 4   



	136
	105
	66,439
	16
	66,880
	33
	16
	c
	
	
	
	185,410
	21
	
	
	
	



	138
	108
	68,859
	15
	69,285
	57
	16
	d
	
	206
	183
	188,946
	20
	196,937
	92
	22
	d



	
	
	68,865
	15
	
	
	
	
	
	208
	186
	196,192
	21
	203,528
	50
	23
	c



	
	
	68,911
	16
	
	
	
	
	
	210
	188
	199,403
	21
	214,255
	12
	24
	   a 1   



	
	
	69,075
	16
	
	
	
	
	
	
	
	199,484
	21
	
	
	
	



	140
	111
	71,543
	16
	72,860
	8
	17
	   a 2   
	
	212
	189
	203,781
	20
	214,178
	51
	24
	c



	142
	114
	74,058
	16
	74,558
	64
	16
	d
	
	
	
	204,706
	21
	
	
	
	



	144
	117
	76,661
	16
	77,480
	34
	17
	c
	
	
	
	205,041
	21
	
	
	
	



	146
	117
	79,350
	16
	80,068
	65
	17
	d
	
	214
	191
	209,844
	21
	217,915
	95
	23
	d



	148
	119
	82,141
	16
	83,160
	35
	17
	c
	
	
	
	209,858
	21
	
	
	
	



	150
	127
	85,249
	17
	87,335
	9
	18
	   a 1   
	
	
	
	209,885
	21
	
	
	
	



	152
	124
	88,004
	17
	89,106
	38
	18
	c
	
	
	
	210,112
	21
	
	
	
	



	154
	127
	90,792
	16
	91,921
	68
	18
	d
	
	216
	192
	213,004
	20
	225,212
	51
	24
	c



	
	
	90,969
	17
	
	
	
	
	
	
	
	213,920
	21
	
	
	
	



	
	
	91,173
	17
	
	
	
	
	
	
	
	
	
	
	
	
	



	218
	195
	218,701
	21
	228,952
	102
	23
	d
	
	244
	223
	294,943
	23
	313,078
	58
	27
	c



	
	
	219,051
	21
	
	
	
	
	
	246
	225
	298,839
	23
	316,562
	117
	26
	d



	
	
	219,302
	21
	
	
	
	
	
	248
	228
	310,038
	25
	327,240
	60
	27
	c



	
	
	219,702
	22
	
	
	
	
	
	250
	228
	313,548
	24
	344,535
	14
	28
	   a 1   



	220
	197
	223,863
	21
	243,020
	12
	25
	   a 2   
	
	252
	231
	323,180
	25
	341,826
	63
	28
	c



	
	
	224,835
	21
	
	
	
	
	
	
	
	328,878
	26
	
	
	
	



	
	
	226,742
	22
	
	
	
	
	
	254
	233
	324,097
	23
	345,088
	121
	26
	d



	222
	199
	230,922
	22
	244,209
	24
	25
	   b 1   
	
	256
	235
	328,374
	23
	356,860
	63
	28
	c



	
	
	
	
	244,209
	28
	25
	   b 2   
	
	
	
	328,471
	23
	
	
	
	



	224
	202
	235,105
	21
	248,358
	55
	25
	c
	
	
	
	329,926
	24
	
	
	
	



	226
	204
	237,981
	21
	252,089
	101
	24
	d
	
	258
	237
	336,694
	24
	368,499
	30
	29
	   b 1   



	228
	205
	246,587
	22
	260,504
	53
	25
	c
	
	
	
	
	
	368,499
	26
	29
	   b 2   



	230
	208
	252,526
	23
	274,295
	13
	26
	   a 1   
	
	260
	240
	348,484
	25
	383,700
	14
	29
	   a 2   



	232
	210
	260,165
	23
	273,042
	57
	26
	c
	
	262
	242
	349,765
	24
	374,298
	123
	27
	d



	
	
	262,089
	23
	
	
	
	
	
	264
	242
	357,069
	24
	388,198
	65
	29
	c



	234
	213
	262,982
	23
	276,696
	107
	25
	d
	
	
	
	358,221
	24
	
	
	
	



	236
	215
	267,862
	22
	285,996
	58
	26
	c
	
	
	
	360,379
	24
	
	
	
	



	238
	216
	275,410
	23
	289,583
	111
	25
	d
	
	
	
	362,260
	25
	
	
	
	



	
	
	276,644
	23
	
	
	
	
	
	266
	246
	364,584
	25
	391,052
	127
	28
	d



	240
	219
	282,476
	23
	308,060
	13
	27
	   a 2   
	
	268
	247
	380,916
	26
	404,536
	67
	29
	c



	242
	222
	292,194
	25
	302,885
	114
	26
	d
	
	270
	250
	375,313
	24
	425,775
	15
	30
	   a 1   
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Table 3. The number of graphs with   N p   isolated pentagonal parts.






Table 3. The number of graphs with   N p   isolated pentagonal parts.





	   N p   
	1
	2
	3
	4
	5
	6
	7
	8



	N
	9
	8
	27
	66
	45
	42
	9
	1
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Table 4. The number graphs with   N i   isolated pentagons.






Table 4. The number graphs with   N i   isolated pentagons.





	   N i   
	0
	1
	2
	3
	4
	5



	N
	23
	56
	50
	47
	26
	5
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Table 5. Parameters of fullerene graphs with   n ≤ 232   vertices and caps of types c and d (  k ≥ 0  ).






Table 5. Parameters of fullerene graphs with   n ≤ 232   vertices and caps of types c and d (  k ≥ 0  ).





	
Family   T  c 1    

	
Family   T  c 2    




	
n

	
   C W   

	
D

	
n

	
   C W   

	
D




	
   60 k + 96   

	
   15 k + 24   

	
   10 k + 17   

	
   60 k + 76   

	
   15 k + 18   

	
   10 k + 14   




	
   60 k + 48   

	
   15 k + 12   

	
   10 k + 9   

	
   60 k + 88   

	
   15 k + 21   

	
   10 k + 16   




	
   60 k + 72   

	
   15 k + 18   

	
   10 k + 13   

	
   60 k + 112   

	
   15 k + 27   

	
   10 k + 20   




	
   60 k + 84   

	
   15 k + 21   

	
   10 k + 15   

	
   60 k + 64   

	
   15 k + 15   

	
   10 k + 12   




	
Family   T  d 1   

	
Family   T  d 2   




	
n

	
   C W   

	
D

	
n

	
   C W   

	
D




	
   60 k + 126   

	
   25 k + 57   

	
   10 k + 12   

	
   60 k + 106   

	
   15 k + 47   

	
   10 k + 19   




	
   60 k + 78   

	
   25 k + 37   

	
   10 k + 4   

	
   60 k + 118   

	
   15 k + 50   

	
   10 k + 21   




	
   60 k + 102   

	
   25 k + 47   

	
   10 k + 8   

	
   60 k + 142   

	
   15 k + 56   

	
   10 k + 25   




	
   60 k + 114   

	
   25 k + 52   

	
   10 k + 10   

	
   60 k + 94   

	
   15 k + 44   

	
   10 k + 17   
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Table 6. IPR fullerene graphs with caps of type b.






Table 6. IPR fullerene graphs with caps of type b.





	

	
    T  b 12     

	
    T  b 34     






	
n

	
150

	
186

	
222

	
258

	
132

	
168

	
204

	
240

	
276




	
   b 1   

	
2

	
3

	
4

	
5

	

	

	

	

	




	
   b 2   

	
2

	
3

	
4

	
5

	

	

	

	

	




	
   b 3   

	

	

	

	

	
2

	
3

	
4

	
5

	
6




	
   b 4   

	

	

	

	

	
2

	
3

	
4

	
5

	
6
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