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Abstract: This article is devoted to FELLER’s diffusion equation, which arises naturally in probability
and physics (e.g., wave turbulence theory). If discretized naively, this equation may represent serious
numerical difficulties since the diffusion coefficient is practically unbounded and most of its solutions
are weakly divergent at the origin. In order to overcome these difficulties, we reformulate this
equation using some ideas from the LAGRANGIAN fluid mechanics. This allows us to obtain a
numerical scheme with a rather generous stability condition. Finally, the algorithm admits an elegant
implementation, and the corresponding MATLAB code is provided with this article under an open
source license.
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1. Introduction

The celebrated FELLER equation was introduced in two seminal papers published by William
FELLER (1951/1952) in Annals of Mathematics [1,2]. These publications studied mathematically (and,
henceforth, gave the name) the following equation (To be more accurate, W. FELLER studied the
following equation [1]:

p t =
[

a x u
]

x x −
[
(c + b x) u

]
x ,

where a > 0 and 0 < x < +∞ .).

p t + F x = 0 , F (p, x, t)
def
:= −x ·

(
γ p + η p x

)
, (1)

where the subscripts t , x denote the partial derivatives, i.e., (·) t
def
:=

∂(·)
∂t

, (·) x
def
:=

∂(·)
∂x

. Two
parameters γ and η > 0 can be time-dependent in some physical applications, even if in this study we
assume they are constants, for the sake of simplicity (The numerical method we are going to propose
can be straightforwardly generalized for this case when γ = γ (t) and η = η (t) . Moreover, FELLER’s
processes with time-varying coefficients were studied recently in [3].). Equation (1) can be seen as the
FOKKER–PLANCK (or the forward KOLMOGOROV) equation, with γ x being the drift and η x being
the diffusion coefficients (see [4] for more information on the FOKKER–PLANCK equation). One can
notice also that Equation (1) becomes singular at x = 0 and x = +∞ . We remind that practically
important solutions to FELLER’s equation might be unbounded near x = 0 . In order to attempt
solving Equation (1), one has to prescribe an initial condition p (x, 0) = p 0 (x), presumably with a
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boundary condition at x = 0 . A popular choice is to prescribe the homogeneous boundary condition
p (0, t) ≡ 0 . For this choice of the boundary condition, it is not difficult to show that the FELLER

equation dynamics would preserve solution positivity provided that p 0 (x) > 0 (see Appendix A
for a proof). The solution norm is also preserved (see Appendix B). Moreover, using the LAPLACE

transform techniques, FELLER has shown in [1] that the initial condition p 0 (x) determines uniquely
the solution. In other words, no boundary condition at x = 0 should be prescribed. This conclusion
might appear, perhaps, to be counter-intuitive.

The great interest in FELLER’s equation can be explained by its connection to FELLER’s processes,
which can be described by the following stochastic differential LANGEVIN equation (The stochastic
differential equations are understood in the sense of ITŌ.):

dX t = − γ X t dt +
√

2 η X t dW t ,

whereW t is the standard WIENER process, i.e., ξ (t)
def
:=

dW t

dt
is zero-mean GAUSSIAN white noise, i.e.,

〈ξ (t)〉 = 0 , 〈ξ (t) ξ (s)〉 = δ (t − s) ,

where the brackets 〈·〉 denote an ensemble averaging operator. Then, the Probability Density Function
(PDF) p (x, t; x 0) of the process X (t) , i.e.,

P
{

x < X (t) < x + dx | X (0) = x 0
}
≡ p (x, t; x 0)dx,

satisfies Equation (1) with the following initial condition [5]:

p 0 (x) = δ (x − x 0) , x 0 ∈ R+ .

The point x = 0 is a singular boundary that the process X (t) cannot cross. The FELLER process
is a continuous representation of branching and birth–death processes, which never attains negative
values. This property makes it an ideal model not only in physical, but also in biological and social
sciences [3,6,7].

As a general comprehensive reference on generalized FELLER’s equations, we can mention the
book [8]. Since at least a couple of years ago there has again been a growing interest for studying
Equation (1). Some singular solutions to FELLER’s equation with constant coefficients were constructed
in [6] via spectral decompositions. FELLER’s equation and FELLER’s processes with time-varying
coefficients were studied analytically (always using the LAPLACE transform) and asymptotically in [3].

The FELLER (and FOKKER–PLANCK) equation ’has already made its appearance in optical
communications [9]. Recently, the FELLER equation was derived in the context of the weakly interacting
random waves dominated by four-wave interactions [10]. Wave Turbulence (We could define the
Wave Turbulence (WT) as a physical and mathematical study of systems where random and coherent
waves coexist and interact [11].) WT is a common name for such processes [11]. In WT, the FELLER

equation governs the PDF of squared FOURIER wave amplitudes, i.e., x ∼ | a | 2 . In [10], some steady
solutions to this equation with finite flux in the amplitude space were constructed (There is probably a

misprint in ([10] p. 366). To obtain mathematically correct solutions, one has to define n k
def
:=

η

γ
on

the line below Equation (14)). See also [12], Chapter 11 for a detailed discussion and interpretations.
Recently, the FELLER equation has been studied analytically in [13]. The authors applied the LAPLACE

transform to it in space (this computation can be found even earlier in [1], Equation (3.1)) and the
resulting non-homogeneous hyperbolic equation was solved using the method of characteristics along
the lines presented in ([1], Section §3) (see ([1], Equation (3.9)) for the general analytical solution).

The behaviour of solutions p (x, t) for large x describes the appearance probability of extreme
waves. In the context of ocean waves, these extreme events are known as rogue (or freak) waves [14].
In the WT literature, any noticeable deviation from the RAYLEIGH distribution for x � 1 is referred
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to as the anomalous probability distribution of large amplitude waves [10]. For GAUSSIAN wave fields,
all statistical properties can be derived from the spectrum. However, the PDFs and other higher order
moments are compulsory tools to study such deviations.

The present study focuses on the numerical discretization and simulation of FELLER equation.
The naive approach to solve this equation numerically encounters notorious difficulties. The first
question that arises is what is the (numerical) boundary condition to be imposed at x = 0 ? Moreover,
one can notice that Equation (1) is posed on a semi-infinite domain. There are three main strategies to
tackle this difficulty:

1. Map R+ on a finite interval [ 0, ` ];
2. Use spectral expansions on R+ (e.g., LAGUERRE or associated LAGUERRE polynomials);
3. Replace (truncate) R+ to [ 0, L ] , with L � 1 .

In most studies, the latter option is retained by imposing some appropriate boundary conditions
at the artificial boundary x = L . In our study, we shall propose a method that is able to handle the
semi-infinite domain R+ without any truncations or simplifications. Finally, the diffusion coefficient
in the FELLER Equation (1) is unbounded. If the domain is truncated at x = L , then the diffusion

coefficient takes the maximal value νmax
def
:= η L � 1 , which depends on the truncation limit L and

can become very large in practice. We remind also that explicit schemes for diffusion equations are
subject to the so-called COURANT–FRIEDRICHS–LEWY (CFL) stability conditions [15]:

∆t 6
∆x 2

2 νmax
.

Taking into account the fact that νmax can be arbitrarily large, no explicit scheme can be usable
with FELLER equation in practice. Moreover, the dynamics of the FELLER equation spread over the
spaceR+ even localized initial conditions. In general, one can show that the support of p (x, t) , t > 0
is strictly larger (Using modern analytical techniques, it is possible to show even sharper results on
the solution support, see e.g., [16].) than the one of p (x, 0) . It is the so-called retention property. Thus,
longer simulation times require larger domains. For all these reasons, it becomes clear that numerical
discretization of the FELLER equation requires special care.

In this study, we demonstrate how to overcome this assertion as well. The main idea behind
our study is to bring together PDEs and Fluid Mechanics. First, we observe that the classical
EULERIAN description is not suitable for this equation, even if the problem is initially formulated
in the EULERIAN setting. Consequently, the FELLER equation will be recast in special material or the
so-called LAGRANGIAN variables (It is known that both EULERIAN and LAGRANGIAN descriptions
were proposed by the same person, Leonhard EULER), which make the resolution easier and naturally
adaptive ([17], Chapter 7).

The present manuscript is organized as follows. The symmetry analysis of Equation (1) is
performed in Section 2. Then, the governing equation is reformulated in LAGRANGIAN variables
in Section 3. The numerical results are presented in Section 4. Finally, the main conclusions and
perspectives are outlined in Section 5.

2. Symmetry Analysis

In general, a linear PDE admits an infinity of conservation laws, with integrating multipliers
being solutions to the adjoint PDE [18]. Here, we provide an interesting conservation law, which was
found using the GEM MAPLE package [19]:(

E 1
(
−γ x

η

)
p
)

t
+ G x = 0 ,
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where E 1 (z)
def
:=

∫ +∞
1

e− t z

t dt is the so-called exponential integral function [20] and the flux G is
defined as

G (x, p)
def
:= −η e

γ x
η p − x

(
γ E 1

(
−γ x

η

)
p + η E 1

(
−γ x

η

)
p x

)
.

The symmetry group of point transformations can be computed using GEM package as well.
The infinitesimal generators are given below:

ξ 1 = D t ,

ξ 2 = p D p ,

ξ 3 = − e− γ t

γ
D t + e− γ t x D x − e− γ t p D p ,

ξ 4 =
e γ t

γ
D t + e γ t x D x −

γ e γ t

η
x p D p ,

ξ 5 = e (γ + c) t M
(

1 +
c
γ

, 1,
γ x
η

)
e−

γ x
η D p ,

ξ 6 = e (γ + c) t U
(

1 +
c
γ

, 1,
γ x
η

)
e−

γ x
η D p ,

where c ∈ R ,M (a, b, z) and U (a, b, z) are KUMMER special functions [20,21] (see also Appendix C).
The corresponding point transformations, which map solutions of (1) into other solutions, can be
readily obtained by integrating several ODE systems (we do not provide integration details here):(

t, x, p
)
7→

(
t + ε 1, x, p

)
,(

t, x, p
)
7→

(
t, x, eε 2 p

)
,

(
t, x, p

)
7→

( 1
γ

ln
(
ε 3 γ + e γ t), e γ t

ε 3 γ + e γ t x,
(
1 + ε 3 γ e− γ t) p

)
,

(
t, x, p

)
7→

(
t − 1

γ
ln
(
1 − ε 4 γ eγ t) ,

x
1 − ε 4 γ e γ t , e

−
ε 4 γ 2 x e γ t

η (1 − ε 4 γ e γ t) · p
)

,

(
t, x, p

)
7→

(
t, x, p + ε 5 M

(
1 +

c
γ

, 1,
γ x
η

)
e−

γ x
η + (γ + c) t

)
,

(
t, x, p

)
7→

(
t, x, p + ε 6 U

(
1 +

c
γ

, 1,
γ x
η

)
e−

γ x
η + (γ + c) t

)
.

The first symmetry is the time translation. The second one is the scaling of the dependent variable
(the governing equation is linear). Symmetries 3 and 4 are exponential scalings. Two last symmetries
express the fact that we can always add to the solution a particular solution to the homogeneous
equation to obtain another solution. For instance, the solutions invariant under time translations (ξ 1)
are steady states and their general form is the following:

p (x) = e−
γ x
η

(
C 1 E 1

(
−γ x

η

)
+ C 2

)
, (2)

where C 1, 2 are ‘arbitrary’ constants, which have to be determined from imposed conditions. Of course,
they should be chosen so that the resulting steady solution is a valid probability distribution. It is not
difficult to check that the imposed flux F on the steady state solution is equal to C 1 η . Some properties
of the exponential integral function are reminded in Appendix D.

We provide here also the general solutions invariant under the symmetry (ξ 3) :

p (x, t) =
(
C 2 − C 1 t +

C 1

γ
ln x

)
e−

γ x
η
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and under symmetry (ξ 4) :

p (x, t) =
(
C 1 + C 2 t +

C 2

γ
ln x

)
e γ t .

These solutions might be used, for example, to validate numerical codes.

Remark 1. As a byproduct of this analysis, we obtain two new exact solutions to the FELLER Equation (1):

p (x, t) = M
(
1 +

c
γ

, 1,
γ x
η

)
e−

γ x
η + (γ + c) t ,

p (x, t) = U
(
1 +

c
γ

, 1,
γ x
η

)
e−

γ x
η + (γ + c) t ,

for some constant c ∈ R .

3. Reformulation

By following the lines of ([17], Chapter 7), we are going to rewrite FELLER’s Equation (1) with
the so-called LAGRANGIAN or material variables. The main advantage of this formulation is due to
the fact that we can handle infinite domains without any truncations, transformations, etc. It becomes
possible to carry computations in infinite domains. Our domain is semi-infinite (x ∈ R+), with the
left boundary x = 0 being a reflection point.

As the first step, we introduce the distribution function associated to the probability density
p (x, t) :

P (x, t)
def
:=

∫ x

0
p (ξ, t)dξ . (3)

The same can be done for the initial condition as well:

P 0(x)
def
:=

∫ x

0
p 0 (ξ)dξ , p 0 ∈ W 1, 1

loc (R+) .

We notice also two obvious properties of the function P (x, t) :

∂ xP (x, t) ≡ p (x, t) , lim
x → 0

P (x, t) = 0 , lim
x → +∞

P (x, t) = 1 .

Due to the positivity preservation property (see Appendix A), the function P (x, t) is nondecreasing
in variable x . Thus, we can define its pseudo-inverse (This mapping is sometimes called in the literature
as the reciprocal mapping [17] or an order preserving string [22].):

X : [ 0, 1 ]×R+ 7→ R+ ,

which can be computed as

X (P̄ , t)
def
:= inf { ξ ∈ R+ |P (ξ, t) = P̄ } .

The operation of taking the pseudo-inverse can be also seen as a generalized hodograph
transformation (x, t; P) 7→ (P, t; x) proposed presumably for the first time by Sir W.R. HAMILTON [23].
Similarly, the initial condition does possess a pseudo-inverse as well:

X 0 (P̄)
def
:= inf { ξ ∈ R+ |P 0 (ξ) = P̄ } , (4)

such that X (P̄ , 0) ≡ X 0 (P̄) .
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If FELLER Equation (1) holds in the sense of distributions, then the following equation holds
as well:

P t − x
[

γ P + η P x

]
x
= 0 . (5)

along with the initial condition
P (x, 0) = P 0(x) .

Equation (5) can be readily obtained by exploiting the obvious property p (x, t) = ∂ x P (x, t) .
In Appendix A, we show that zero value of the solution p (x, t) is repulsive. Thus, ∂ x P (x, t) ≡
p (x, t) > 0 , ∀ (x, t) ∈

(
R+

) 2 . Thus, the implicit function theorem [24,25] guarantees the existence
of derivatives of the inverse mapping X (P̄ , t) . Let us compute them by differentiating, with respect
to P̄ and t, the following obvious identity:

P (X (P̄ , t), t) ≡ P̄ .

Thus, one can easily show that

∂X

∂P
=

1
∂ x P

,
∂X

∂t
= − ∂ t P

∂ x P
.

Using these expressions of partial derivatives, we derive the following evolution equation for the
inverse mapping X (P , ·) :

(
e γ t X

)
t + X ·

[
η e γ t

(∂X

∂P

)−1 ]
P

= 0 . (6)

The last equation can be rewritten also by introducing a new dynamic variable:

Y (P , t)
def
:= e γ t X (P , t) , Y (P , 0) ≡ X (P , 0) . (7)

It is not difficult to see that Equation (6) becomes

Y t + Y ·
[

η e γ t
( ∂Y

∂P

)−1 ]
P

= 0 . (8)

The last equation will be solved numerically in the following Section.

Remark 2. We would like to underline the fact that, by our assumptions, ∂Y
∂P as well as ∂X

∂P cannot vanish.
Thus, there is no problem in dividing by ∂Y

∂P in Equation (8).

3.1. Numerical Discretization

Earlier, we derived Equation (6), which governs the dynamics of the pseudo-inverse mapping
X (P , ·) . The initial condition for Equation (6) is given by the pseudo-inverse (4) of the initial
condition P 0 (x) . We discretize Equation (6) with an explicit discretization in time since it yields the
most straightforward implementation.

The first step in our algorithm consists of choosing the initial sampling interval. We make this
choice depending on the provided initial condition. Typically, we want to sample only where it is
needed. Thus, it seems reasonable to choose the initial segment [ 0, ` 0 ], with ` 0 being the leftmost
location such that

1 − P 0 (` 0) < tol .

In simulations presented below, we chose tol ∼ O (10−5) . Then, we chose the initial sampling{
X 0

k
}N

k = 0 ∈ [ 0, ` 0 ] ⊆ R+ , with X 0
0 = 0 and X 0

N = ` 0 . It is desirable that the initial sampling
be adapted to the initial condition, since errors made initially cannot be corrected later. One of the
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possible strategies for the initial grid generation can be found in ([26], Section 2.3.1). We define also
P k = P 0 (X

0
k ) . We stress that

{
P k
}N

k = 0 stand for a discrete cumulative mass variable and, thus,
they are time independent.

More generally, we introduce the following notation:

X n
k

def
:= X (P k, t n) , k = 0, 1, . . . , N ,

with t n def
:= n ∆t , n ∈ N and ∆t > 0 being a chosen time step. (We present our algorithm with a

constant time step for the sake of simplicity. However, in realistic simulations presented in Section 4, the
time step will be chosen adaptively and automatically to meet the stability and accuracy requirements
prescribed by the user.) We introduce also similar notation for the dynamic variable:

Y n
k

def
:= Y (P k, t n) , Y 0

k ≡ X 0
k , k = 0, 1, . . . , N .

Now, we can state the fully discrete scheme for Equation (8):

Y n+ 1
k − Y n

k
∆t

+ η e γ t n Y n
k

∆P k

{ ∆P
k + 1

2
Y n

k + 1 − Y n
k
−

∆P
k− 1

2
Y n

k − Y n
k− 1

}
, (9)

with n > 0 , k = 0, 1, . . . , N − 1 and

∆P
k + 1

2

def
:= P k + 1 − P k , ∆P

k− 1
2

def
:= P k − P k− 1 .

The quantity ∆P k can be defined as the arithmetic or geometric mean of two neighbouring
discretization steps ∆P

k± 1
2

:

∆P k
def
:=

∆P
k + 1

2
+ ∆P

k− 1
2

2
, ∆P k

def
:=

√
∆P

k + 1
2
· ∆P

k− 1
2

.

To be specific, in our code, we implemented the arithmetic mean. The fully discrete scheme can
be easily rewritten under the form of a discrete dynamical system:

Y n+ 1
k = Y n

k − η ∆t e γ t n Y n
k

∆P k

{ ∆P
k + 1

2
Y n

k + 1 − Y n
k
−

∆P
k− 1

2
Y n

k − Y n
k− 1

}
, n > 0 .

Remark 3. We would like to say a few words about the implementation of boundary conditions. First of all,
no boundary condition is required on the left side, where X n

0 = Y n
0 ≡ 0 . On the right boundary, we

prefer to impose the infinite NEUMANN-type boundary condition (i.e., ∂Y
∂P → ∞), which yields the exact

‘mass’ conservation at the discrete level as well. Namely, at the rightmost cell, we have the following fully
discrete scheme:

Y n+ 1
N = Y n

N + η ∆t e γ t n Y n
N

∆P N
·

∆P
N− 1

2
Y n

N − Y n
N− 1

, n > 0 ,

with ∆P N
def
:=

P N − P N− 2

2
. As a result, we obtain the exact conservation of ‘mass’ at the discrete level:

N

∑
k = 0

∆P k X n
k ≡

N

∑
k = 0

∆P k X 0
k , ∀n ∈ N .
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To summarize, our numerical strategy consists of the following steps:

1. We compute the pseudo-inverse of the initial data p 0 (x) to obtain X (P , 0) ≡ Y (P , 0) .
2. This initial condition Y (P , 0) is evolved in (discrete) time using an explicit marching scheme in

order to obtain numerical approximation to Y (P , t) , t > 0 .
3. The variable X (P , t) is recovered by inverting (7), i.e.,

X (P , t) = e−γ t Y (P , t) .

4. Thanks to (3), we can deduce the values of p
(
X (P , t), t

)
∈ [ 0, 1 ] by applying a favorite finite

difference formula (In our code, we employed the simplest forward finite differences, and it led
satisfactory results. This point can be easily improved when necessary.).

Working with the pseudo-inverse allows us to overcome the issue of the retention phenomenon,
which manifests as the expanding support of p (x, t) for positive (and possibly large) times t > 0 ,
t � 1 , since the computational domain was transformed to [ 0, 1 ] . This method is the LAGRANGIAN

counterpart of the moving mesh technique in the EULERIAN setting [26,27].
A simple MATLAB code, which implements the scheme we described above, is freely available for

reader’s convenience at [28].

4. Numerical Results

In this Section, we validate and illustrate the application of the proposed algorithm on several
examples. However, first, we begin with a straightforward validation test. The only difference with
the proposed algorithm above is that we are using a higher-order adaptive time stepping for our
practical simulations. The explicit first-order scheme was used to simplify the presentation. In practice,
much more sophisticated time steppers can be used. For instance, we shall employ the explicit
embedded DORMAND–PRINCE RUNGE–KUTTA pair (4, 5) [29] implemented in MATLAB under the
ode45 routine [30]. Conceptually, this method is similar to the explicit EULER scheme presented above.
It conserved all good properties we showed, but it provides additionally the higher accuracy order
and totally automatic adaptivity of the time step, which matches very well with adaptive features of
the LAGRANGIAN scheme in space. The values of absolute and relative tolerances used in the time
step choice are systematically reported below.

4.1. Steady State Preservation

In order to validate the numerical algorithm, we have at our disposal a family of steady state
solutions (2). Hence, if we take such a solution as an initial condition, normally the algorithm has
to keep it intact under the discretized dynamics. The parameters η , γ of the equation, those of the
steady solution, and numerical parameters used in our computation are reported in Table 1. The
initial condition at t = 0 along with the final state at t = T are shown in Figure 1. Up to graphical
resolution they coincide completely. We can easily check that during the whole simulation the points
barely moved, i.e.,

‖X (·, T) − X (·, 0) ‖∞ ≈ 0.008577 . . .

We can check also other quantities. For instance, P (ξ, t) is preserved up to the machine precision.
If we reconstruct the probability distribution p (x, t) , we obtain

‖ p (·, T) − p (·, 0) ‖∞ ≈ 0.003051 . . .

The last error comes essentially from the fact that we apply simple first-order finite difference to
reconstruct the variable p (x, t) from its primitive P (x, t) . We can improve this point, but even this
simple reconstruction seems to be consistent with the overall scheme accuracy. Thus, this example
shows that our implementation of the proposed algorithm is also practically well-balanced [17], since
steady state solutions are well preserved.
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Table 1. Numerical parameters used in the steady state computations.

Parameter Value

Drift coefficient, γ 1.0
Diffusion coefficient, η 1.0
Integration constant, C 1 0.0
Integration constant, C 2

η

γ
≡ 1.0

Final simulation time, T 10.0
Number of discretization points, N 500
Absolute tolerance, tol a 10−5

Relative tolerance, tol r 10−5

x

0 5 10 15 20

p
(x
,
t)
,
t
≥

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial condition
Numerical solution

Figure 1. Comparison of a steady state solution of class (2) at t = 0 and at t = T = 10 . They are
indistinguishable up to the graphical resolution, which validates the solver.

4.2. Transient Computations

In this Section, we present a couple of extra truly unsteady computations in order to illustrate the
capabilities of our method. Namely, we shall simulate the probability distributions emerging from a
family of initial conditions (normalized to have the following probability distribution):

p 0 (x) =
e−

x
σ1 + e−

x − x 0
σ2

σ1 + σ2 e
x 0
σ2

.

The primitive of the last distribution can be easily computed as well:

P (x) = 1 − σ1 e−
x

σ1 + σ2 e−
x − x 0

σ2

σ1 + σ2 e
x 0
σ2

.

We design two different experiments in silico to show two completely different behaviour of
solutions to FELLER Equation (1) depending on the sign of the drift coefficient γ . These will constitute
additional tests for the proposed numerical method. In both cases, the initial positions of particles
are chosen according to the logarithmic distribution (logspace function in MATLAB) on the segment
[ 0, 20 ] . This choice is made to represent more accurately the exponentially decaying initial condition
since the errors made in the initial condition cannot be corrected in the dynamics.
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4.2.1. Expanding Drift

If the drift coefficient γ < 0 , this term will cause FELLER’s Equation (1) to transport information
in the rightward direction. This situation is quite uncomfortable from the numerical point of view
since the initial condition expands quickly towards the (positive) infinity. We submitted our method
to this case. All numerical and physical parameters are provided in Table 2 (the middle column).
The initial condition along with the probability distribution at the end of our simulation are shown
simultaneously in Figure 2a,b in CARTESIAN and semilogarithmic coordinates correspondingly.
As expected, the support of the initial condition more than triples from t = 0 to t = T = 3.0 .
We remind that the diffusion and drift coefficients are proportional to x, and the scheme handles
the growth of these terms automatically. The smooth decay of the solution on the semilogarithmic
plot (see Figure 2b) shows the absence of any numerical instabilities. The trajectory of grid nodes is
shown in Figure 2c. One can see that points follow the expansion of the solution. Nevertheless, they
concentrate in the areas where the probability takes significant values.

Table 2. Numerical parameters used in unsteady computations.

Parameter Expanding Experiment Confining Experiment

Drift coefficient, γ −0.1 0.5
Diffusion coefficient, η 1.0 1.0
Final simulation time, T 3.0 12.0
Number of discretization points, N 100 100
Initial condition parameter, σ1 2.0 2.0
Initial condition parameter, σ2 1.0 1.0
Initial condition parameter, x 0 3.0 3.0
Absolute tolerance, tol a 10−5 10−5

Relative tolerance, tol r 10−5 10−5
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(c)

Figure 2. Numerical result of the expanding experiment with negative drift γ = −0.1 < 0 : (a) initial
and terminal states of the numerical discretized solution; (b) initial and terminal states of the numerical
discretized solution in semilogarithmic coordinates; and (c) trajectories of grid nodes. All numerical
parameters for this computation are reported in Table 2 (middle column).

4.2.2. Confining Drift

In the case of the positive drift coefficient γ > 0 , the FELLER dynamics get even more interesting
since we have two competing effects:

1. Positive drift moving information towards the origin x = 0 ;
2. Diffusion spreading solution towards the positive infinity.

It might happen that both effects balance each other and result in a steady solution. Such a
simulation is presented in this Section. The numerical and physical parameters are given in Table 2 (the
right column). The initial condition along with the probability distribution at the end of our simulations
are shown simultaneously in Figure 3a,b in CARTESIAN and semilogarithmic coordinates, respectively.
The trajectories of grid nodes are shown in Figure 2c. One can see the rapid initial expansion stage,
which is followed by a stabilization process, when we almost achieved the expected steady state. Again,
the grid nodes trajectories show excellent adaptive features of the numerical scheme—at the end of the
simulation, the relative density of nodes turns out to be preserved. The semilogarithmic plot shown
in Figure 3b shows that the numerical solution is free of numerical instabilities. The obtained steady
solution will be preserved by discrete dynamics thanks to the well-balanced property demonstrated in
Section 4.1.
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Figure 3. Numerical result of the confining experiment with positive drift γ = 0.5 > 0 : (a) initial
and terminal states of the numerical discretized solution; (b) initial and terminal states of the numerical
discretized solution in semilogarithmic coordinates; and (c) trajectories of grid nodes. All numerical
parameters for this computation are reported in Table 2 (right column).

5. Discussion

Above, we presented some rationale about the discretization, existence, and uniqueness theory
for FELLER’s equation. The main conclusions and perspectives are outlined below.

5.1. Conclusions

The celebrated FELLER equation was studied mathematically in two seminal papers published
by William FELLER (1951/1952) in Annals of Mathematics [1,2]. In particular, the uniqueness was
shown in [2] without any boundary condition required at x = 0 . This result is notable and we use it
in our study. The main goal of our work was to present an efficient numerical scheme, which is able
to handle the unbounded diffusion inherent to Equation (1). Moreover, the retention phenomenon
causes the solution support to expand all the time. Thus, if we wait a sufficiently long time, it will
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reach the computational domain boundaries (since R+ 3 x was truncated to a finite segment to
make the in silico simulation possible). To overcome this difficulty, we proposed a simple and explicit
LAGRANGIAN scheme using the notion of the pseudo-inverse. In this way, we obtained a stable
numerical scheme (under not so stringent stability conditions), which turns out to be naturally adaptive
as well, since particles move together with the growing support (the rightmost particle position defines
the support) and tend to concentrate where it is really needed. The performance of our scheme
was illustrated in several examples. We share also the MATLAB code so that anybody can check the
claims we made above and use it to solve numerically the FELLER equation in their applications:
https://github.com/dutykh/Feller/.

5.2. Perspectives

All the numerical schemes and results presented in this paper were in one ‘spatial’ dimension.
The FELLER equation considered here is 1D as well. However, it seems interesting (regardless of
the physical applications) to consider generalized FELLER equations in higher space dimensions and
to extend the proposed numerical strategy to the multidimensional case as well. Another possible
extension direction consists of proposing higher-order schemes to capture numerical solutions with
better accuracy with the same number of degrees of freedom. On the more theoretical side, we would
like to obtain an alternative well-posedness theory for FELLER equation by taking a continuous limit in
our numerical scheme.
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Abbreviations

The following abbreviations are used in this manuscript:

CFL Courant Friedrichs Lew
GeM A Maple module for the computation of symmetries and conservation laws of differential equations
ODE Ordinary Differential Equation
PDF Probability Density Function
PDE Partial Differential Equation
WT Wave Turbulence

Appendix A. Positivity Preservation

In this Appendix, we show the positivity preservation property of the solution p (x, t) to
Equation (1). We suppose that initially the solution is non-negative, i.e.,

p (x, 0) = p 0 (x) > 0 , ∀x ∈ R+ .

Let us assume that at some positive time t = t ∗ > 0 and in some point x = x ∗ ∈ R+ the
solution attains zero value, i.e.,

p (x ∗, t ∗) = 0 .

This situation is schematically depicted in Figure A1.

https://github.com/dutykh/Feller/
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Figure A1. A schematic representation of the situation where the solution p (x, t) attains a zero value
at some point x ? > 0 .

Equation (1) can be rewritten in the nonconservative form:

p t = x
[

γ p x + η p x x
]
+ γ p + η p x .

Taking into account the fact that the point x ? is a local minimum (p x | x ? = 0), where the solution
takes zero value (p | x ? = 0), the last equation greatly simplifies at this point:

p t |x ? = x ? η p x x | x ? > 0 ,

since in the minimum p x x | x ? > 0 . Thus, zero values of the solution are repulsive and for (at least
small) times t > t ?, the function t 7→ p (x ?, t) will be increasing.

Appendix B. ‘Mass’ conservation

It is straightforward to show that the L 1 norm of the solution to Equations (1) is preserved. Indeed,
taking into account that the solution p (x, t) > 0 is positive for all times t > 0 provided that the
initial condition p 0 (x) > 0 , ∀x ∈ R+ , we have | p (x, t) | ≡ p (x, t) . By integrating Equation (1),
we have

∂ t

∫
R+

p (x, t)dx +
∫
R+

F x dx = 0 .

Taking into account that F | x = 0 ≡ 0 and the solution p (x, t) is decaying sufficiently fast, as
x → +∞ together with its derivative, we obtain

∂ t

∫
R+

p (x, t)dx ≡ 0 .

In other words,
‖ p (·, t) ‖ L 1 = const .

The last constant can be in general taken equal to one after the appropriate rescaling (provided
that the initial condition is nontrivial). It is this scaling which is assumed throughout the whole text
above. This renormalization is consistent, with the ‘physical sense’ of the variable p being the density
of a probability distribution.

Appendix C. Kummer’s Functions

The KUMMER functionsM (a, b, z) and U (a, b, z) are two linearly independent solutions of the
following ordinary differential equation:

z
dy 2

dz 2 + (b − z)
dy
dz
− a y = 0 .
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This equation admits two singular points: z = 0 (regular) and z = +∞ (irregular). There exists
a connection between KUMMER and hypergeometric functions [20].

Appendix D. Exponential Integral

Notice also an important property of the exponential integral function E 1 (x) , which is useful in
manipulating its values for negative arguments:

lim
δ → 0

E 1 (x ± i δ) = E 1 (x) ∓ i π ≡ − Ei (−x) ∓ i π , x < 0 ,

where Ei (z) is the following exponential integral:

Ei (z)
def
:= −

∫ z

−∞

e t

t
dt .

Thus, Ei (x) ≡ −E 1 (−x) for x < 0 . The last relation can be also extended to the entire complex
plain as follows:

Ei (z) ≡ −E 1 (−z) +
1
2

ln z − 1
2

ln
( 1

z

)
− ln(−z) , z ∈ C .

More properties of the exponential integral can be found in the specialized literature (see e.g.,
([20], Chapter 5)).
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