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Abstract: Coupled fluid-structure is significant in many aspects of engineering applications such
as aerospace fuel tanks, the seismic safety of storage tanks and tuned liquid dampers. Numerical
investigation of the effects of thin plate cover over a cylindrical rigid fuel tank filled by an inviscid,
irrotational, and incompressible fluid is investigated. Governing equations of fluid motion coupled
by plate vibration are solved analytically. A parameter study on the natural frequency of coupled
fluid-structure interaction is performed. The results show the non-dimensional natural frequency
of coupled fluid-structure is a function of mass ratio, plate elasticity number and aspect ratio.
This function is derived numerically for high aspect ratios which in companion with a semi-analytical
could be used in the engineering design of liquid tanks with a cover plate.
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1. Introduction

The coupling problem of structure and fluid interaction is a classic problem interested in various
engineering applications such as vehicle dynamics, aircraft dynamics, and storage tanks [1–5].
The storage tanks usually built from strong materials such as steels (for drums), stainless steels,
concrete, aluminum alloys, fiber-reinforced plastics (for fiber drum), and Timber which can bear
large elastic vibrational energy. These tanks are exposed to dead and live loads such as snow, wind
(vortex oscillation), seismic, buckling, and earth pressures. When the structure is assumed to have
the many mass vibration system, modal analysis is a useful tool for the design of yield shear force of
the convective mass vibration, damage to the structure (cumulative plastic strain energy), and water
pressure imposed on the tank. That analysis needs the natural frequency of the maximum number of
vibration modes that influence seismic responses.

One of the first analytical methods proposed to solve that problem is the Rayleigh–Ritz method [6].
The application of the method of Rayleigh–Ritz on the structure and fluid interaction with weak
coupling [5] and strong coupling [7] was investigated by Amabili [7]. Various methods are applied
to find the solution of the coupled fluid-structure interaction such as artificial spring method [8],
finite element formulation [9], Galerkin method [10], time-marching technique [11], collocation
method [12], Rayleigh quotients method [13], boundary elements method [14], boundary integral
equation method [15]. Various numerical methods such as finite element, collocation, Rayleigh,
boundary elements, and boundary integral method are the approximation to the exact solution.
In the Rayleigh–Ritz method, the approximations to eigenvalue equations are found [5]. The finite
element method analytical solution of boundary value problems is used to get a system of algebraic
equations. In the Galerkin method [10] which is the popular method of finite element formulation [9],
the differential equation is converted from a continuous operator problem to a discrete problem.
In the collocation method, the idea is to choose a finite-dimensional space of proposed polynomial
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solutions and several domain points that satisfy the given equation at the collocation points [12].
In the boundary element method [14] the integral equations are solved by Green’s function elements
connecting pairs of source and field patches defined by the mesh form a matrix. The boundary element
method [15] is often more efficient than other methods [2] when there is a small surface to volume
ratio. Conceptually, it works by constructing the surface mesh. However, for many problems boundary
element methods are significantly less efficient than volume-discretization methods (finite element
method, finite difference method, finite volume method). The added complexity of the boundary
integral equation method could be overwhelmed by Compression techniques. Computational time
and the storage requirements by boundary element formulations grow according to the square of the
problem size while the finite element matrices are typically grown linearly with the problem size.

The fluid-structure coupling problem considered for various fluids such as dense fluids [16], the
frictionless liquid in zero gravity [17], and compressible fluid [18], filled with non-viscous liquid [19]
and various filling ratios for fluid-filled [19] and partially filled [20] were discussed in the literature.
One of the most interesting geometries is a circular cylinder container. A drum (also called barrels in
common usage) used in the shipping of dangerous powders and liquids, with 208 liters volume, has
an 880 millimeters tall and 610 millimeters diameter (H/a ≈ 2.9). Similar geometry is used for a barrel
of crude oil (72 cm × 43 cm).

On the other hand, the types of solid structures connected with fluid were composed of cylindrical
baffles [21], annular cylindrical tanks [22], ring-stiffeners and flexible bottom [23], annular baffle [24],
vertical baffle [25], submerged components [26], internal bodies [27,28], two identical plates [29],
immersed plate in a container [30]. As well the elastic structure bonding the fluids were initially
bent cylindrical shells [31] and composite shells with orthogonal stiffeners [32]. Based on the size the
containers are flexible and rigid. The design of a fluid-structure coupling problem in a cylindrical
tank is an interesting research theme with possible engineering practical applications on stiffeners.
Drums have chimes or rims at ends (chines). Most steel drums have reinforcing rolling hoops or rings
of thickened metal or plastic. Amabili [23] investigated the effect of ring-stiffeners and flexible bottom
on sloshing modes in cylindrical containers and drums.

Amabili [33] addresses a research theme in the area of fluid–solid interaction, focusing the
analytical solution of an interesting problem of coupled vibration of a fluid-filled cylindrical rigid
tank with an elastic top cover. The two kinds of drums are barrels (welded top) and the open top.
Vibrations of a circular flexible membrane or elastic plates resting on a sloshing liquid is a class of
problem which first studied by Amabili [33], for annular plate cover by Kim and Lee [34] and fully
covered case by Bauer [35]. Bauer [35] makes use of the Fourier–Bessel series expansion to analytically
derive the solution of the addressed problem, and perform a parametric study on the natural frequency
of the coupled fluid-structure interaction in clamped boundary condition and for varying characteristic
values of the system.

Considering all of the above, there is no research performed on the analytical solution of rigid
tank coupling with elastic cover with different support conditions. The analytical solution is not easy
to use by engineers but is the exact solution of the problem and has the benefits of a minimum number
of parameters and accuracy over the other methods such as finite element, collocation, Rayleigh,
boundary elements, and boundary integral method. The aim of the current study is finding the
analytical solution of a fluid-filled cylindrical container with rigid sides and bottom and elastic circular
plate over the top surface. In the next section mathematical model of the system in the fluid and solid
parts is presented.

2. Mathematical Model

2.1. Fluid Model

The schematic of the problem is shown in Figure 1. If the fluid field equations are linearized
for small displacements based on the linearized theory of water the flow potential is found from the
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Laplace equation. By assuming a simple harmonic motion with a radian frequency ω, the velocity
potential is

φ̃(t, r, z, θ) = iωeiωt φ(r, z, θ). (1)

In order to calculate the flow potential distribution, φ(r, θ, z, t), in the above equation ( i.e.,
Equation (1)) based on a typical power series, the fluid domain is defined mathematically as

domain = {(r, θ, z) : r < a, −H < z < 0}. (2)

The modal expansion method could be used for the fluid velocity potential as

φ =
∞

∑
s=1

Wnsφns, (3)

where φ is time-independent velocity potentials, the Wns is time-dependent coefficient of n-th mode,
and φns is n-th sloshing position dependent eigenfunctions.

The governing equation in the fluid region for φ is

∇2φ = 0, (4)

which satisfies the following boundary conditions:

∂φ

∂r
(r = 0) = 0, (5)

on the symmetric line (for −H < z < 0),

∂φ

∂r
(r = a) = 0 , (6)

on the rigid wall (for −H < z < 0), and

∂φ

∂z
(z = −H) = 0, (7)

on the container bottom (for 0 < r < a). The three–dimensional view of the problem with fluid–solid
interaction surface and the side boundary condition is shown in Figure 2. The solution of above
equations are (see Equation (1.40) in [1])

φ =
∞

∑
m=0

∞

∑
n=1

(
Jm(λmnr)

cosh(λmn(z + H))

cosh(λmn(H))

)
×(

αmn cos(mθ) + βmn sin(mθ)
)
,

(8)

where αmn and βmn are time–dependent coefficients could be found from the initial conditions of
free–surface or pressure distribution, λmn is mode coefficient in fluid domain, Jm(λmnr) is order m
of first kind Bessel function. The above definition should satisfy the linearized (neglecting from
circumferential and radial displacement) fluid–surface Kinematic boundary condition coupled by solid

∂φ̃

∂z
(z = 0) =

∂w̃
∂t

, (9)

for 0 < r < a where in the case of fluid without a cover the eigenvalue of the system is found from the
linearized boundary condition at free-surface

∂φ

∂z
(z = 0) =

ω2

g
φ(z = 0), (10)
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for 0 < r < a in which, g denotes the gravitational acceleration. The use of the analytical solution in
the above equation leads to (see Equation (1.43a) in [1])

ω2
mn = gλmn tanh(λmn H), (11)

where ωmn is the frequency of mode mn in fluid domain. As well for the sake of simplicity,
the axi-symmetric modes just considered then the solution in the fluid domain is

φ =
∞

∑
m=0

∞

∑
n=1

αmn cos(mθ)Jm(λmnr)
cosh(λmn(z + H))

cosh(λmn(H))
, (12)

and by assuming the axi-symmetric modes and wall boundary condition at the outer wall (See
Equation (6)) then in the fluid domain, the solution is

J′m(λmna) = 0 (13)

the roots of Equation (13) are presented in Table 1.

Table 1. Values of λmna satisfy Equation (13).

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

1 3.8317 1.8412 3.0542 4.2012 5.3175 6.4156
2 7.0156 5.3314 6.7061 8.0152 9.2824 10.5199
3 10.1735 8.5363 9.9695 11.3459 12.6819 13.9872
4 13.3237 11.7060 13.1704 14.5858 15.9641 17.3128
5 16.4706 14.8636 16.3475 17.7887 19.1960 20.5755

Figure 1. Geometry of the problem.
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Figure 2. The 3D view of the tank with boundary condition.

2.2. Solid Model

The governing equation of the solid motion with the variable of w for the transverse displacement
of a bent thin plate is presented by the following partial differential equation

D∇4w̃ + ρphp
∂2w̃
∂t2 = p̃. (14)

where the flexural rigidity (D) is defined by

D =
Eh3

12(1− v2)
, (15)

and ∇4 is the biharmonic operator that can be expanded as follows

∇4 = (∇2)(∇2). (16)

where

∇2 =
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2 +
∂2

∂z2 . (17)

As the pressure could be presented in the form of a harmonic function in time

p̃(t, r, θ, z) = eiωt p(r, θ, z) (18)

and displacement could be presented in the form of a harmonic function in time

w̃(t, r, θ, z) = eiωtw(r, θ, z) (19)

the classical differential equation of solid displacement from Equations (14) can be rewritten as

D∇4w + ρphp
∂2w
∂t2 = p. (20)

The pressure is made of two components of fluid pressure, p f , and the pressure caused by surface
elevation, pz,

p̃ = p̃ f + p̃z (21)

As the fluid is considered to be stuck to the solid at to boundary, the surface elevation pressure is
found by [35]

p̃z = ρ f gw̃(r, θ, z, t) (22)
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Using Bernoulli equation for the fluid pressure, p f , and neglecting the nonlinear terms,
the pressure of the fluid could be related to the time derivative of velocity potential of the fluid
(φ̃) and fluid density (ρ f ) [33]

p̃ f = −ρ f
∂φ̃

∂t
. (23)

Finally the simplified problem of solid motion from Equations (1), (20), (21), (22) and (23) which
should be solved is

D∇4w− ρphpω2w + ρ f gw = ρ f ω2
∞

∑
m=0

∞

∑
n=0

αmncos(mθ)Jm(λmnr), (24)

with the free surface condition of

w =
∞

∑
m=1

∞

∑
n=0

αmncos(mθ)Jm(λmnr)λmntanh(λmn H) (25)

3. Analytic Solution Procedure

3.1. Analytic Solution of Solid Deflection with Fluid Load

The general idea, for the solution of an inhomogeneous linear PDE with Equation (24) is to split
its solution into two parts

w = wh + wp. (26)

The first term, wh, is the homogeneous solution of Equation (24) and next term, wp, is the
in-homogeneous solution of the Equation (24) which has the same boundary condition (plus the initial
conditions as the time is a variable) of the full problem.

For the solution of the homogeneous equation, one can assume the Fourier components in θ as,

wh(r, θ) =
∞

∑
n=0

∞

∑
m=1

cos(nθ) Wnm(r) +
∞

∑
n=1

∞

∑
m=1

sin(nθ) W∗nm(r), (27)

where
Wnm(r) = anm Jn(knmr) + bnmYn(knmr) + cnm In(knmr) + dnmKn(knmr), (28)

and
W∗nm(r) = a∗nm Jn(knmr) + b∗nmYn(knmr) + c∗nm In(knmr) + d∗nmKn(knmr), (29)

respectively, where Yn and Jn are the second and first kind Bessel functions, respectively. As well,
the Kn, and In, are second and first kind modified Bessel functions. The mode coefficients
(anm, bnm, cnm, and dnm) determine the significance of the mode shape and could be found from the
initial condition and the boundary conditions. Thus, the general solution of a solid governing equation
in polar coordinates is (See Equation (1.18) in [5])

wh(r, θ) =
∞

∑
m=1

∞

∑
n=0

cos(nθ)
(
anm Jn(knmr) + bnmYn(knmr)+

cnm In(knmr) + dnmKn(knmr)
)

+
∞

∑
m=1

∞

∑
n=1

sin(nθ)
(
a∗nm Jn(knmr) + b∗nmYn(knmr)+

c∗nm In(knmr) + d∗nmKn(knmr)
)
,

(30)

When the polar coordinate origin is considered the same as the circular plate center (without
internal hole), the terms of Equation (1.18) in [5] involving Yn(kr) and Kn(kr) neglected as the value of
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the deflection at singular point (r = 0) has a finite value. When these simplifications are employed,
the modal displacement will be reduced to the following equation for a typical mode

wh(r, θ) =
∞

∑
m=1

∞

∑
n=0

cos(nθ)
(
anm Jn(knmr) + cnm In(knmr)

)
, (31)

The particular solution of Equation (24) with the aid of Equation (23) and the solution of fluid
potential (see Equation (12)) is

wp(r, θ) =
ρ f ω2

ρphpω2 − ρ f g
α00

+
∞

∑
m=0

∞

∑
n=1

ρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

cos(mθ)Jm(λmnr).

(32)

The solid deflection is

w(r, θ) =
∞

∑
n=0

cos(nθ)
(
an Jn(kr) + bn In(kr)

)
+

ρ f ω2

a2(ρphpω2 − ρ f g)
α00 +

∞

∑
m=1

∞

∑
n=0

ρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

cos(nθ)Jn(λmnr),

(33)

where

k =
4

√
ρphpω2 − ρ f g

D
(34)

difference between the above equation (Equation (34)) and Equation (30) is that here the k is a function
of ω and could be different from the natural frequency of the plate.

3.2. Boundary Conditions

3.2.1. Clamped Plate

The boundary condition of zero deflection at the perimeter is used both for clamped plate and
simply supported case. For the simply supported case and clamped plate, the plate displacement is
zero on the perimeter of the plate (r = a),

w(r = a, θ) = 0, (35)

By substitution of a instead of r in Equation (33)

w(a, θ) =

∞

∑
n=0

cos(nθ)
(
an Jn(ka) + bn In(ka)

)
+

ρ f ω2

ρphpω2 − ρ f g
α00

+
∞

∑
m=1

∞

∑
n=0

ρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

cos(nθ)Jn(λmna) ≡ 0,

(36)

which could be expanded to
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w(a, θ) = a0 J0(ka) + b0 I0(ka) +
ρ f ω2

ρphpω2 − ρ f g
α00+

∞

∑
m=1

ρ f ω2αm0

ρphpω2 − ρ f g− Dλ4
m0

J0(λm0a)

+
∞

∑
n=1

cos(nθ)
(
an Jn(ka) + bn In(ka) +

∞

∑
m=1

ρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

Jn(λmna)
)
≡ 0.

(37)

Since the boundary condition of Equation (35) for constant terms (i.e., n = 0) leads to

a0 J0(ka) + b0 I0(ka) +
ρ f ω2

ρphpω2 − ρ f g
α00+

+
∞

∑
m=1

αm0
ρ f ω2 J0(λm0a)

ρphpω2 − ρ f g− Dλ4
m0

= 0,

(38)

and for each cosine term (i.e., cos(nθ) where n 6= 0) leads to

an Jn(ka) + bn In(ka) +
∞

∑
m=1

αmn
ρ f ω2

ρphpω2 − ρ f g− Dλ4
mn

Jn(λmna) = 0. (39)

The second boundary condition which is devoted to just clamped plate case is

∂w
∂r

(a, θ) = 0. (40)

The first derivative of deflection with respect to the r at r = a is

∂w
∂r

(a, θ) = a0kJ′0(ka) + b0kI′0(ka)+

∞

∑
m=1

λm0ρ f ω2αm0

ρphpω2 − ρ f g− Dλ4
m0

J′0(λm0a)

+
∞

∑
n=1

cos(nθ)
(
ankJ′n(ka) + bnkI′n(ka)+

∞

∑
m=1

λmnρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

J′n(λmna)
)
,

(41)

By considering the wall boundary condition for the fluid (See Equation (13)) the boundary
condition of Equation (41) for constant terms ( i.e., n = 0 ) leads to

a0 J0
′(ka) + b0 I′0(ka) = 0, (42)

and for each cosine term (i.e., cos(nθ) where n 6= 0) leads to (i.e., m = 0 and n = 1, ..., ∞)

an J′n(ka) + bn I′n(ka) = 0. (43)

3.2.2. Simply Supported Plate

Simply supported plate is a combination of zero deflection at perimeter (i.e., Equations (38)
and (39)) and zero radial twisting moment at perimeter. As well the radial twisting moment
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Mr(r, θ) = −D
(∂2w

∂r2 + v
(1

r
∂w
∂r

+
1
r2

∂2w
∂θ2

))
, (44)

where at plate edge must be zero. i.e.,

∂2w
∂r2 + v

(1
r

∂w
∂r

+
1
r2

∂2w
∂θ2

)
= 0. (45)

The first deriviate of deflection respect to the r at r = a is retrieved from Equation (41) and the
second deriviate of deflection respect to the r at r = a is

∂2w
∂r2 (a, θ) =

a0k2 J′′0 (ka) + b0k2 I′′0 (ka)+
∞

∑
m=1

λ2
m0ρ f ω2αm0

ρphpω2 − ρ f g− Dλ4
m0

J′′0 (λm0a)

+
∞

∑
n=1

cos(nθ)
(
ank2 J′′n (ka) + bnk2 I′′n (ka)+

∞

∑
m=1

λ2
mnρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

J′′n (λmna)
)
.

(46)

The second derivative of deflection with respect to θ at r = a is

∂2w
∂θ2 (a, θ) =

− n2
∞

∑
n=1

cos(nθ)
(
an Jn(ka) + bn In(ka) +

∞

∑
m=1

ρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

Jn(λmna)
)
.

(47)

Since

a0k2 J′′0 (ka) + b0k2 I′′0 (ka)+
∞

∑
m=1

λ2
m0ρ f ω2αm0

ρphpω2 − ρ f g− Dλ4
m0

J′′0 (λm0a)

a0
kν

a
J′0(ka) + b0

kν

a
I′0(ka)+

∞

∑
m=1

νλm0
a ρ f ω2αm0

ρphpω2 − ρ f g− Dλ4
m0

J′0(λm0a)

+
∞

∑
n=1

cos(nθ)
(
ank2 J′′n (ka) + bnk2 I′′n (ka)+

∞

∑
m=1

λ2
mnρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

J′′n (λmna) + an
νk
a

J′n(ka) + bn
νk
a

I′n(ka)+

∞

∑
m=1

νλmn
a ρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

J′n(λmna)+

−n2ν

a2 an Jn(ka) +
−n2ν

a2 bn In(ka) +
∞

∑
m=1

−n2ν
a2 ρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

Jn(λmna)
)
≡ 0.

(48)

The boundary condition of Equation (45) for constant terms (i.e., n = 0) leads to
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a0k2 J′′0 (ka) + b0k2 I′′0 (ka)+
∞

∑
m=1

λ2
m0ρ f ω2αm0

ρphpω2 − ρ f g− Dλ4
m0

J′′0 (λm0a)

a0
kν

a
J′0(ka) + b0

kν

a
I′0(ka)+

∞

∑
m=1

νλm0
a ρ f ω2αm0

ρphpω2 − ρ f g− Dλ4
m0

J′0(λm0a)

= 0,

(49)

or in a simplified way

a0
(
k2 J′′0 (ka) +

kν

a
J′0(ka)

)
+ b0

(
k2 I′′0 (ka) +

kν

a
I′0(ka)

)
+

∞

∑
m=1

ρ f ω2αm0

ρphpω2 − ρ f g− Dλ4
m0

(
λ2

m0 J′′0 (λm0a) +
νλm0

a
J′0(λm0a)

)
= 0,

(50)

and for each cosine term (i.e., cos(nθ) where n 6= 0) leads to

ank2 J′′n (ka) + bnk2 I′′n (ka)+
∞

∑
m=1

λ2
mnρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

J′′n (λmna) + an
νk
a

J′n(ka) + bn
νk
a

I′n(ka)+

∞

∑
m=1

νλmn
a ρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

J′n(λmna)+

−n2ν

a2 an Jn(ka) +
−n2ν

a2 bn In(ka) +
∞

∑
m=1

−n2ν
a2 ρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

Jn(λmna)

= 0,

(51)

rearranged in the form

an
(
k2 J′′n (ka) +

νk
a

J′n(ka)− n2ν

a2 Jn(ka)
)
+ bn

(
k2 I′′n (ka) +

νk
a

I′n(ka)− n2ν

a2 In(ka)
)
+

∞

∑
m=1

ρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

(
λ2

mn J′′n (λmna) +
νλmn

a
J′n(λmna)− n2ν

a2 Jn(λmna)
)
= 0,

(52)

3.2.3. Kinematic Boundary Condition at Free Surface

Finally by considering the Kinematic boundary condition (See Equation (9)) of the fluid–solid
interaction for the region of the top surface of the fluid under the circular plate with the time
dependency relations (See Equations (1) and (19))

∂

∂t
w̃ =

∂

∂z
φ̃(z = H), (53)

for all values of r, θ, t on the plate position which is simplified by the aid of Equations (1) and (19) to

w =
∂

∂z
φ(z = H). (54)
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The equation (Equation (54)) can be explained by the system of equations with fluid motion
modes expansion.

w(r, θ) = wh(r, θ) + wp(r, θ) =
∞

∑
n=0

cos(nθ)
(
an Jn(knmr) + bn In(knmr)

)
+

ρ f ω2

ρphpω2 − ρ f g
α00 +

∞

∑
m=0

∞

∑
n=1

ρ f ω2αmn

ρphpω2 − ρ f g− Dλ4
mn

cos(mθ)Jm(λmnr) =

∂

∂z
φ(r, θ, z = H) =

∞

∑
m=0

∞

∑
n=1

αmn cos(mθ)Jm(λmnr) tanh(λmn(H))λmn,

(55)

The boundary condition at top surface (Equation (54))

a0 J0(kr) + b0 I0(kr) +
∞

∑
n=1

an cos(nθ)
(
an Jn(kr) + bn In(kr)

)
+

ρ f ω2

a2(ρphpω2 − ρ f g)
α00 +

∞

∑
n=0

∞

∑
m=1

αmn
( ρ f ω2

ρphpω2 − ρ f g− Dλ4
mn
−

tanh(λmn(H))λmn
)

cos(nθ)Jn(λmnr) = 0,

(56)

The boundary condition of Equation (54) for constant terms (i.e., n = 0) leads to

a0 J0(kr) + b0 I0(kr) +
ρ f ω2

a2(ρphpω2 − ρ f g)
α00+

∞

∑
m=1

αm0
( ρ f ω2

ρphpω2 − ρ f g− Dλ4
m0
− tanh(λm0(H))λm0

)
J0(λm0r) = 0,

(57)

and for each cosine term (i.e., cos(nθ) where n 6= 0) leads to

an Jn(kr) + bn In(kr)+
∞

∑
m=1

αmn
( ρ f ω2

ρphpω2 − ρ f g− Dλ4
mn
− tanh(λmn(H))λmn

)
Jn(λmnr) = 0,

(58)

Multiplying the above equation (Equation (56)) by Jm(λmnr)r and integrating over the whole
plate domain (i.e., ×

∫ a
0 Jm(λmnr)rdr) for m = 0 to m = ∞ the system of equations are closed.

4. Numerical Implementation

If the finite numbers of series is considered (i.e., m = 1, ..., M and n = 1, ..., N), for M(2 + N) + 2
variables (i.e., 1 for α00, M + 1 for ai, and M for αm0, and MN for αmn) there are M(2 + N) + 2
equations for simply supported case (i.e., 1 in Equation (38), M + 1 in Equation (39), 1 in Equation (50),
M + 1 in Equation (52), and M(1 + N) + 1 in multiplying Equation (56) by Bessel functions) and
there are M(2 + N) + 2 equations for clamped case (i.e., 1 in Equation (38), M + 1 in Equation (42),
1 in Equation (43), M + 1 in Equation (52), and M(1 + N) + 1 in multiplying Equation (56) by Bessel
functions). The Appendix A formula is used to simplify the final formulas. The equations and variables
are summarized in Table 2 and in detail in Tables 3 and 4.
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If the variables seen in a matrix form

X =



α00

αm0

a0

b0

am

bm

αmn


(59)

where 1 ≤ m ≤ M and 1 ≤ n ≤ N.
The equations can be re-written in the form matrix as

AX = 0 (60)

Table 2. System of equations and variables.

Clamped Simply Supported Number of Equations Symbol Number of Variables

Equation (38) Equation (38) 1 α00 1
Equation (42) Equation (50) 1 αm0 M
Equation (57) Equation (57) M + 1 αmn M× N
Equation (52) Equation (52) N a0 1
Equation (43) Equation (39) N b0 1
Equation (58) Equation (58) M× N an N

bn N

sum (M + 2)(1 + N) + 1 sum (M + 2)(1 + N) + 1

Table 3. Matrix of equations and variables for simply supported case.

Equation Number Number of Equations α00 αm0 a0 b0 an bn αmn

Equation (38) 1 X X X X
Equation (50) 1 X X X
Equation (57) M + 1 X X X X
Equation (52) N X X X
Equation (39) N X X X
Equation (58) M× N X X X

Table 4. Matrix of equations and variables for clamped case.

Equation Number Number of Equations α00 αm0 a0 b0 an bn αmn

Equation (38) 1 X X X X
Equation (42) 1 X X
Equation (57) M + 1 X X X X
Equation (52) N X X X
Equation (43) N X X
Equation (58) M× N X X X

4.1. Simply Supported Plate

In simply supported case, the rows of A are derived from Equations (38), (48), and (56) respectively.
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The coefficient matrix would be obtained as

A =



A11 A12 A13 A14 0 0 0
0 A22 A23 A24 0 0 0

A31 A32 A33 A34 0 0 0
0 0 0 0 A45 A46 A47

0 0 0 0 A55 A56 A57

0 0 0 0 A65 A66 A67


(61)

where

• A11 is a 1× 1 matrix as

A11 =
ρ f ω2

a2(ρphpω2 − ρ f g)
(62)

• A12 is a 1×M matrix as

A12 =
[ ρ f ω2 J0(λm0a)

ρphpω2 − ρ f g− Dλ4
m0

]
1×M (63)

where m is from 1 to M.
• A13 is a 1× 1 matrix as

A13 = J0(ka) (64)

• A14 is a 1× 1 matrix as
A14 = I0(ka) (65)

• A22 is a 1×M matrix as

A22 =
[ ρ f ω2

ρphpω2 − ρ f g− Dλ4
m0(

λ2
m0

J2(λm0a)− J0(λm0a)
2

− νλm0

a
J1(λm0a)

)]
1×M

(66)

where m is from 1 to M.
• A23 is a 1× 1 matrix as

A23 = k2 J2(ka)− J0(ka)
2

− kν

a
J1(ka) (67)

• A24 is a 1× 1 matrix as

A24 = k2 I2(ka) + I0(ka)
2

+
kν

a
I1(ka) (68)

• A31 is a (M + 1)× 1 matrix as

A31 =
ρ f ω2

a(ρphpω2 − ρ f g)
[ J1(λl0a)

λl0

]
(M + 1)×1 (69)

were l is from 0 to M and in calculation of A31(l + 1, 1) instead of J0(λ00r) the uniform unit
function ( f (r) = 1) should be considered.i.e.,

A31(1, 1) =
ρ f ω2

2(ρphpω2 − ρ f g)
(70)
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• A32 is a (M + 1)×M matrix as

A32 =
[( ρ f ω2

ρphpω2 − ρ f g− Dλ4
m0
− tanh(λm0(H))λm0

)
a(λk0 J1(λk0a)J0(λm0a)− λk0 J0(λk0a)J1(λm0a))

λ2
k0 − λ2

m0

]
(M + 1)×M,

(71)

where k is from 0 to M and m is from 1 to M. As well in calculation of A32(k + 1, m) at k =0 instead
of J0(λ00r) the uniform unit function ( f (r) = 1) should be considered.

A32(1, m) =
[( ρ f ω2

ρphpω2 − ρ f g− Dλ4
m0
− tanh(λm0(H))λm0

)
aJ0(λm0a)

λm0

]
1×M

(72)

• A33 is a (M + 1)× 1 matrix as

A33 =
[ a(λk0 J1(λk0a)J0(ka)− αJ0(λk0r)J1(ka))

λ2
k0 − k2

]
(M + 1)×1 (73)

where k is from 0 to M. In calculation of A33(k + 1, 1) at k =0 instead of J0(λ00r) the uniform unit
function ( f (r) = 1) should be considered.

A33(1, 1) =
aJ1(ka)

k
(74)

• A34 is a (M + 1)× 1 matrix as

A34 =
[ a(kJ0(λk0a)I1(ka) + λk0 J1(λk0a)I0(ka))

λ2
k0 + k2

]
(M + 1)×1 (75)

where k is from 0 to M. At k = 0 instead of J0(λ00r) the uniform unit function ( f (r) = 1) is
considered in calculation of A34(k + 1, 1).

A34(1, 1) =
aI1(ka)

k
(76)

• A45 is a diagonal N× N matrix where the element of A45(n, n) (n is from 1 to N) where defined as

A45 =
[
k2 Jn−2(ka)− 2Jn(ka) + Jn+2(ka)

4
+

νk
a

Jn−1(ka)− Jn+1(ka)
2

− n2ν

a2 Jn(ka)
]

N×N

(77)

• A46 is a diagonal N× N matrix where the element of A46(n, n) (n is from 1 to N) which defined as

A46 =
[
k2 In−2(ka) + 2In(ka) + In+2(ka)

4
+

νk
a

In−1(ka) + In+1(ka)
2

− n2ν

a2 In(ka)
]

N×N

(78)

• A47 is a N ×M matrix as

A47 =
[ρ f ω2(λ2

mn J′′n (λmna) + νλmn
a J′n(λmna)− n2ν

a2 Jn(λmna)
)

ρphpω2 − ρ f g− Dλ4
mn

]
N×M (79)
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n is from 1 to N and m is from 1 to M.
• A55 is a diagonal N× N matrix where the element of A55(n, n) (n is from 1 to N) where defined as

A55 =
[

Jn(ka)
]

N×N (80)

• A56 is a diagonal N× N matrix where the element of A56(n, n) (n is from 1 to N) which defined as

A56 =
[
In(ka)

]
N×N (81)

• A57 is a diagonal N × N matrix where the element of A57(n, n) (n is from 1 to N) wheredefined as

A57 =
[ ρ f ω2

ρphpω2 − ρ f g− Dλ4
mn

Jn(λmna)
]

N×N (82)

• A65 is a (MN)× N matrix which element of A65(p, n) is found from

A65 =
[ ∫ a

0
Jn(kr)Ji(λjir)rdr

]
(MN)×N (83)

where n = 1, ..., N, j = 1, ..., M, and p(i,j) = (j − 1)N + i.
• A66 is a (MN)× N matrix as which element of A66(p, n) is found from

A66 =
[ ∫ a

0
In(kr)Ji(λjir)rdr

]
(MN)×N (84)

where n = 1, ..., N, i = 1, ..., N, j = 1, ..., M, and p(i,j) = (j −1)N + i.
• A67 is a (MN)× (MN) matrix as where element of A67(p, q) is found from

A67 =
[ ∫ a

0

( ρ f ω2

ρphpω2 − ρ f g− Dλ4
mn
− tanh(λmnH)λmn

)
Jn(λmnr)Ji(λjir)rdr

]
(MN)×(MN)

(85)

where n = 1, ..., N, i = 1, ..., N, m is from 1 to M, j is from 1 to M, p(i,j) = (j − 1)N + i, and q(n,m) =
(m − 1)N + n.

4.2. Clamped Plate

The matrix A is defined by
The coefficient matrix would be obtained as

A =



A11 A12 A13 A14 0 0 0
0 0 A23 A24 0 0 0

A31 A32 A33 A34 0 0 0
0 0 0 0 A45 A46 A47

0 0 0 0 A55 A56 0
0 0 0 0 A65 A66 A67


(86)

The coefficients of A in above equation (Equation (86)) are same as simply supported case except:

• A23 is a 1× 1 matrix as
A23 = J′0(ka) (87)

• A24 is a 1× 1 matrix as
A24 = I′0(ka) (88)
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• A55 is a diagonal N × N matrix where the element of A55(n, n) (n is from 1 to N) are defined as

A55 =
[

J′n(ka)
]

N×N (89)

• A56 is a diagonal N× N matrix where the element of A56(n, n) (n is from 1 to N) which defined as

A56 =
[
I′n(ka)

]
N×N (90)

5. Results and Discussion

The analytical solutions which are obtained in the previous section, are investigated numerically
for the practical case. The numerical results in the current section have been derived by developing
code inside the MATLAB software. The natural frequencies are presented in Hz unit where f = ω

2π .
Usual material properties of the water tank storage are given in Table 5. The values are not fixed and
are averaged from various references. For example, the stone Poisson ratio is reported between 0.2 and
0.3 in various references but the value of 0.25 is chosen for the table. The last two rows of the Table 5
calculated for the special case of h = 1 mm and a = 1 m. As shown for that values the first parameter
ρphp
ρ f a is in order of 10−3 and second parameter

ρ f ga4

D is in order of 104. The geometrical and physical
properties of the fluid material and solid material are presented in Table 6. Relative errors of computing
axi-symmetric modes of the clamped cover plates are presented in Table 7. Table 7 presents the relative
error ( f

fexact
− 1) versus mode number and aspect ratios where the solution with ten expansion terms is

considered as the exact frequency (M = 10). The performance of the method is comparable with the
Table 4 in Amabili [33] where the convergence of the solution was discussed. As shown the use of the
current method causes the precise results in most cases by three terms in fluid expansion series with
three terms. Table 4 in Amabili [33] used 10 terms for the solid motion (in Table 7 just one term is used
for solid deflection) and 50 terms for liquid potential (As seen in Table 7 the M = 3 matches the exact

solution). Assessment of the non-dimensional angular velocity (ω∗ = ωa2
√

µ
D ) versus height ratio of

the tank ( H
a ) for the boundary condition of the clamped solid at the three axi-symmetric modes with

minimum values (n = 0 and n = 1) against the values presented in Tables 1 and 2 of Amabili [33] are
presented in Table 8. As shown a good agreement seen among the current study results and those of
Bauer ([35]) and Amabili ([33]) for axi-symmetric modes of the clamped cover plates (for n = 0 and
n = 1 modes). Results were found by one-term expansion of the solid plate deflection and 4 terms for
the liquid potential.

Table 5. Usual material properties of the water tank storage.

Property Unit Concrete Stone Fiberglass Steel Plastic

ρp kg/m3 2400 1600 100 8000 940
E kg/m s2 2× 1010 5× 1010 9× 1010 2× 1011 2× 109

ν - 0.15 0.25 0.21 0.29 0.4
(

ρphp
ρ f a )∗ - 2.4× 10−3 1.6× 10−3 10−4 8× 10−3 10−3

(
ρ f ga4

D )∗ - 5.754× 103 2.207× 103 1.250× 103 5.39× 102 4.9442× 104
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Table 6. Geometric and material properties of the system.

Property Value Unit

ρ f 1000 kg/m3

g 9.81 m/s2

a 0.5 m
hp 0.001 m
ρp 500 kg/m3

E 1.339× 1010 kg/m s2

ν 0.3 -
D 1.226 kg m2/s2

ρphp
ρ f a 10−3 -

ρ f ga4

D 500.1 -

Table 7. Relative errors of computing axi-symmetric modes of the clamped cover plates.

n H
a m = 1 m = 2 m = 3

0 0.1 0.0831 0 0
0 1 0.1415 0.0035 0
1 0.1 0.0536 0 0
1 1 0.1324 0 0

Table 8. Comparison of the first three axi-symmetric modes of the clamped cover plates with
Amabili [33].

n H
a 1st Mode 2nd Mode 3rd Mode

Present study 0 0.1 1.8127 5.9967 13.9843
Bauer ([35]) 0 0.1 1.7 5.9 13.8

Amabili ([33]) 0 0.1 1.52 5.79 13.83
Present study 0 1 2.8337 7.6383 15.9862
Bauer ([35]) 0 1 2.5 7.5 15.9

Amabili ([33]) 0 1 2.40 7.37 15.82
Present study 1 0.1 0.7517 3.4142 9.3799
Bauer ([35]) 1 0.1 0.69 3.3 9.3

Amabili ([33]) 1 0.1 0.52 3.18 9.21
Present study 1 1 1.5925 4.8556 11.3418
Bauer ([35]) 1 1 1.5 4.8 11.3

Amabili ([33]) 1 1 1.10 4.54 11.14

The non-dimensional fluid-structure frequencies for simply supported boundary condition
(presented by the dashed line in Figure 3) and clamped boundary condition (presented by solid line in

Figure 3) at ρphp
ρ f a = 10−3,

ρ f ga4

D = 500, and axi-symmetric mode n = 0 is plotted in Figure 3. As shown,
the agreement of results of the current study with non-dimensional fluid-structure frequencies for
clamped plate obtained by Bauer ([35]) is perfect. As exposed in all cases the clamped boundary
condition caused higher frequencies than the simply supported plate.
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Figure 3. The non-dimensional fluid-structure frequencies for simply supported boundary condition

(dashed lines) and clamped boundary condition (solid lines) at ρphp
ρ f a = 10−3, ρ f ga4

D = 500,
and axi-symmetric mode n = 0.

5.1. Clamped Plate

Assessment of the present results and the Bauer ([35]) results for other figures in plate cover
case has been performed in Figure 4. The dominant modes of the structure i.e., the first three mode
shapes are illustrated in Figure 4. The non-dimensional fluid-structure frequencies for clamped plate
ρphp
ρ f a = 10−4,

ρ f ga4

D = 103, and axi-symmetric mode n = 0, ρphp
ρ f a = 10−3,

ρ f ga4

D = 500, and axi-symmetric

mode n = 1, ρphp
ρ f a = 10−4,

ρ f ga4

D = 103, and axi-symmetric mode n = 1, ρphp
ρ f a = 10−3,

ρ f ga4

D = 500,
and axi-symmetric mode n = 2 is plotted in Figure 4. As shown, the agreement of results of the current
study with non-dimensional fluid-structure frequencies for clamped plate obtained by Bauer ([35]) are
matching. As for the common storage tank the aspect ratio ( h

a ) is above the unity the parameter study

of the natural frequencies as the function of the elastic parameter (
ρ f ga4

D ) and mass ratio ( ρphp
ρ f a ) is useful

for engineering design. For the first mode natural frequency at high aspect ratios, the natural frequency

grows monotonically with
ρ f ga4

D . As shown by the increase of the elastic parameter (
ρ f ga4

D ) and the

mass ratio ( ρphp
ρ f a ) the non-dimensional circular frequency (ω∗ = ωa2

√
µ
D ) is increased. The sensitivity

analysis of the results show that the mass ratio ( ρphp
ρ f a ) is the most important parameter on the detect

of natural frequency. The non-dimensional fluid-structure frequencies for clamped plate versus
ρ f ga4

D

and axi-symmetric mode n = 0 for various ρphp
ρ f a is plotted in Figure 5. As shown by the increase

of the elastic parameter (
ρ f ga4

D ) and mass ratio ( ρphp
ρ f a ) is useful for engineering design. As shown by

the increase of elastic parameter (
ρ f ga4

D ) and mass ratio ( ρphp
ρ f a ) the non-dimensional circular frequency

(ω∗ = ωa2
√

µ
D ) is increased. The non-dimensional fluid-structure frequencies for clamped plate

versus
ρ f ga4

D and axi-symmetric mode n = 1 for various ρphp
ρ f a is plotted in Figure 6. As illustrated

by an increase of the elastic parameter (
ρ f ga4

D ) and mass ratio ( ρphp
ρ f a ) is useful for engineering design.

As shown by the increase of elastic parameter (
ρ f ga4

D ) and mass ratio ( ρphp
ρ f a ) the non-dimensional circular

frequency (ω∗ = ωa2
√

µ
D ) is increased. The non-dimensional fluid-structure frequencies for clamped
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plate versus
ρ f ga4

D and axi-symmetric mode n = 2 for various ρphp
ρ f a is plotted in Figure 7. As illustrated

by an increase of the elastic parameter (
ρ f ga4

D ) and mass ratio ( ρphp
ρ f a ) is useful for engineering design.

As shown by the increase of elastic parameter (
ρ f ga4

D ) and mass ratio ( ρphp
ρ f a ) the non-dimensional circular

frequency (ω∗ = ωa2
√

µ
D ) is increased.

Figure 4. The non-dimensional fluid-structure frequencies for clamped plate (a) ρphp
ρ f a = 10−4,

ρ f ga4

D = 103, and axi-symmetric mode n = 0 (b) ρphp
ρ f a = 10−3, ρ f ga4

D = 500, and axi-symmetric

mode n = 1 (c) ρphp
ρ f a = 10−4, ρ f ga4

D = 103, and axi-symmetric mode n = 1 (d) ρphp
ρ f a = 10−3, ρ f ga4

D = 500,
and axi-symmetric mode n = 2.

Figure 5. The non-dimensional fluid-structure frequencies for clamped plate versus ρ f ga4

D and

axi-symmetric mode n = 0 for various ρphp
ρ f a .
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Figure 6. The non-dimensional fluid-structure frequencies for clamped plate versus ρ f ga4

D and

axi-symmetric mode n = 1 for various ρphp
ρ f a .

Figure 7. The non-dimensional fluid-structure frequencies for clamped plate versus ρ f ga4

D and

axi-symmetric mode n = 2 for various ρphp
ρ f a .

5.2. Simply Supported Plate

The modal analysis is required to find the inherent dynamic properties of the any domain in terms
of its natural frequencies. The non-dimensional fluid-structure frequencies for simply supported plate
ρphp
ρ f a = 10−4,

ρ f ga4

D = 103, and axi-symmetric mode n = 0, ρphp
ρ f a = 10−3,

ρ f ga4

D = 500, and axi-symmetric

mode n = 1, ρphp
ρ f a = 10−4,

ρ f ga4

D = 103, and axi-symmetric mode n = 1, ρphp
ρ f a = 10−3,

ρ f ga4

D = 500,
and axi-symmetric mode n = 2 is plotted in Figure 8. The dominant modes of the structure i.e., the
first three mode shapes are illustrated in Figure 8. As illustrated in Figure 8, the natural frequencies
are increased by an increase of aspect ratio. The comparison of the Figure 8 and Figure 4 is not simple
such as the results of zero modes Figure 3 for clamped plate and simply supported case. As exposed in
some cases the clamped boundary condition caused higher frequencies than the simply supported
plate and in some cases it was vice versa.
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Figure 8. The non-dimensional fluid-structure frequencies for simply supported plate (a) ρphp
ρ f a = 10−4,

ρ f ga4

D = 103, and axi-symmetric mode n = 0 (b) ρphp
ρ f a = 10−3, ρ f ga4

D = 500, and axi-symmetric mode

n = 1 (c) ρphp
ρ f a = 10−4, ρ f ga4

D = 103, and axi-symmetric mode n = 1 (d) ρphp
ρ f a = 10−3, ρ f ga4

D = 500,
and axi-symmetric mode n = 2.

The non-dimensional fluid-structure frequencies for clamped plate versus
ρ f ga4

D and axi-symmetric

mode n = 0 for various ρphp
ρ f a is plotted in Figure 9. As shown the parameter study of the natural

frequencies as the function of the elastic parameter (
ρ f ga4

D ) and mass ratio ( ρphp
ρ f a ) presents a linear

relation between the parameters in comparison with the nonlinear case was shown for clamped

case in Figure 5. As shown by the increase of elastic parameter (
ρ f ga4

D ) and mass ratio ( ρphp
ρ f a ) the

non-dimensional circular frequency (ω∗ = ωa2
√

µ
D ) is increased. The sensitivity analysis of the

results show that even the mass ratio ( ρphp
ρ f a ) is the most important parameter on the detect of natural

frequency, the elastic parameter (
ρ f ga4

D ) is more important than the nonlinear case was shown for
clamped case in Figure 5. The non-dimensional fluid-structure frequencies for clamped plate versus
ρ f ga4

D and axi-symmetric mode (n = 1) for various ρphp
ρ f a is plotted in Figure 10. In this case in contract

with linear behavior of the clamped case in Figure 5 a parabola shape is seen. It means that there

are some optimal values of elastic parameter (
ρ f ga4

D = 500) where the natural angular velocity of the
axi-symmetric mode (n = 1) is minimized. This frequency is important in horizontal movement of the

sloshing tanks. The non-dimensional fluid-structure frequencies for clamped plate versus
ρ f ga4

D and

axi-symmetric mode n = 2 for various ρphp
ρ f a is plotted in Figure 11. The fundamental angular velocity

of the axi-symmetric mode (n = 2) shows a parabola shape same as the fundamental angular velocity
of the axi-symmetric mode (n = 1).
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Figure 9. The non-dimensional fluid-structure frequencies for simply supported plate versus ρ f ga4

D and

axi-symmetric mode n = 0 for various ρphp
ρ f a .

Figure 10. The non-dimensional fluid-structure frequencies for simply supported plate versus ρ f ga4

D

and axi-symmetric mode n = 1 for various ρphp
ρ f a .

Figure 11. The non-dimensional fluid-structure frequencies for simply supported plate versus ρ f ga4

D

and axi-symmetric mode n = 2 for various ρphp
ρ f a .
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6. Conclusions

The analytical investigation of the effects of thin plate cover over a cylindrical rigid fuel tank filled
by an inviscid, irrotational, and incompressible fluid was investigated in the current study. Governing
equations of fluid motion coupled by plate vibration are found by the application of the Fourier–Bessel
series expansion. A parameter study on the fundamental angular velocity of coupled fluid-structure
motion is performed. The results show the non-dimensional fundamental angular velocity of a coupled
fluid-structure system is a function of mass ratio, plate elasticity number and aspect ratio. This function
is derived numerically for high aspect ratios which in companion with a semi-analytical could be used
in the engineering design of liquid tanks with a cover plate. As illustrated by an increase of the elastic

parameter (
ρ f ga4

D ) and mass ratio ( ρphp
ρ f a ) is useful for engineering design. As shown by the increase of

elastic parameter (
ρ f ga4

D ) and mass ratio ( ρphp
ρ f a ) the non-dimensional circular frequency (ω∗ = ωa2

√
µ
D )

is increased. As well the sensitivity analysis of the results shows that the mass ratio ( ρphp
ρ f a ) is the most

important parameter on the detect of natural frequency.
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Appendix A

The following formulas were used in simplification of Equations

J′n(z) =
Jn−1(z)− Jn+1(z)

2
(A1)

J′1(z) =
J0(z)− J2(z)

2
(A2)

J′0(z) = −J1(z) (A3)

J′′0 (z) =
J2(z)− J0(z)

2
(A4)

I′n(z) =
In−1(z) + In+1(z)

2
(A5)

I′1(z) =
I0(z) + I2(z)

2
(A6)

I′0(z) = I1(z) (A7)

I′′0 (z) =
I2(z) + I0(z)

2
(A8)∫

J0(z)zdz = J1(z)z (A9)

∫
J0(λl0r)rdr =

∫
J0(z)zdz

λ2
l0

=
J1(z)z

λ2
l0

=
J1(λl0r)r

λl0
(A10)

∫ a

0
J0(λl0r)rdr =

J1(λl0a)a
λl0

(A11)

∫
J0(λr)J0(αr)rdr =

r(λJ1(λr)J0(αr)− αJ0(λr)J1(αr))
λ2 − α2 (A12)∫

xJ0(ax)dx = (xJ1(ax))/a (A13)∫
xJ0(ax)I0(kx)dx = (x(kJ0(ax)I1(kx) + aJ1(ax)I0(kx)))/(a2 + k2) (A14)



Mathematics 2019, 7, 1070 24 of 25

∫
xI0(kx)dx = (xI1(kx))/k (A15)

J′′n (z) =
J′n−1(z)− J′n+1(z)

2

=
Jn−2(z)− Jn(z)− (Jn(z)− Jn+2(z))

4

=
Jn−2(z)− 2Jn(z) + Jn+2(z)

4

(A16)

I′′n (z) =
I′n−1(z) + I′n+1(z)

2

=
In−2(z) + In(z) + (In(z) + In+2(z))

4

=
In−2(z) + 2In(z) + In+2(z)

4

(A17)
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