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Abstract: The sustainable third-party reverse logistics provider (3PRLP) selection, as the core of
sustainable supply chain management, has become paramount in research nowadays. In the actual
evaluation process, the decision makers may hesitate in a few linguistic terms and have different
partiality towards each term, hence the possibility distribution based hesitant fuzzy linguistic term
sets (PDHFLTSs), as expressed by a consecutive or non-consecutive linguistic term set, is suitable
for such an evaluation. The purpose of this paper is to solve sustainable 3PRLP selection problems
with linguistic information by developing an effective and robust method. We firstly redefine
the covariance-based correlation coefficient that can simplify the computation to calculate the
consensus degree, and then introduce the hesitant degree in context of possibility distribution
information, in order to enrich measures of PDHFLTSs. On this basis, the weights of experts are
computed for expression aggregation. Secondly, to overcome attributes’ weights staying constant,
the combination of group utility function and variable weight approach is introduced to give the
weights of attributes. Most importantly, a decision method, called MULTIMOORA, is optimized
by improving the ranking position method, and then, through the combination with PDHFLTS,
we proposed a possibility distribution based hesitant fuzzy linguistic MULTIMOORA method with
great robustness. At last, the presented method is applied to the field of sustainable third-party
reverse logistics provider selection in the e-commerce express industry and the effectiveness is verified
by several comparative analyses.

Keywords: sustainable 3PRLP selection; possibility distribution based hesitant fuzzy linguistic
term set; MULTIMOORA method; expert weights; variable weight theory; improved ranking
position method

1. Introduction

Sustainable third-party reverse logistics provider selection, as a typical multi-attribute group
decision making (MAGDM) issue, is the procedure of choosing the best satisfaction provider and is
appropriately accomplished by a group, which is composed of experts with different knowledge and
interests background. In addition, the MAGDM problems mainly include three processes, which are (1)
experts make evaluation recommendations of every alternatives under different attributes (or criteria);
(2) individuals reach consensus and opinion aggregation; and, (3) alternatives ranking and selecting.
How to express opinions of experts accurately has become a paramount in past decades, since the first
step of this problem is the processing of expert’s evaluative expressions. In practice, some researchers
have found that decision makers (DMs) prefer describing the performance of alternatives by linguistic
variables. Hence, Zadeh [1] developed the fuzzy linguistic method, which explains and uses a single
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linguistic variable to replace crisp value, because it is more in line with human cognitive thinking.
Later, some scholars put forward a new fuzzy linguistic form, such as interval-based linguistic term,
or uncertain linguistic term. Notwithstanding, DMs still inadequately deliver their wanted description
by those tools, owing to the lack of flexibility in dealing with practical problems. To surmount
this problem, Rodríguez et al. [2] combining the Hesitant Fuzzy Sets (HFS) with Linguistic Term
Sets (LTS), further proposed the Hesitant Fuzzy Linguistic Term Set (HFLTS), which entrusts DMs
with more flexible options of expression according to actual application environment, such as single
linguistic variable “very good” performance or multiple linguistic variables “between medium and
very good” quality.

The HFLTS, as a linguistic tool for conveying complex cognitive information, eliminates the
defect that other fuzzy linguistic approaches cannot simultaneously adopt several linguistic terms to
express expert’s rich ideas. Therefore, the HFLTS has received widespread attentions and applications.
Liao et al. [3] proposed the definition of mathematical symbols and elements of HFLTS. Wei [4]
introduced the weighted average (WA) and order weighted average (OWA) operators into hesitant
fuzzy linguistic environment and studied the comparisons rules by possibility degree formulas for
enhancing rationality. Zhu and Xu [5] investigated the hesitant fuzzy linguistic preference relations
and defined the consistency measures. Liao et al. [3] defined correlation measures and correlation
coefficients for HFLTS. Afterward, a great many of researches achieve success by combining with other
classical methods, such as TOPSIS [6], VIKOR [7], TODIM (an acronym in Portuguese of interactive
and multi-criteria decision-making) [8], ELECTRE [9], PROMETHEE [10], et al. Besides, these MADM
methods have already made an achievement in the field of hospital performance evaluation [11],
personnel selecting problem [12], sustainable supplier selection [13], et al.

Even HFLTS have the opportunity for intricate qualitative information representation,
but challenges remained. In actual applications, experts’ degree of tendency towards each linguistic
variable was exactly different, and consecutive or inconsecutive linguistic term cases existed. Moreover,
HFLTS often require the normalization procedure, which is time-consuming and information distortion.
As extended form of HFLTS, hesitant fuzzy linguistic term set with additional possibility distribution
(PDHFLTS) has not only overcame the above-mentioned limitations, but could convey experts’ hesitation
with several linguistic terms, as well as revealed the preference to each linguistic term according to
putting different weights on it. For multi-attribute group decision making matters with PDHFLTS,
Wu firstly noted that the existing group decision making (GDM) aggregation methods may neglect
the biased opinion of experts, and then in [14], the presented methodology fused consensus reaching
process into PDHFLTS and circumvented specific discordant information before the aggregation
process. Later, Wu [15] further proposed the VIKOR-based and TOPSIS-based models to obtain the
compromise solution and conducted a comparative study among those two methods and other existing
approaches to reveal some superior characteristics. Therefore, in the current paper, we introduce a new
MAGDM method to continue the comparative research of decision-making methods in [15].

In our cognition, TOPSIS and VIKOR methods both have some shortcomings. Firstly, (1) the
solution of TOPSIS is not closest to the ideal one [16], because it lacks consideration of relative
importance of two kinds of distance, which are the minimum distance to positive-ideal solution (PIS)
and the maximum distance to negative-ideal solution (NIS) respectively, in addition, as alternatives
increase or decrease, (1) the TOPSIS method will produce the inverted sequence outcome due to the
change of PIS and NIS, which makes results not robust. Although the VIKOR method [17] makes
some improvements, which taking every schemes’ worst values under all attributes into consideration,
but (2) it just focus on “individual regret” and “group utility” values not on the subordinate ranks,
and (2) the final results sensitively depend on the relative importance of first two values, thus this
approach also make the results’ weak robustness. Hence, we receive that both TOPSIS and VIKOR
approaches are lacking robustness.

From the abovementioned description, the suitability and robustness of selecting the ranking
method play an extremely important role in MAGDM problems. Because there are many DMs
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involved in MAGDM problems, the cost of modifying the decision results is much higher than
that of single DM, it is also very difficult to identify or select the optimal scheme, which is mainly
due to the different personal preferences and existence of the noninferior solution of the scheme.
Therefore, it is important to choose a decision-making method with robustness in order to better
cater to these situations. The MULTIMOORA method [18], further generated by extending the full
multiplicative form into MOORA (The Multi-Objective Optimization by Ratio Analysis), is a relatively
new method with robust solution. It refers to utilizing three ranking models with different effects to
obtain three subordinate orders, and then synthesizing each sub-result to the final order by dominance
theory. In [19], MOORA was proven to have explicit advantages over TOPSIS [20], VIKOR, Analytic
Hierarchy Process (AHP), ELECTRE, PROMETHEE as easy mathematics, low computational time,
stability, and straightforwardness for DMs. Not only that, the VIKOR and TOPSIS methods derive
complete ranks that are only based on utility values; the ELECTRE method requires setting parameters,
which are not always of clear economic significance, but it also needs to pass the concordance test and
non-discordance test, and its process is quite complex; the PROMETHEE method does not contain
strong robustness and objectivity, in which the preference function required being subjectively selected
by DMs, and the same as the TOPSIS method, the increase or decrease of alternatives will affect
final results. Improved MULTIMOORA method, which is simple in mathematics, does not need
any subjective setting, but it also takes into account both the utility values and the sorting results.
Accordingly, it can have strong robustness. Nevertheless, (3) the primitive MULTIMOORA and other
extension forms still have some defects: 1. Dominance theory only involves three subordinate ranks
but excludes their utility values. 2. Its maneuverability decreased under a large number of alternatives
environment due to the times of pairwise comparisons skyrocketed significantly. 3. The optimal
scheme might be easily derived, but the ranks of all schemes are difficult to obtain. As a result, we will
introduce an improved aggregation operator to correct defects (3).

Moreover, the weight of experts and the weight of attributes are another important part of
MAGDM problem. In most of the existing literature, decision makers are assigned completely the same
weight or subjectively given in advance under the group decision-making (GDM) topic. However,
in real-time application, the importance of experts’ expression must be different up to their knowledge
and experience. Wu [14] investigate the consensus degree from the perspective of distance measure to
determine expert’ weights, which is widely recognized and used, but, to our best knowledge, (4) few
paper calculates the consensus degree from the perspective of correlation coefficient, and the amount
of calculation using these formulas is relatively large. On the other hand, Liao [21] develops the
concept of hesitant degree to compute expert’ weights. These scholars apply the consensus degree
or hesitant degree [22] separately, to show the different status information of DMs in the decision
making process. Unfortunately, (5) nobody utilized both at same time, and this is meaningful, in the
presented paper, consensus and hesitant degree are together decided for decision makers’ weight,
that is to say, the higher hesitant degree or the lower consensus degree, the smaller the weight of
experts will be allocated. Secondly, in the vast majority of MAGDM methods with hesitant fuzzy
linguistic information, (6) neither the most classic one nor novel one can achieve the effect, where the
same alternative has different weights under the same attribute, also say as those methods [23–26]
only produce a constant weight vector of all attributes in spite of complexity of realistic MAGDM
problem. In addition, (7) decision makers are always influenced by their preference-induced behavioral
characteristics when they make an evaluation, but this aspect is not taken into account by previous
GDM researches. Hence, it is necessary to solve problems (6) and (7) with a suitable approach.

To sum up, this paper aims to accomplish the following creative contributions: (I) We presented
the correlation coefficient formula of PDHFLTS by combining an improved rule that can reduce the
number of calculations, and further defined consensus degree to fill gap (4). (II) Considering the
consensus degree [27] can be capable of reflecting certainty and consistency from a group of experts,
by contrary, hesitant degree [28] delivers the uncertainty and hesitant information of DMs. To some
extent, those concepts, in our cognition, show DMs’ two kinds of opposite psychological characteristics.
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Thus, we proposed a novel function for determining the expert’s weight that will overcome the
gap (5). (III) By individuals’ utility aggregation to gain group utility, we will develop the variable
weight method for solving problems (6) and (7) (IV) We improved the ranking position approach,
which makes up for the shortage (3), and combined it with MULTIMOORA, which aims at problems
(1) and (2). (V) A case study regarding selecting sustainable third-party reverse logistics providers for
e-commerce express industry is analyzed by the presented method and the effectiveness is proven by
a comparative study.

The contents and structure of current paper are organized, as follows: Section 2 briefly reviews the
basic concepts of PDHLFLTS, the main ideas of variable weight method, and primitive MULTIMOORA.
Section 3 presents the correlation-coefficient based consensus degree and hesitant degree based on
PDHFLTS to determining jointly weights of expert. Section 4, by integrating individual utility into
group utility, gives the variable weight decision method and shows some properties. Section 5 proposes
a PDHFL-MULTIMOORA approach with possibility distribution based hesitant fuzzy linguistic
environment. Section 6 illustrates that the presented method is a suitable and effective way to solve
sustainable third-party reverse logistics provider (3PRLP) selection problem.

2. Preliminaries

To make the presentation of subsequent research content clear, this section will illustrate core
knowledge regarding the PDHFLTS, the variable weight, and the MULTIMOORA method.

2.1. Possibility Distribution Based HFLTS

The conventional linguistic presentation tool only applies a single term to assist DMs in evaluation.
After that, Wu [14] presents a novel linguistic method, named possibility distribution based hesitant
fuzzy linguistic term set (PDHFLTS), which conveys DMs’ expression further precisely and conveniently.
Its definition is as follows.

Definition 1 ([14]). Suppose that S =
{
sδ

∣∣∣δ = 1, 2, . . . , g
}
is a linguistic term set (LTS),

X =
{
xζ|ζ = 1, 2, . . . , n

}
is an universe of discourse, then an HFLTS on S is expressed as

HS =
{〈

hS(xζ), xζ
〉
|ζ = 1, 2, . . . , n

}
, where hS(xζ) =

{
sψ

∣∣∣sψ ⊂ S,ψ = l, l + 1, . . . , u
}

is a consecutive ordered
finite subset of S.

Definition 2 ([15]). Let S =
{
sδ

∣∣∣δ = 1, 2, . . . , g
}

be a LTS, and hS =
{
sψ

∣∣∣sψ ⊂ S,ψ = l, l + 1, . . . , u
}

be

a HFLTE, then the possibility distribution based hS on S is expressed by P =
{
pη

∣∣∣η = 1, . . . , g
}
, where pη

means the possibility of obtaining an assessment value sψ. Besides, pη satisfies
u∑
η=l

pη =
g∑

η=1
pη = 1 and

0 ≤ pη ≤ 1, η = 1, . . . , g.

Equally, EHFLTS with possibility distribution can be defined by similar operations.

Definition 3 ([15]). Let S =
{
sδ

∣∣∣δ = 1, 2, . . . , g
}

be a LTS, and hS =
{
sϕi

∣∣∣sϕi ⊂ S,ϕi = ϕ1,ϕ2, . . . ,ϕ#g
}

be an EHFLTE, where #g denotes the cardinality of hS, then the possibility distribution based hS on S

is depicted by P =
{
pη

∣∣∣η = 1, . . . , g
}
, where if ϕ∗ =

{
ϕi

∣∣∣i = 1, . . . , #g
}
.

∑
η⊂ϕ∗ pη =

g∑
η=1

pη = 1 and

0 ≤ pη ≤ 1, η = 1, . . . , g.

It is noted that P and hS have strict one-to-one mapping relationship. For instance, if there
are S = {sδ|δ = 1, 2, . . . , 7 } and hS = {s1, s2, s3, s4} ⊂ HS with additional possibility distribution
P = {0.1, 0.2, 0.3, 0.4, 0, 0, 0}, then it can be equivalently convert as

{
s1(0.1), s2(0.2), s3(0.3), s4(0.4)

}
.

Due to the same form of HFLTS or EHFLTS with possibility distribution, without a loss of generality
they are collectively named PDHFLTSs, and only P =

{
pη

∣∣∣η = 1, . . . , g
}

is needed to represent PDHFLTS.
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Definition 4 ([14]). Let S =
{
sδ

∣∣∣δ = 1, 2, . . . , g
}

be a LTS and hS ⊂ HS. If P =
{
pη

∣∣∣η = 1, . . . , g
}
, then the

expected value formula can be defined, as follows:

E(hs) =

g∑
η=1

NS
(
sψ

)
pη (1)

where NS
(
sψ

)
denotes score function of sψ.

Definition 5 ([14]). Suppose S, hS, P are the same as defined above, then the variance value function is defined
as follows:

Var(hS) =

g∑
η=1

(
NS

(
sψ

)
− E(hS)

)2
pη (2)

where NS
(
sψ

)
denotes score function of sψ.

Definition 6 ([14]). Suppose hS1 , hS2 ⊂ HS, thus rules of comparison on hS1 , hS2 can be defined as follows:

(1) If E
(
hS1

)
< E

(
hS2

)
, then hS1 < hS2 , max

{
hS1 , hS2

}
= hS2 and min

{
hS1 , hS2

}
= hS1 ;

(2) If E
(
hS1

)
= E

(
hS2

)
, then

a. If Var
(
hS1

)
< Var

(
hS2

)
, then hS1 > hS2 ;

b. If Var
(
hS1

)
= Var

(
hS2

)
, then hS1 = hS2 .

Definition 7 ([14]). Let HS =
{
hSi |i = 1, . . . , n

}
be a set of PDHFLTSs, where ω = {ω1,ω2, . . . ,ωn} denotes

their corresponding weight vector. It also satisfies
n∑

i=1
ωi = 1, 0 ≤ ωi ≤ 1. Every hSi has its own possibility

distribution Pi =
{
pi
η

∣∣∣η = 1, . . . , g
}
. The hesitant fuzzy linguistic weighted average (HFLWA) operator can be

represented as the possibility distribution P =
{
pη

∣∣∣η = 1, . . . , g
}
.

HFLWA
{
hS1 , . . . , hSn

}
= HFLWA

{
P1, . . . , Pn

}
=

(
p1, . . . pl, . . . , pg

)
(3)

where pl is calculated by:

pl =
n∑

i=1

ωipi
l (4)

2.2. The Traditional MULTIMOORA Method

MULTIMOORA is a useful and novel MADM method. Its final result originated from the
aggregation of ternary subordinate models: Ratio System, Reference Point, and Full Multiplicative
Form, and generally aggregating them through dominance theory.

A general decision matrix can be defined as D =
(
xi j

)
m×n

, where xi j denotes the performance
value of alternative ai under criteria c j. Thus, the procedures of the traditional MULTIMOORA method
can be defined, as follows [18]:

Step 1. Normalize all xi j of decision matrix to xN
ij by formula:

xN
ij = xi j/

√√ m∑
i=1

(
xi j

)2
(5)

Generally, m ≥ 2.
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Step 2. Calculate the utility values of Ratio System (RS) by arithmetical weighted aggregation operator
of RS model defined, as follows:

yi =

g∑
j=1

xN
ij −

n∑
j=g+1

xN
ij (6)

where g denotes the cardinality of beneficial attributes, in turn, the cardinality of cost attributes
is (n− g). The top-ranking position corresponds to maximum utility value yi. Afterwards,
the subordinate result in descending order is denoted as:

R1 =
{
Ai|i⊂maxyi , . . . , Ai|i⊂minyi

}
(7)

Step 3. Calculate the utility values of Reference Point (RP) model. The main purpose of this approach is
to find the worst performance of alternatives with respect to every attribute, and then choosing
the best result from those worst rating. Hence, in this step, the final chosen alternative is the
best of the worst ones.

r j =
{
maxxN

ij , j ≤ g; minxN
ij , j ≥ g

}
(8)

ti = max
j

∣∣∣∣r j − xN
ij

∣∣∣∣ (9)

where g denotes the cardinality of beneficial attributes, in turn, the cardinality of cost attributes
is (n− g). The ranking of final results in ascending order is denoted, as follows:

R2 =
{
Ai|i⊂minti , . . . , Ai|i⊂maxti

}
(10)

Step 4. Calculate the utility values of the Full Multiplicative Form (FMF) model, which is the basis of
weighted geometric integration operator, as follows:

ki =

g∏
j=1

xN
ij /

n∏
j=g+1

xN
ij (11)

where g denotes the cardinality of beneficial attributes, in turn, the cardinality of cost attributes
is (n− g). The ranking of final results in descending order denotes, as follows:

R3 =
{
Ai|i⊂maxki , . . . , Ai|i⊂minki

}
(12)

Step 5. Derive final ranking of all alternatives by using the dominance theory to aggregate three
subordinate ranks into one.

To date, the theoretical research on this methodology mainly focuses on the ranking aggregation
approach, the method of determining attribute weight, and combination with other methods,
respectively. In detail, there are four kinds of ranking aggregation approach: (1) dominance-based
method, including Dominance Theory [18, 29] and Dominance-Directed Graph [30], (2) programming
method, like Nonlinear Optimization Model [31], (3) MADM method, including Technique of Precise
Order Preference [32] and ORESTE [21], (4) aggregation operators, such as Borda Rule [30] and
Rank Position Method [30]. Secondly, the weighting approaches for the attribute are divided into
many kinds, such as CRITIC [33], SWARA [34], DEMATEL [29], Entropy [35], Maximizing Deviation
Method [36], BWM [37], AHP [38], Statistical Variance [33], Choquet Integral [39], TOPSIS-Inspired
Method [40], etc. In the last point, MULTIMOORA are fused with many types of MADM methods,
which contain FMEA [41], QFD [36], DEA [42], Cluster Analysis [43], Finite Element Simulation [44],
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Regret Theory [35], Prospect Theory [45], Geographic Information System [46], Fine-Kinney Method [39],
et al.

In the aspect of application, the MULTIMOORA approach has been developed in many
fields, including industry, economics, healthcare management, information and communication
technology, environmental policy making, and so on. Specifically speaking, industry receives the most
attention, which can be summarized as construction [32], automotive [47], mining [48], logistics [49],
and manufacturing system [36]. Economics includes economic evaluation [50] and sustainable
development [51]. Healthcare management is divided into biomedical service [33] and medical
service [52]. ICT involves information technology [53] and telecommunication technology [54].
Environmental policy making contains climate change policy making [55] and supplier selection [36].

2.3. The Core of Variable Weight Theory

Since Wang [56] proposed the concept of variable weight and Li [57] and Yu [58] further discussed
some important properties of this method, the variable weight approach has received a lot of attention
due to its flexibility, which mainly manifested in changing with schemes’ configuration.

Definition 8 ([57,59]). A n-dimensional variable weight vector is a n-ary mapping. ω j : [0, 1]n 7→ [0, 1] ,
(x1, . . . , xn) 7→ ω j(x1, . . . , xn) , where x j is the j-th criteria of alternative ai and ω j is corresponding weight.
Besides, it should satisfy four properties: normality, nonnegativity, monotonicity, and continuity.

Definition 9 ([57,59]). Suppose the vector SX is a mapping:SX : [0, 1]n 7→ [0, 1]n , (x1, . . . , xn) 7→ s j(x1, . . . , xn) ,
SX =

{
s1(x1), . . . , sn(xn)

}
. If SX satisfies following conditions:

(1) s j(x1, . . . , xn) is continuous with respect to x j.

(2) SX
(
σi j

(
x j

))
= SX

(
x j

)
, where σi j is the function to exchange the position of the i-th element and the

j-th element.

(3) W(X) = wc
⊗SX

n∑
j=1

wc
js j(x1,...,xn)

=

 w1s1(x1,...,xn)
n∑

j=1
w js j(x1,...,xn)

, . . . , wnsn(x1,...,xn)
n∑

j=1
w js j(x1,...,xn)

 satisfies above-mention three

properties of definition 8, where wc = (w1, . . . , wn) is the constant weight vector and
W(X) = (w1(x1, . . . , xn), . . . , wn(x1, . . . , xn)) is the Hadamard product of wc and SX.

(4) s j(x1, . . . , xn) is monotonous regarding every variable x j.

After that, SX is the variable weight state vector of alternative ai.

To our best knowledge, few scholars [59–61] have studied this approach in MAGDM or MADM
background. However, as can be seen from the above definition, the greatest advantage of the variable
weight method is that the same attribute has different weights under different scheme configuration,
which is not possible for other weighting methods [34–39].

2.4. Nomenclature Section

For the more convenience of readers, Table 1 shows all acronyms.
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Table 1. Definition of acronyms.

Acronyms Full Form Acronyms Full Form

MAGDM Multi-Attribute Group Decision Making PDHFLTS Possibility Distribution Hesitant Fuzzy
Linguistic Term Set

MADM Multi-Attribute Decision Making HFLTS Hesitant Fuzzy Linguistic Term Set

GDM Group Decision Making LTS Linguistic Term Set

OWA Order Weighted Average DM Decision Maker

WA Weighted Average RIVW Risk-Incentive Type Variable
Weight Vector

CD Consensus Degree CIVW Conservative-Incentive Type Variable
Weight Vector

HD Hesitant Degree NIVW Neutral-Incentive Type Variable
Weight Vector

PDHFLRP Possibility Distribution Hesitant Fuzzy
Linguistic Reference Point SIVW S-Shaped-Incentive Type Variable

Weight Vector

PDHFLFMF Possibility Distribution Hesitant Fuzzy
Linguistic Full Multiplicative Form ISIVW Inverse S-Shaped-Incentive Type

Variable Weight Vector

PDHFLRS Possibility Distribution Hesitant Fuzzy
Linguistic Ratio System RPM Ranking Position Method

RP Reference Point IRPM Improved Ranking Position Method

RS Ratio System PDHFLE Possibility Distribution Hesitant Fuzzy
Linguistic Element

FMF Full Multiplicative Form 3PRLP Third-Party Reverse Logistics Providers

TOPSIS Technique for Order Preference by
Similarity to An Ideal Solution VIKOR Vise Kriterijumska Optimizacija I

Kompromisno Resenje

TODIM
An Acronym in Portuguese of
Interactive and Multi-Criteria

Decision-Making
ELECTRE Elimination and Et Choice

Translating Reality

PROMETHEE Preference Ranking Organization
Methods for Enrichment Evaluations AHP Analytic Hierarchy Process

DEA Data Envelopment Analysis ANP Analytic Network Process

AI Artificial Intelligence HFS Hesitant Fuzzy Sets

MOORA Multi-Objective Optimization by
Ratio Analysis MULTIMOORA MOORA Plus Full Multiplicative Form

QFD Quality Function Deployment, FMEA Failure Mode and Effect Analysis

CRITIC Criteria Importance Though
Intercrieria Correlation DEMATEL Decision Making Trial and

Evaluation Laboratory

3. Determination of Expert Weight Based on Consensus and Hesitant Degree

In a realistic situation, a wise decision was usually made by a group of individuals with professional
opinions instead of a single person. Differentiated decision power in group aggregation process among
experts should be considered, which is defined as differentiated potential capabilities of an individual
or a group to exert own influence or control over other individual or group, since it is the cooperative
problem of GDM background. Accordingly, it can be quantified as their weights based on different
position, expertise, percentages of shares, etc. [62]. However, it is precisely because different levels and
fields of each expert’s expertise, resulting in every expert conveying different information, which creates
conflicts. Hence, in the vast majority of MAGDM problems under hesitant fuzzy linguistic environment,
the weight of expert is assumed to be the same, or sets subjectively in advance is unreasonable.

In this section, we develop a method for determining experts’ weights from the perspective of
group opinion aggregation and personal information expression. Furthermore, the consensus degree
denotes the level of agreement between every decision-maker in a group, while the hesitant degree
denotes the uncertainty level of information evaluation in each expert. We link those two concepts
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to detect the level to which an expert is close to other experts and uncertainty in his/her heart. Thus,
the main idea of this method is to utilize consensus degree and hesitant degree of each decision-maker,
that is, the higher hesitant degree or the lower consensus degree, the lower the weight of expert will be.

3.1. The Consensus Degree of the PDHFLTS

In recent consensus degree computation research, most of the main approaches are based on
preference relation [63–65] and distance measure [14,15]. These papers rarely involve methods that
are based on correlation coefficient, and, even if there are, the calculation is complicated. As shown
in [3], as an useful tool for describing expert information and for studying a limited or small number of
samples, HFLTS is more suitable for defining covariance from the perspective of information energy
within unit interval [0, 1]. Besides, in most cases, the cardinality of elements in two PDHFLTS is always
different, which is the main reason for complex computation. To our best knowledge, there is no
literature on extending two PDHFLTS with different lengths to the same length of PDHFLTS. Therefore,
it is necessary to define the PDHFLTS extension rule first for filling the research gap.

Definition 10. Let S =
{
sδ

∣∣∣δ = 1, 2, . . . , g
}

be a LTS. hS1 =
{
s1
ψ1
(p11), . . . , s1

ψk
(p1k)

}
,

hS2 =
{
s2
ψ1
(p21), . . . , s2

ψn
(p2n)

}
be two subsets of HS with possibility distribution P1, P2, then readjust

hS1 , hS2 to obtain adjusted ha
S1

=
{
s1a
ψ1
(p11), . . . , s1a

ψl
(p1l)

}
, ha

S2
=

{
s2a
ψ1
(p21), . . . , s2a

ψl
(p2l)

}
, which have the same

possibility permutation set as PP∗ =
{
pp∗1, . . . , pp∗t

}
, if ha

S1
, ha

S2
satisfy following rule:

Step 1. Compare s1
ψ1
(p11) of hS1 and s2

ψ1
(p21) of hS2 , if p11 = min

{
p11, p21

}
, then s1a

ψ1
(p11) = s1

ψ1
(p11) and

s2a
ψ1
(p21) = s2

ψ1
(p11), where p21 = p11 + ps

21, or else p21 = min
{
p11, p21

}
, then s1a

ψ1
(p11) = s1

ψ1
(p21)

and s2a
ψ1
(p21) = s2

ψ1
(p21), where p11 = p21 + ps

11.

Step 2. Continue to compare s1
ψ2
(p12) and s2

ψ1

(
ps

21

)
(Case 1) or s1

ψ1

(
ps

11

)
and s2

ψ2
(p22) (Case 2), for case 1,

if p12 = min
{
p12, ps

21

}
, then s1a

ψ2
(p12) = s1

ψ2
(p12) and s2a

ψ2
(p22) = s2

ψ1
(p12), where ps

21 = p12 + pss
21,

or else ps
21 = min

{
p12, ps

21

}
, then s1a

ψ2
(p12) = s1

ψ2

(
ps

21

)
and s2a

ψ2
(p22) = s2

ψ2

(
ps

21

)
, where p12 = ps

21 + ps
12,

for case 2, the result can be derive by the same reasoning.
Step 3. Repeat the reasoning logic of step 1 and 2 to receive the follow-up results until ha

S1
and ha

S2
have the same

cardinality on possibility permutation set.

It is important to note that p1i = p2i + ps
1i+1 + pss

1i+2 + . . .+ ps...s
1i+k and p2i = p1i + ps

2i+1 + pss
2i+2 +

. . .+ ps...s
2i+k, the possibilities corresponding to each linguistic variable remains the same. In addition,

when the possibilities of two comparative elements are the same, it can be handled by any two
conditions. The possibility permutation set PP∗ is different from P of PDHFLTS.

Example 1. There are two PDHFLTSs, such as hS1 =
{
s1(0.9), s2(0.1)

}
, hS2 =

{
s2(0.2), s3(0.3), s5(0.5)

}
,

then adjusted PDHFLTSs h1a
S1

=
{
s1(0.2), s1(0.3s)s1(0.4ss), s2(0.1)

}
, h2a

S2
=

{
s2(0.2), s3(0.3), s5(0.4), s5(0.1s)

}
.

Figure 1 shows the detailed calculation procedure.
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The covariance and correlation coefficient of possibility distribution are thus defined, as follows:

Definition 11. Suppose S, HS, P are the same as defined before. Adjusted h1a
S1

, h2a
S2
⊂ HS,P1, P2 ⊂ P,

PP∗ =
{
pp∗1, . . . , pp∗t

}
, then the covariance of ha

S1
, ha

S2
indicated by PP∗ is defined as:

Cov
(
h1a

S1
, h2a

S2

)
=

t∑
i=1

∣∣∣∣NS
(
s1a
ψi

)
− E

(
hS1

)∣∣∣∣∣∣∣∣NS
(
s2a
ψi

)
− E

(
hS2

)∣∣∣∣ppi (13)

where NS
(
sψ

)
denotes score function of sψ, and s1a

ψ1
⊂ h1a

S1
, s2a
ψ2
⊂ h2a

S2
; ppi ⊂ PP∗.

Example 2. Let hS1 , hS2 , h1a
S1

, h2a
S2

be the same as example 1, suppose NS
(
sψ

)
= ψ, we can obtain E

(
h1a

S1

)
= 1.1

and E
(
h2a

S2

)
= 3.8 by Equation (1). Subsequently, the covariance can be calculated by Equation (13) and the

result is as follows:

Cov
(
h1a

S1
, h2a

S2

)
= |1− 1.1||2− 3.8| × 0.2 + |1− 1.1||3− 3.8| × 0.3 + |1− 1.1||5− 3.8| × 0.4 + |2− 1.1||5− 3.8| × 0.1 = 0.216

where h1a
S1

=
{
S1(0.2), S1(0.3), S1(0.4), S2(0.1)

}
, h2a

S2
=

{
S2(0.2), S3(0.3), S5(0.4), S5(0.1)

}
, derived by

Definition 10.

However, without Definition 10, we are likely to calculate the covariance by following formula:

Cov
(
hS1 , hS2

)
=

∑
sψS1
⊂hS1 ,sψS2

⊂hS2 ;

∣∣∣∣NS
(
sψS1

)
− E

(
hS1

)∣∣∣∣∣∣∣∣NS
(
sψS2

)
− E

(
hS2

)∣∣∣∣pS1pS2

Additionally, the calculation process and result are:

Cov
(
hS1 , hS2

)
= |1− 1.1||2− 3.8|0.9× 0.2 + |1− 1.1||3− 3.8|0.9× 0.3 + |1− 1.1||5− 3.8|0.9× 0.5

+|2− 1.1||2− 3.8|0.1× 0.2 + |2− 1.1||3− 3.8|0.1× 0.3 + |2− 1.1||5− 3.8|0.1× 0.5 = 0.216

We can see from above two covariance measures that Cov
(
h1a

S1
, h2a

S2

)
= Cov

(
hS1

, hS2

)
,

which demonstrate that the computation is simplified by Definition 10, and the correctness of
the results is guaranteed.

On basis of Definition 10, it is obvious for two PDHFLTSs hS1
, hS2

to satisfy those good properties:

Properties 1. Cov
(
hS1 , hS2

)
= Cov

(
hS2 , hS1

)
.

Properties 2. Cov
(
hS1 , hS1

)
= Var

(
hS1

)
.
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By defining the covariance of two PDHFLTs, we further develop the correlation coefficient formula.

Definition 11. Let hS1 , hS2 be two PDHFLTs, then the correlation coefficient between hS1 and hS2 will be derived
by following equation.

ρhS1 ,hS2
= Cov

(
hS1 , hS2

)
/
(√

Var
(
hS1

)√
Var

(
hS2

))
(14)

Based on the correlation coefficient measure, the consensus degree of the experts can be defined.

Definition 12. Suppose there are m(m ≥ 2) alternatives denoted as X = (X1, . . . , Xm) and K(K ≥ 2) experts
E = (E1, . . . , EK) evaluate each alternative under the same attribute set C = (C1, . . . , Cn). The hesitant fuzzy

linguistic decision matrix of the T-th expert is expressed as DT =
(
dT

ij

)
m×n

, where di j ⊂ PDHFLTSs denotes

the performance of alternative Xi under attribute C j. Afterwards, the consensus degree of alternative Xi under
attribute C j for the T-th decision maker can be defined as:

CDT
Xi,C j

=
1

K − 1

K∑
L=1,L,T

ρdT
ij,d

L
ij

(15)

The consensus degree of alternative Xi for the T-th decision maker is defined as follows:

CDT
Xi

=
1

n(K − 1)

n∑
j=1

K∑
L=1,L,T

ρdT
ij,d

L
ij

(16)

Subsequently, the consensus degree for the T-th decision maker is defined:

CDT =
1

mn(K − 1)

m∑
i=1

n∑
j=1

K∑
L=1,L,T

ρdT
ij,d

L
ij

(17)

For the convenience of expression, we will adopt NS
(
sψ

)
= ψ in following contents.

3.2. The Hesitant Degree of the PDHFLTS

In this section, the basic task is working on decision makers’ information when they are hesitant
in conveying their preferences. Since Liao et al. [28] first proposed the concept of hesitant degree,
many scholars have studied it, such as [66,67]. However, the above hesitant degree is only related
to the number of HFLTS or EHFLTS elements, for our cognition, that is because DMs tend to assign
equal possibilities to every linguistic variable under hesitant situation, at beginning of evaluation, it is
difficult for DMs to differentiate the possibilities of linguistic variables in a state of self-confidence.

Therefore, when hesitant fuzzy linguistic information added the possibility distribution,
the hesitant degree is also related to the difference in the possibilities of linguistic variables. In this
sense, we further define hesitant degree with possibility distribution.

Definition 13. Let S =
{
sδ

∣∣∣δ = 1, 2, . . . , g
}

be a LTS, X, C, E are the same as defined before and di j is
a PDHFLTS on S that denotes the performance of alternative Xi under attribute C j. Pi j is the corresponding
possibility distribution of di j and Li j is the cardinality of di j, pa, pb ⊂ Pi j, the hesitant degree of alternative Xi
under attribute C j for the T-th decision maker is thus given by:

HDT
Xi,C j

= [1−(maxpa −minpb)]

 ln
(
Li j

)
ln(g)

 (18)
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The consensus degree of alternative Xi for T-th decision maker is defined as:

HDT
Xi

=
1
n

n∑
j=1

[1−(maxpa −minpb)]

 ln
(
Li j

)
ln(g)

 (19)

The consensus degree for T-th decision maker is denoted, as follows:

HDT =
1

mn

m∑
i=1

n∑
j=1

[1−(maxpa −minpb)]

 ln
(
Li j

)
ln(g)

 (20)

Note 1. There is only single linguistic term, the consensus degree is 0. in turn, there are g linguistic
variables and their possibilities remain equal, then the consensus degree is 1, that is 0 ≤ HD ≤ 1.

Based on consensus and hesitant degree, the weight of experts can be defined as:

Definition 14. Suppose the consensus degree is CDT and the hesitant degree is HDT for the T-th expert,
there are K(K ≥ 2) experts E = (E1, . . . , EK) participated. Hence, we obtain:

ωT =

(
1−HDT

)
CDT

K∑
F=1

(1−HDF)CDF

(21)

where ωT denotes the weight of expert T and 0 ≤ ωF
≤ 1,

K∑
F=1

ωF = 1, F = 1, . . . , K.

4. Determination of Attribute Weight Based on the Variable Weight Theory

Each expert has various knowledge background and problem recognition ability regarding
expressing their evaluation on different attributes; these factors work together to influence the behavior
of evaluation of decision makers. In our cognition, the utility function depicts and quantifies the
psychological cognition of DMs on the evaluation results. Thus, in this section, we will introduce the
utility function into the variable weight method for determining the weight of the attributes.

In management decision problems, the weight of an attribute keeps unchanged with respect to
different alternatives, which leads to unreasonable decision-making results. For instance, the safety risk
assessment of amusement facilities is based on the multi-factor comprehensive results. If an abnormality
occurs in one link, that is, the attribute value is abnormal, and other attribute values are maintained
at normal levels, there is still a high probability of a safety accident. However, the existing
papers [14,15,23–26] cannot illustrate and cope with this situation. A more intuitive assumption
is that there are attributes a and b, and their weight vector is (0.5, 0.5), so the score synthesis function
is S = 0.5xa + 0.5xb, where xa, xb denote the performance of alternatives under the attribute a or b,
respectively. If alternative 1 has xa = 0.05, xb = 0.95 while alternative 2 has xa = 0.5, xb = 0.5, according
to common sense in this case, alternative 2 is far better than alternative 1. However, the fact is that their
scores both are 0.5, which is unreasonable. Unless the attribute weight changes with the change of the
scheme, it can overcome this defect. Hence, we should consider not only the preference for the relative
importance of attributes, but also the configuration equilibrium of the attributes in each scheme.

In [59], Yu proposed a compromise-typed variable weight method to solve Hybrid MADM
problems. However, it is also necessary to discuss a single-typed variable weight, and the utility-based
variable weight has not been introduced into the GDM context. If combing the variable weight method
with group utility, which is aggregating from individual utility, we can solve the decision problem with
the GDM environment. Besides, if we transform all of the cost attributes into benefit attributes, then the
single-typed variable weight function can deal with most of the MAGDM problems. Therefore, in this
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section, we necessarily proposed a novel incentive-typed variable weight method for determining the
weight of attribute under the MAGDM environment.

Definition 15. Let W(X) = (w1(x1, . . . , xn), . . . , wn(x1, . . . , xn)) be a variable weight vector and
SX =

{
s1(x1), . . . , sn(xn)

}
be a variable weight state vector. Afterwards, W(X) will become an incentive-typed

variable weight vector, if only satisfies following rules [64]:

(1) If
∂W(x j)

∂x j
> 0,

∂2W(x j)

∂x j
2 > 0, where x j denotes j-th attribute of alternative ai and0 ≤ x j ≤ 1, j = 1, . . . , n,

then W(X) is called as the risk-incentive type variable weight vector (RIVW).

(2) If
∂W(x j)

∂x j
> 0,

∂2W(x j)

∂x j
2 < 0, where x j denotes j-th attribute of alternative ai and0 ≤ x j ≤ 1, j = 1, . . . , n,

then W(X) is called as the conservative-incentive type variable weight vector (CIVW).

(3) If
∂W(x j)

∂x j
> 0,

∂2W(x j)

∂x j
2 = 0, where x j denotes j-th attribute of alternative ai and0 ≤ x j ≤ 1, j = 1, . . . , n,

then W(X) is called as the neutral-incentive type variable weight vector (NIVW).

(4) If
∂W(x j)

∂x j
> 0,

∂2W(x j)

∂x j
2 > 0, 0 ≤ x j ≤ r j and

∂2W(x j)

∂x j
2 < 0, r j ≤ x j ≤ 1, where x j denotes j-th attribute of

alternative ai and 0 ≤ x j ≤ 1, j = 1, . . . , n,r j ⊂ [0, 1] is a reference point, then W(X) is called as the
S-shaped-incentive type variable weight vector (SIVW).

(5) If
∂W(x j)

∂x j
> 0,

∂2W(x j)

∂x j
2 < 0, 0 ≤ x j ≤ r j and

∂2W(x j)

∂x j
2 > 0, r j ≤ x j ≤ 1, where x j denotes j-th attribute of

alternative ai and 0 ≤ x j ≤ 1, j = 1, . . . , n,r j ⊂ [0, 1] is a reference point, then W(X) is called as the
inverse S-shaped-incentive type variable weight vector (ISIVW).

Suppose W(X) = (w1(x1, . . . , xn), . . . , wn(x1, . . . , xn)) =
wc
⊗U(X)

n∑
k=1

wkuk(xk)
is a variable weight vector,

wc = (w1, . . . , wn) is a constant vector satisfying
n∑

k=1
wk = 1 and U(X) =

{
u1(x1), . . . , un(xn)

}
is the

utility function. In this paper, if U′(X) > 0, U”(X) > 0, then U(X) is named risk-typed utility function;
if U′(X) > 0,U”(X) < 0, then U(X) is named conservative-typed utility function; if U′(X) > 0,U”(X) = 0,

then U(X) is named neutral-typed utility function; if U′(X) > 0,U”(X)

{
> 0, X ⊂ [0, r]
< 0, X ⊂ [r, 1]

, then U(X) is

named S-shaped utility function; if U′(X) > 0,U”(X)

{
< 0, X ⊂ [0, r]
> 0, X ⊂ [r, 1]

, then U(X) is named inverse S-shaped

utility function.

Theorem 1. If U(X) is the S-shaped utility function and
n∑

k=1
wkuk(xk) −

2w j[u′ j(x j)]
2

u′′ j(x j)
> 0, then W(X) is the

S-shaped-incentive type variable weight vector.

Proof. Since U(X) is the S-shaped utility function, then U′(X) > 0 and U”(X) < 0, X ⊂ [0, r],U”(X) >

0, X ⊂ [r, 1], thus we have:
∂W j(X)

∂x j
= ∂

∂x j

 w ju j(x j)
n∑

k=1
wkuk(xk)

 =
u′ j(x j)w j

n∑
k=1

wkuk(xk)−w ju j(x j)w ju′ j(x j)[
n∑

k=1
wkuk(xk)

]2 =

u′ j
(
x j

)w j
n∑

k=1,k, j
wkuk(xk)[

n∑
k=1

wkuk(xk)

]2 , it is obvious that
∂W j(X)

∂x j
> 0, furthermore,
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∂2W j(X)

∂x2
j

=

u′′ j(x j)w j
n∑

k=1,k, j
wkuk(xk)

[
n∑

k=1
wkuk(xk)

]2

−2
n∑

k=1
wkuk(xk)•w2

j [u
′

j(x j)]
2 n∑

k=1,k, j
wkuk(xk)[

n∑
k=1

wkuk(xk)

]4

=

w j
n∑

k=1,k, j
wkuk(xk)

n∑
k=1

wkuk(xk)

[
u′′ j(x j)

n∑
k=1

wkuk(xk)−2w j[u′ j(x j)]
2
]

[
n∑

k=1
wkuk(xk)

]4

=

w j
n∑

k=1,k, j
wkuk(xk)

[
u′′ j(x j)

n∑
k=1

wkuk(xk)−2w j[u′ j(x j)]
2
]

[
n∑

k=1
wkuk(xk)

]3 = u′′ j
(
x j

)w j
n∑

k=1,k, j
wkuk(xk)

 n∑
k=1

wkuk(xk)−
2wj[u′ j(xj)]

2

u′′ j(xj)

[
n∑

k=1
wkuk(xk)

]3

where x j is the j-th attribute of alternative ai, W j(X) = ω j
(
x j

)
denotes the j-th element of W(X), w j is

the j-th element of wc.

Continually, because
n∑

k=1
wkuk(xk) −

2w j[u′ j(x j)]
2

u′′ j(x j)
> 0 and u′′ j

(
x j

){ > 0, 0 ≤ x j ≤ r j
< 0,r j ≤ x j ≤ 1

, then we know

that
∂2W j(X)

∂x2
j

{
> 0, 0 ≤ x j ≤ r j
< 0, r j ≤ x j ≤ 1

. Therefore, W(X) is the SIVW. �

Theorem 2. If U(X) is the inverse S-shaped utility function and
n∑

k=1
wkuk(xk) −

2w j[u′ j(x j)]
2

u′′ j(x j)
> 0, then W(X)

is the ISIVW.

Theorem 3. If U(X) is the risk-typed utility function and
n∑

k=1
wkuk(xk) −

2w j[u′ j(x j)]
2

u′′ j(x j)
> 0, then W(X) is

the RIVW.

Theorem 4. If U(X) is the conservative-typed utility function and
n∑

k=1
wkuk(xk)−

2w j[u′ j(x j)]
2

u′′ j(x j)
> 0, then W(X)

is the CIVW.

Theorem 5. If U(X) is the neutral-typed utility function and
n∑

k=1
wkuk(xk) −

2w j[u′ j(x j)]
2

u′′ j(x j)
> 0, then W(X) is

the NIVW.

The proof process of Theorems 2–5 is similar to the Theorem 1.

Theorem 6. If W(X) is the SIVW, then W−1(X) is the ISIVW, where W−1(X) is the inverse function of W(X).

Proof. Since W(X) is the SIVW, then
∂W(x j)

∂x j
> 0,

∂2W j(X)

∂x2
j

{
> 0, 0 ≤ x j ≤ r j
< 0, r j ≤ x j ≤ 1

. Besides, according to

the properties of inverse function, we can derive
∂2W−1

j (X)

∂x2
j

{
< 0, 0 ≤ x j ≤ r j
> 0, r j ≤ x j ≤ 1

from W(X) and W−1(X)

symmetrically about y = x, and
∂W−1(x j)

∂x j
> 0. Therefore W−1(X) is the ISIVW. �

Theorem 7. If W(X) is the CIVW, then W−1(X) is the RIVW, where W−1(X) is the inverse function of W(X).

Theorem 8. If W(X) is the NIVW, then W−1(X) is the NIVW, where W−1(X) is the inverse function of W(X).

The proof process of Theorems 7–8 is similar to the Theorem 6.
The rest of the work is to obtain the group utility.
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Definition 16. Suppose there are K(K ≥ 2) experts E = (E1, . . . , EK), the utility function of each expert is
UK(X) =

{
uK

1 (x1), . . . , uK
n (xn)

}
and ω =

(
ω1, . . . ,ωT, . . . ,ωK

)
is the weight vector of experts. Thus, the group

utility is given by:

GUWA
{
U1(X), . . . , UK(X)

}
=

K∑
T=1

ωTUT(X) (22)

where GUWA is the group utility aggregation operator,
K∑

T=1
ωT = 1, 0 ≤ ωT

≤ 1.

5. The MULTIMOORA Method Based on PDHFLTS

In this section, we proposed the PDHFL-MULTIMOORA method. The weight of expert is
determined by the approach that is based on the consensus and hesitant degree, while the weight of
attribute is defined by the variable weight method in which the group utility is taken into consideration.
The MULTIMOORA method is adjusted by introducing the improved ranking position method under
PDHFL environment. It is necessary to give a brief introduction to MAGDM problems before we get
down to the core.

A multi-attribute group decision-making problem consists of three parts: expert set, alternative
set, and attribute set. The expert set is expressed as E = (E1, . . . , EK), K ≥ 2, alternative set can
be defined as A = (A1, . . . , Am), m ≥ 2, and attribute set is denoted as C = (C1, . . . , Cn), n ≥ 2.
The assessment of expert K with respect to alternative Ai under attribute C j is expressed as dT

ij,

where i = 1, . . . , m; j = 1, . . . , n. Specifically, if di j belongs to PDHFLTS, then di j =
{
p1, . . . , pg

}
and the

individual decision matrices are derived as DT =
{
dT

ij

}
m×n

, where T = 1, . . . , K. By Equations (3) and

(21), the group decision matrix is obtained as D =


d11 . . . d1n

...
. . .

...
dm1 · · · dmn

.

5.1. the PDHFL-MULTIMOORA Method with the Improved Ranking Position Method

We aim to improve the traditional MULTIMOORA approach, in this part, by introducing the
ranking position method to define the novel MULTIMOORA method. First of all, owing to the
advantages of the vector normalization, we use the vector normalization formula to normalize the
group decision matrix Dm×n:

dN
ij =

E
(
di j

)
√

m∑
i=1

[
E
(
di j

)]2
(23)

Further, we derive the normalized group decision matrix DN =


dN

11 . . . dN
1n

...
. . .

...
dN

m1 · · · dN
mn

. After this

foundational work, the calculation of three models can be defined.

(1) The Possibility Distribution Hesitant Fuzzy Linguistic Ratio System (PDHFLRS)

To calculate the utility value of Ratio System, the arithmetic weighted operator computes the
normalized value dN

ij . Subsequently, the subordinate utility value of alternative Ai is given by:

U1(Ai) =

g∑
j=1

ω jdN
ij −

n∑
j=g+1

ω jdN
ij (24)
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where ω j denotes the weight of attribute C j( j = 1, . . . , n). C j( j = 1, . . . , g) belong to the benefit
attribute, while C j( j = g + 1, . . . , n) belong to cost attribute. The ranking results of each alternative are
arranged in descending order by utility value U1(Ai), so the first subordinate orders are shown as:
R1 =

{
Ai|i⊂maxU1(Ai)

, . . . , Ai|i⊂minU1(Ai)

}
.

(2) The Possibility Distribution Hesitant Fuzzy Linguistic Reference Point (PDHFLRP)

The subordinate utility value of alternative Ai is given by:

U2(Ai) = maxω j
j

∣∣∣∣r j − dN
ij

∣∣∣∣ (25)

where r j is calculated by r j =
{
maxdN

ij , j ≤ g; mindN
ij , j ≥ g

}
. Ranking alternative by utility

value U2(Ai) in ascending order, and then the second subordinate orders are shown as:
R2 =

{
Ai|i⊂minU2(Ai)

, . . . , Ai|i⊂maxU2(Ai)

}
.

(3) The Possibility Distribution Hesitant Fuzzy Linguistic Full Multiplicative Form (PDHFLFMF)

According to geometric weighted operator, the subordinate utility value of alternative Ai is
calculated by:

U3(Ai) =

g∏
j=1

(
dN

ij

)ω j /
n∏

j=g+1

(
dN

ij

)ω j (26)

Alternatives are ranked by utility value U3(Ai) in descending order, and then the third subordinate
ranking is denoted as: R3 =

{
Ai|i⊂maxU3(Ai)

, . . . , Ai|i⊂minU3(Ai)

}
.

(4) The final ranking obtained by improved Ranking Position method

In final stage, the rest of the work is the aggregation of three models. If we regard those models
as attributes that represent different aspects of information in decision-making problems, then we
can transform it into a MADM problem, in which every alternative Ai has a pairwise values (utility
value Uk(Ai), ranking result Rk(Ai)) with respect to three attributes Ck(k = 1, 2, 3). Therefore, there are
two decision matrices that consist of utility value matrix D(U) and ranking matrix D(R), they denote,
as follows:

C1 C2 C3

D(U) =

A1
...

Ah
...

Am



U1(A1) U2(A1) U3(A1)
...

U1(Ah)
...

...
U2(Ah)

...

...
U3(Ah)

...
U1(Am) U2(Am) U3(Am)



C1 C2 C3

D(R) =

A1
...

Ah
...

Am



R1(A1) R2(A1) R3(A1)
...

R1(Ah)
...

...
R2(Ah)

...

...
R3(Ah)

...
R1(Am) R2(Am) R3(Am)


However, the ranking position method [30] only focuses on the position factor, but it ignores the

subordinate utilities and the relative importance of the subordinate order, which do not reflect the real
performance of the alternative in the subordinate ranking. In other words, this method only involves
the ranking matrix, but not both the ranking matrix and the utility value matrix. A simple example can
illustrate the shortcomings of this method: there are three alternatives, which are denoted as A1, A2, A3.
Their utility value matrix of three models (RS, RP, FMF) is denoted as:

RS RP FMF
A1

A2

A3


0.9 0.19 0.29
0.1 0.2 0.3

0.11 0.21 0.1


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Obviously, the ranking lists can be given, as follows:

R1 = {A1 > A3 > A2}; R2 = {A3 > A2 > A1}; R3 = {A2 > A1 > A3}

The computation results of each alternatives denote, as follows:

RPM(A1) = 1/(1 + 1/3 + 1/2) = 6/11
RPM(A2) = 1/(1/3 + 1/2 + 1) = 6/11
RPM(A3) = 1/(1/2 + 1/3 + 1) = 6/11

Thus, the final ranking result is: A1 = A2 = A3, if the relative importance of the three sub-models
is the same. Actually, the performance of A1 and A3 in RP is similar, but A1 is much better than A3

in RS and FMF. Comprehensively speaking, it must be more reasonable that A1 > A3, which is more
in line with our cognition. When considering that the PDHFLRP model is the cost-based attribute,
while PDHFLRS and PDHFLFMF models are benefit-based attribute, the score function of the ranking
position method is thus improved by an arithmetic weighted operator, as follows:

IRPM(Ai) =
1∣∣∣∣∣UN

1 (Ai)

R1(Ai)
−

UN
2 (Ai)

R2(Ai)
+

UN
3 (Ai)

R3(A3)

∣∣∣∣∣ (27)

where UN
k (Ai) denotes the vector normalization result of Uk(Ai), that is,

UN
k (Ai) = Uk(Ai)/

√
m∑

i=1
[Uk(Ai)]

2, k = 1, 2, 3.

By the Equation (27), we derive a new result of A1 > A3 > A2, where IRPM(A1) = 0.876,
IRPM(A2) = 2.232, IRPM(A3) = 2.141. This result defeats some unreasonable defects.

5.2. The Procedure of the PDHFL-MULTIMOORA Method

The PDHFL-MULTIMOORA methodology will be performed by the following step in order to
clearly illustrate the structure of our proposed method and facilitate the reader’s application, as shown
in Figure 2.

Step 1. Collect the linguistic evaluation information from expert ET(T = 1, . . . , K) on alternative
Ai(i = 1, . . . , m) with respect to attribute C j( j = 1, . . . , n) to derive the PDHFLTE dT

ij =(
pT

ij,1, . . . pT
ij,l, . . . , pT

ij,g

)
, and then establish the individual decision matrix DT =

(
dT

ij

)
m×n

.

Step 2. Calculate the weight of expert that detailed operational procedures have been described in

Section 3. On basis of obtaining expert weight vector ω =
(
ω1, . . . ,ωL, . . . ,ωK

)
, we aggregate

the individual decision matrix into the group decision matrix at step 3.

Step 3. Let D =
(
di j

)
m×n

be the group decision matrix consisting of elements di j =
(
pi j,1, . . . pi j,l, . . . , pi j,g

)
.

By Equation (3), we have:

HFLWA
(
d1

i j, . . . d
L
ij, . . . , dT

ij

)
=

(
pi j,1, . . . , pi j,l, . . . , pi j,g

)
(28)

where pi j,l is given by:

pi j,l =
T∑

u=1

ωupi j,u (29)

Step 4. Normalize the group decision matrix D =
(
di j

)
m×n

into DN =
(
dN

ij

)
m×n

by Equation (23),

and then go to step 5.
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Step 5. Gain the utility function UT(X) of each expert and the constant vector wc = (w1, . . . , wn) with
respect to attribute set, we use Equation (22) to obtain the group utility function U(X), and then
the weight vector of attribute W = (w1, . . . , wn) is derived by the following formula:

W(X) =
(
w1

(
di1, . . . , dil, . . . , di j

)
, . . . , wn

(
di1, . . . , dil, . . . , di j

))
=

wc
⊗U(X)

n∑
k=1

wkuk(xk)

(30)

Noteworthily, the value of cost type attribute should be converted into 1− dN
ij .

Step 6. Compute the utility value U1(Ai) of PDHFLRS model by Equation (24), and then obtain

the first subordinate ranking set: R1 =
{
Ai|i⊂maxU1(Ai)

, . . . , Ai|i⊂minU1(Ai)

}
and utility value set:

U1 = (U1(A1), . . . , U1(Am)).
Step 7. Calculate the utility value U2(Ai) of PDHFLRP model by Equation (25), thus obtaining the

second subordinate ranking set: R2 =
{
Ai|i⊂minU2(Ai)

, . . . , Ai|i⊂maxU2(Ai)

}
and utility value set:

U2 = (U2(A1), . . . , U2(Am)).
Step 8. Derive the utility value U3(Ai) of PDHFLFMF model by Equation (26), hence we receive

the third subordinate ranking set: R3 =
{
Ai|i⊂maxU3(Ai)

, . . . , Ai|i⊂minU3(Ai)

}
and utility value set:

U3 = (U3(A1), . . . , U3(Am)) as well.
Step 9. Based on the utility values and subordinate ranking sets of three model, establish the utility

value matrix D(U) and ranking matrix D(R). After that, we apply the improved ranking
position rule as Equation (27) to compute the (Improved Ranking Position Method) IRPM value
of each alternative and, finally, a comprehensive ranking result is obtained. End.
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According to presentation on algorithmic steps, Figure 2 shows the general framework.
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6. A Case Study of 3PRLP Selection

6.1. Case Description

In China, express industry has shown explosive growth, owing to the tremendous success of
e-commerce. However, at the same time, a lot of resources are wasted and the contradiction between
environment and society is increasingly prominent. As the government and the public increasing
attention to sustainable development, the enterprise’s actions in the environment are playing a crucial
role. Thus, whether or not the express industry has the economic, social, and environmental capabilities
in the process of reverse logistics becomes the key to solve the problem. In fact, it is commonplace for
enterprises to entrust reverse logistics management to third-party reverse logistics providers (3PRLP) in
order to ensure that the reverse flow of products is handled in an efficient way [68], because enterprises
can focus on their core business by outsourcing reverse logistics business to appropriate suppliers.
If not, their image and interests will be greatly damaged. Hence, sustainable 3PRLP selection bears the
vital importance of express companies, especially the sustainability.

The process of choosing 3PRLP is very complex and full of uncertainty in order to maximize
profits and minimize risks. Thus, a good decision-making method is particularly important. To data,
different types of methods have been applied to this field, but the most concerned and special method
is MADM, because of its effectiveness in dealing with complex problems. Table 2 summarizes previous
literatures on 3PRLP selection methods.

Table 2. Summary of third-party reverse logistics provider (3PRLP) selection methods.

Method Reference

AHP [69,70]
ANP [71,72]

TOPSIS [73,74]
DEA [75,76]

VIKOR [74]
Fuzzy MOORA [77]

AI [78]
Mathematical Model [79,80]

Existing papers demonstrate that the attributes of selecting a sustainable 3PRLP are mainly
concentrated on four aspects: society, economy, risk, and environment. Further, we summarize the
core attributes in recent studies, as shown in Table 3.

However, existing literatures hardly concentrate on the expert evaluation system. In practice,
increasing enterprises tend to invite a group of experts to make an evaluation instead of single
individual. Moreover, due to the complexity and fuzziness of the problem, experts cannot start with
an accurate description. Meanwhile, the objective data of quantitative indicators are not accurately
available, only being replaced by experts’ linguistic expertise. Therefore, the proposed MAGDM
method, which focuses on processing linguistic variables, in this paper, is suitable and reasonable for
the sustainable 3PRLPs selection issue.
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Table 3. Core attributes for sustainable 3PRLP selection.

Attribute Sub-Attribute Reference

Economic (C1)

Quality [68,77,81,82]
Transportation [68,77]

Cost [68,72,77,78,82]
Lead Time [1,77,81,83]

Delivery and Services [68,77,78,81,82]

Environment (C2)

Recycle [68,72,77,82,84]
Remanufacture and Reuse [68,77,82]

Green Technology Capability [61,72,77]
Disposal [68,77,82]

Eco-design Production [77,84]
Environment Protection [81]

Risk (C3) Finance risk [77,85]
Operation risk [77,86]

Social (C4)
Health and safety [77,84]
Voice of Customer [68,77,78]

Employment stability [68,72,77,87]

Suppose that there are four attributes, namely, economic ability (C1), environmental
ability (C2), risk level(C3) [88], and social ability (C4). Subsequently, four experts
E = (E1, E2, E3, E4) are invited to participate in assessing four providers X = (A1, A2, A3, A4).
The LTS for assessing the providers with respect to the four attributes is defined
as S = {s1 = VeryBad(VB), s2 = Bad(B), s3 = SlightBad(SB), s4 = Medium(M), s5 = SlightGood(SG),
s6 = Good(G), s7 = VeryGood(VG)}, and then experts provide their linguistic evaluations as PDHFLTSs
form respectively. The results are shown as the following Tables 4–7.

Table 4. Possibility distribution hesitant fuzzy linguistic decision matrix by expert E1.

C1 C2 C3 C4

A1 (0.9, 0.1, 0, 0, 0, 0, 0) (0, 0, 0.3, 0.7, 0, 0, 0) (0, 0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0.5, 0.5)
A2 (0, 0.1, 0.1, 0.8, 0, 0, 0) (0.3, 0.3, 0.2, 0.2, 0, 0, 0) (0, 0, 0, 0, 0, 0, 1) (0.7, 0.3, 0, 0, 0, 0, 0)
A3 (0, 0, 0.6, 0.3, 0.1, 0, 0) (0, 0, 1, 0, 0, 0, 0) (0, 0.2, 0.8, 0, 0, 0, 0) (0.7, 0.1, 0.2, 0, 0, 0, 0)
A4 (0.3, 0.3, 0.4, 0, 0, 0, 0) (0.1, 0.9, 0, 0, 0, 0, 0) (0, 0, 0, 0.5, 0.2, 0.3, 0) (0, 0, 0, 1, 0, 0, 0)

Table 5. Possibility distribution hesitant fuzzy linguistic decision matrix by expert E2.

C1 C2 C3 C4

A1 (0.6, 0.4, 0, 0, 0, 0, 0) (0, 0, 1, 0, 0, 0, 0) (0, 0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0.2, 0.2, 0.6)
A2 (0, 0, 0.5, 0.5, 0, 0, 0) (0.5, 0.5, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0.4, 0.6, 0) (0, 1, 0, 0, 0, 0, 0)
A3 (0, 0, 0.7, 0.2, 0.1, 0, 0) (0, 0, 0.8, 0.2, 0, 0, 0) (0, 0.9, 0.1, 0, 0, 0, 0) (0.5, 0.3, 0.2, 0, 0, 0, 0)
A4 (0.3, 0.4, 0.3, 0, 0, 0, 0) (0, 0, 1, 0, 0, 0, 0) (0, 0, 0.9, 0.1, 0, 0, 0) (0, 0.2, 0.5, 0.3, 0, 0, 0)

Table 6. Possibility distribution hesitant fuzzy linguistic decision matrix by expert E3.

C1 C2 C3 C4

A1 (0, 0.4, 0.4, 0.2, 0, 0, 0) (0, 0.5, 0.5, 0, 0, 0, 0) (0, 0, 0.5, 0.5, 0, 0, 0) (0, 0, 0, 0, 0, 1, 0)
A2 (0, 0.2, 0.8, 0, 0, 0, 0) (0, 0.4, 0.3, 0.3, 0, 0, 0) (0, 0, 0, 0, 1, 0, 0) (0.5, 0.2, 0.3, 0, 0, 0, 0)
A3 (0, 0, 0.4, 0.6, 0, 0, 0) (0, 0, 0.5, 0.5, 0, 0, 0) (0.1, 0.1, 0.8, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0)
A4 (0.8, 0.2, 0, 0, 0, 0, 0) (0, 0, 0, 0.6, 0.4, 0, 0) (0, 0, 0.6, 0.3, 0.1, 0, 0) (0, 0.5, 0.5, 0, 0, 0, 0)
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Table 7. Possibility distribution hesitant fuzzy linguistic decision matrix by expert E4.

C1 C2 C3 C4

A1 (0, 1, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0.3, 0.7, 0) (0, 1, 0, 0, 0, 0, 0) (0, 0, 0.5, 0.5, 0, 0, 0)
A2 (0, 0.2, 0.1, 0.7, 0, 0, 0) (0, 0.2, 0.8, 0, 0, 0, 0) (0, 0, 0, 0.6, 0.3, 0.1, 0) (0, 0, 0.4, 0.2, 0.4, 0, 0)
A3 (0, 1, 0, 0, 0, 0, 0) (0, 0.5, 0.4, 0.1, 0, 0, 0) (0, 0, 0, 0, 0, 0.7, 0.3) (0, 0, 0, 0.2, 0.8, 0, 0)
A4 (0, 0.5, 0.1, 0.4, 0, 0, 0) (0, 0, 0, 0, 0.5, 0.5, 0) (0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0.4, 0.6, 0, 0)

6.2. Solve the Case by the PDHFL-MULTIMOORA Method

We calculate the case according to the procedures of the proposed method. As the first step has
already been done in previous part, we start with step 2.

Step 2. Based on the linguistic decision matrix of each expert, the weight of expert can be determined
by Equation (21), where the consensus degree and hesitant degree are computed by Equations
(17) and (20). The weight vector, the consensus degree vector, and hesitant degree vector of
experts are established, respectively, as:

CD =
(
CD1, CD2, CD3, CD4

)
= (0.4782, 0.4381, 0.4837, 0.4629);

HD =
(
HD1, HD2, HD3, HD4

)
= (0.2155, 0.1624, 0.1882, 0.1676);

ω =
(
ω1,ω2,ω3,ω4

)
= (0.247, 0.241, 0.258, 0.254).

Step 3. Calculate the collective expressions by Equation (3), and then the group decision matrix is
denoted by:

D =


(0.37, 0.48, 0.1, 0.05, 0, 0, 0) (0, 0.13, 0.44, 0.17, 0.08, 0.18, 0) (0, 0.25, 0.62, 0.13, 0, 0, 0) (0, 0, 0, 0, 0.05, 0.43, 0.27)
(0, 0.13, 0.37, 0.5, 0, 0, 0) (0.19, 0.35, 0.33, 0.13, 0, 0, 0) (0, 0, 0, 0.15, 0.43, 0.17, 0.25) (0.30, 0.37, 0.18, 0.05, 0.10, 0, 0)

(0, 0.25, 0.42, 0.28, 0.05, 0, 0) (0, 0.13, 0.67, 0.2, 0, 0, 0) (0.03, 0.29, 0.43, 0, 0, 0.17, 0.08) (0.29, 0.36, 0.10, 0.05, 0.20, 0, 0)
(0.35, 0.37, 0.18, 0.1, 0, 0, 0) (0.02, 0.22, 0.24, 0.15, 0.24, 0.13, 0) (0, 0, 0.37, 0.48, 0.08, 0.07, 0) (0, 0.18, 0.25, 0.42, 0.15, 0, 0)


Step 4. By Equation (23), derive the normalized group decision matrix as:

DN =


0.34 0.57 0.35 0.75
0.63 0.36 0.68 0.31
0.58 0.47 0.43 0.34
0.38 0.57 0.48 0.48


Step 5. Suppose that the utility functions of expert E1, E2, E3, E4 are given by, respectively:

U1(x) = x2, U2(x) = ln(x + e− 1), U3(x) =
r
2

x2
−

1
6

x3 +
1
2

x−
r
2
+

2
3

, U4(x) = x.

According to Equation (22), the group utility function is:

U(X) = ω1x2 +ω2ln(x + e− 1) +ω3

( r
2

x2
−

1
6

x3 +
1
2

x−
r
2
+

2
3

)
+ω4x

where ωi(i = 1, 2, 3, 4) denotes the weight of expert Ei,r = 0.5.
Subsequently, we have variable weights, as follows:

W j(X) =
wc

j

[
ω1xi j

2 +ω2ln
(
xi j + e− 1

)
+ω3

(
1
4 xi j

2
−

1
6 xi j

3 + 1
2 xi j +

5
12

)
+ω4xi j

]
4∑

j=1
wc

j

[
ω1xi j2 +ω2ln

(
xi j + e− 1

)
+ω3

(
1
4 xi j2 −

1
6 xi j3 +

1
2 xi j +

5
12

)
+ω4xi j

]
where wc

j = 0.25 is a constant weight of attribute C j and the normalized value of cost attribute should

be updated to 1− dN
ij . Subsequently, W(X) is expressed as:
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W(X) =


0.176 0.246 0.272 0.306
0.337 0.232 0.217 0.214
0.281 0.242 0.278 0.199
0.214 0.279 0.261 0.246


Step 6. Based on the weight of attributes and normalized value of group decision matrix, Obtain the

utility value of PDHFLTRS by Equation (24):

U1 = (0.334, 0.215, 0.225, 0.233)

Thus, the first subordinate ranks are R1 = {A1 > A4 > A3 > A2}.

Step 7. Derive the utility value of PDHFLRP with Equation (25):

U2 = (0.051, 0.094, 0.082, 0.066)

The second subordinate orders are shown as: R2 = {A1 > A4 > A3 > A2}.

Step 8. By analogical computation with Equation (26), the utility value of PDHFLFMF is:

U3 = (0.878, 0.571, 0.729, 0.703)

The third subordinate ranks are: R3 = {A1 > A3 > A4 > A2}.

Step 9. Finally, the IRPM value can be computed by Equation (27), as follows:

IRPM(A1) = 1.1, IRPM(A2) = 21.6, IRPM(A3) = 4.7, IRPM(A4) = 5.9

Afterwards, the final ranks are R f inal = {A1 > A3 > A4 > A2}. In conclusion, the sustainable
provider 1 is the best option for selection.

6.3. Comparative Analysis with the PDHFL-MULTIMOORA Method Based on Existing Weight Methods

In this part, we make a comparison of the proposed variable weight-based weight-determining
method and other existing methods.

Firstly, the entropy-weighting method is one of the most widely used weight-determining method;
its basic idea is that the more information energy contained in an attribute, the greater the weight
will be allocated. Since the entropy measure of hesitant fuzzy linguistic elements [89], defined by
Farhadinia, the weights of attribute can be obtained by following formulas:

Edg
(HS) = 1−

1
N

n∑
i=1


1

L

L∑
l=1


∣∣∣∣ψl −

g+1
2

∣∣∣∣
g− 1


λ

1
λ
 (31)

ω j =

m∑
i=1

Edg,i j

n∑
j=1

m∑
i=1

Edg,i j

(32)

The PDHFL-MULTIMOORA with the entropy-weighting method is summarized, as follows:

Step 1. For the above case, the content of procedures is same as Step 1–3 of the PDHFL-MULTIMOORA
with the variable weight method.
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Step 2. Based on entropy measure formula denoted by Equation (31), derive the weight of attributes
with Equation (32):

Edg
(D) =


3/4 4/5 5/6 2/3
5/6 3/4 3/4 23/30
5/6 5/6 19/30 23/30
3/4 3/4 5/6 5/6

, ω1 = 0.256,ω2 = 0.253,ω3 = 0.246,ω4 = 0.245.

where assume λ = 1.
Step 3. Reference Step 4 and 6–7 of the PDHFL-MULTIMOORA with the variable weight method.

Subsequently, we get the new utility value and subordinate ranks matrix of three models,
as follows:

U1 U2 U3

D(U) =


0.329 0.074 0.794
0.161 0.108 0.566
0.245 0.1 0.679
0.241 0.066 0.678

,
R1 R2 R3

D(R) =


1 2 1
4 4 4
2 3 2
3 1 3


Step 4. Calculate the final results by Equation (27):

IRPM(A1) = 1, IRPM(A2) = 33.3, IRPM(A3) = 3.2, IRPM(A4) = 21.3, and the final result is
R f inal = {A1 > A3 > A4 > A2}.

Secondly, the standard deviation method’s main idea is similar to the entropy weight method.
Usually, the larger the standard deviation of an attribute, the greater the variation of the attribute value,
the greater the amount of information provided, and the greater its weight. The PDHFL-MULTIMOORA
with the standard deviation method is thus summarized, as follows:

Step 1. It is same as Step 1–4 of the proposed PDHFL-MULTIMOORA method.
Step 2. Derive the weight of attributes by Equation (34), while using standard deviation formula

Equation (33).

σ j =

√√√√ m∑
i=1

dN
ij −

1
m

m∑
i=1

dN
ij

2

/m (33)

ω j = σ j/
n∑

j=1

σ j (34)

Hence, we get:
σ = (σ1, σ2, σ3, σ4) = (0.125, 0.087, 0.122, 0.174)
ω = (ω1,ω2,ω3,ω4) = (0.246, 0.171, 0.24, 0.343)

Step 3. Obtain the utility value and subordinate orders:

U1 U2 U3

D(U) =


0.354 0.084 0.812
0.16 0.151 0.55

0.236 0.141 0.65
0.24 0.093 0.664

,
R1 R2 R3

D(R) =


1 1 1
4 4 4
3 3 3
2 2 2


Step 4. Derive final ranks by Equation (27). The results are shown as:IRPM(A1) = 1.06, IRPM(A2) =

40, IRPM(A3) = 8.3, IRPM(A4) = 3.4. Subsequently, the final ranks are R f inal =

{A1 > A4 > A3 > A2}.
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Thirdly, derive the results by the PDHFL-MULTIMOORA with the same weight method, where
all attributes’ weights are equal. After an analogical analysis, we can receive:

U1 U2 U3

D(U) =


0.328 0.073 0.802
0.155 0.11 0.567
0.24 0.103 0.681

0.238 0.068 0.682

,
R1 R2 R3

D(R) =


1 2 1
4 4 4
2 3 3
3 1 2


IRPM(A1) = 0.96, IRPM(A2) = 36.4, IRPM(A3) = 4.7, IRPM(A4) = 33.3

Thus, the final orders are R f inal = {A1 > A3 > A4 > A2}.
From above weighting method, the final results that were obtained by the proposed method are

the same as entropy-weighting and same weight methods, while they are different from the standard
deviation method. However, there is little difference in Table 8. Hence, this can prove the effectiveness
and rationality of our proposed weighting approach, to a large extent. However, we can also find
that the results are sensitive to attributes’ weights, that is, different weights of attributes may lead to
different results, as Figure 3 clearly shows, only the weight of the variable weight method is inconstant
with respect to the same attribute, while the other methods are constant. Through the example of the
Section 4, we know that, if the weight is unchanged, it will probably produce unreasonable results.
Therefore, it can be concluded that the variable weight method can maintain the reasonableness of the
results to a greater extent than the other weight methods.

Table 8. The comparison of mentioned weight methods.

Methods The Weight of Attributes Final Ranks

The proposed method

C1 C2 C3 C4
A1
A2
A3
A4


0.176 0.246 0.272 0.336
0.337 0.232 0.217 0.214
0.281 0.242 0.278 0.199
0.214 0.279 0.261 0.246

 A1 > A3 > A4 > A2

Entropy-weighting ω = (ω1,ω2,ω3,ω4) = (0.256, 0.253, 0.246, 0.245) A1 > A3 > A4 > A2

Standard deviation ω = (ω1,ω2,ω3,ω4) = (0.246, 0.171, 0.24, 0.343) A1 > A4 > A3 > A2

Same weight ω = (ω1,ω2,ω3,ω4) = (0.25, 0.25, 0.25, 0.25) A1 > A3 > A4 > A2
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6.4. Comparative Analysis with the PDHFL-TOPSIS and the PDHFL-VIKOR Methods

This section mainly works on the reliability of the proposed method by making a comparison
with the PDHFL-TOPSIS and the PDHFL-VIKOR methods.

Motivated by Wu [15], The steps of the TOPSIS based approach to solve the above case are shown,
as below.

Step 1. Reference Step 1 of the PDHFL-MULTIMOORA method.
Step 2. Reference Step 2 of the PDHFL-MULTIMOORA method.
Step 3. Reference Step 3 of the PDHFL-MULTIMOORA method.
Step 4. Reference Step 5 of the PDHFL-MULTIMOORA method.
Step 5. Find the positive ideal solution (PIS) p+j and negative ideal solution p−j regarding attribute C j

by following formulas:

p+j = max
i

di j, j = 1, . . . , g; p+j = min
i

di j, j = g + 1, . . . , n (35)

p−j = min
i

di j, j = 1, . . . , g; p−j = max
i

di j, j = g + 1, . . . , n (36)

where C j, j = 1, . . . , g belong to beneficial attributes and C j, j = g + 1, . . . , n belong to cost
attributes. Similar to 15, p+j and p−j are defined by Definition 6, and then we have:

p+1 = d21, p+2 = d12, p+3 = d13, p+4 = d14;p−1 = d11, p−2 = d22, p−3 = d23, p−4 = d24.

Step 6. Compute the distance of each provider from the PIS and NIS:

d+i =
n∑

j=1

ωi jd
(
di j, p+j

)
, i = 1, . . . , m (37)

d−i =
n∑

j=1

ωi jd
(
di j, p−j

)
, i = 1, . . . , m (38)

d
(
di j, p+(−)

j

)
=

1
g

∣∣∣∣∣E(
di j

)
− E

(
p+(−)

j

)∣∣∣∣∣ = 1
g

∣∣∣∣∣∣∣
g∑

l=1

NS(sψ)pψ,di j −

g∑
l=1

NS(sψ)pψ, j+(−)

∣∣∣∣∣∣∣ (39)

Subsequently, we get:

d+1 = 0.039, d+2 = 0.227, d+3 = 0.145, d+4 = 0.149;

d−1 = 0.293, d−2 = 0.074, d−3 = 0.161, d−4 = 0.167.

Step 7. Determine the relative closeness of each provider to ideal solution by following-up equation:

RCi =
d−i

d+i + d−i
(40)

Afterwards, we have:
RC1 = 0.883, RC2 = 0.246, RC3 = 0.526, RC4 = 0.528. The final ranks are thus denoted as:

RTOPSIS = {A1 > A4 > A3 > A2}

Analogically, solve the above case based on VIKOR, and the steps are expressed as:

Step 1. Consult Step 1 of the PDHFL-TOPSIS method.
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Step 2. Consult Step 2 of the PDHFL-TOPSIS method.
Step 3. Consult Step 3 of the PDHFL-TOPSIS method.
Step 4. Consult Step 4 of the PDHFL-TOPSIS method.
Step 5. Consult Step 5 of the PDHFL-TOPSIS method.
Step 6. Determine the values of Si and Ri by:

Si =
n∑

j=1

ωi j

d
(
p+j , di j

)
d(p+j , p−j )

, i = 1, . . . , m (41)

Ri = max
j

ωi j

d
(
p+j , di j

)
d(p+j , p−j )

 (42)

Then we get:
S1 = 0.178, S2 = 0.663, S3 = 0.413, S4 = 0.439;
R1 = 0.178, R2 = 0.232, R3 = 0.189, R4 = 0.184.

Step 7. Compute the values of Qi by:

Qi = θ
Si − S−

S+ − S−
+ (1− θ)

Ri −R−

R+ −R−
, i = 1, . . . , m (43)

where θ denotes the proportion of group utility maximization strategy, 1 − θ denotes the
proportion of individual regret. Besides, S+ = max

i
Si, S− = min

i
Si, R+ = max

i
Ri, R− = min

i
Ri.

If we pursue the maximization of group utility and the minimization of individual regret,
then put θ = 0.7, and we have:

Q1 = 0, Q2 = 1, Q3 = 0.4, Q4 = 0.415

Step 8. Rank all of the schemes by sorting Si, Ri, Qi in ascending order, as follows:

RQ = {Q1 < Q3 < Q4 < Q2}, RS = {S1 < S3 < S4 < S2}, RR = {R1 < R3 < R4 < R2}.

Step 9. According to verification by conditions 1 and 2 in VIKOR model that was proposed by
Wu [15], the providers 1, 3, and 4 are compromise solutions and final results can be denoted as:
RVIKOR = {A1 > A3 > A4 > A2}. The case of θ = 0.3 is shown in Table 9.

All three methods show that sustainable 3PRLP 1 is the best option in Table 9. Hence, the original
express incorporation can cooperate with the provider 1 to maximize its value. However, there are
certain different values for each alternative obtained by different MAGDM methods, we find that the
utility values of provider 3 and 4 are close to each other in the TOPSIS and VIKOR based methods.
The TOPSIS based method illustrates that provider 3 is worse than provider 4, because of the ignorance
of individual regret, and just provider 3 performs badly with respect to attribute C4. The VIKOR based
method considers this aspect that the greater value of θ, the greater the proportion of individual regret,
the better perform provider 3 is than provider 4, but it is difficult for experts to subjectively determine the
threshold θ in practical application. If we revise the weight of individual regret, the results of them are
likely to change. This situation can be seen in Table 9. From the theoretical level, the operation essence
of the TOPISIS based method is arithmetic weighting aggregation, which is similar to operation and sort
results of PDHFLRS. Although the VIKOR based method has considered individual regret, the result is
very sensitive to its proportion, which is difficultly determined. The PDHFL-MULTIMOORA method
considers both the group utility values and individual regret values, which controlled by three models,
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and results will depend on utility values and subordinate ranks by introducing improved ranking
position method. The utility value of the improved ranking position method, from the theoretical
level of speaking, is equivalent to controlling the relative importance of three models. This approach
overcomes the shortcoming of VIKOR based approach’s threshold θ, which is difficult to estimate.

Further, we see no change in the result of the PDHFL-MULTIMOORA approach, which proves
the robustness and rationality of presented approach in Table 10. In detail, operation 1 means that
normalized utility value of the PDHFLRS increased by 50%; Operation 2 means that the normalized
utility value of the PDHFLRP increased by 50%; Operation 3 means that normalized utility value of
the PDHFLFMF increased by 50%; Operation 4 means that normalized utility value of the PDHFLRS
decreased by 50%; Operation 5 means that normalized utility value of the PDHFLRP decreased by
50%; and, Operation 6 means that normalized utility value of the PDHFLFMF decreased by 50%.

Table 9. Comparison of PDHFL-MULTIMOORA and other existing PDHFL-MAGDM methods.

Sustainable
Providers

PDHFL-TOPSISPDHFL-VIKOR PDHFL-MULTIMOORA

Ranks
Ranks Ranks of

PDHFLRS
Ranks of

PDHFLRP
Ranks of

PDHFLFMF Ranks
θ = 0.3 θ = 0.7

1 1 1 1 1 1 1 1
2 4 4 4 4 4 4 4
3 3 3 2 3 3 2 2
4 2 2 3 2 2 3 3

Table 10. Sensitivity analysis of PDHFL-MULTIMOORA.

Sustainable Providers

Different Operations on Three Models of PDHFL-MULTIMOORA

Operation 1 Operation 2 Operation 3

IRPM Rfinal IRPM Rfinal IRPM Rfinal

1 0.81 1 1.35 1 0.83 1
2 10.3 4 29.6 4 10.7 4
3 3.5 2 8.2 2 3 2
4 3.6 3 18.2 3 4.1 3

Sustainable Providers
Operation 4 Operation 5 Operation 6

IRPM Rfinal IRPM Rfinal IRPM Rfinal

1 1.7 1 0.9 1 1.6 1
2 133.3 4 8.1 4 266.7 4
3 7.1 2 0.95 2 11.3 2
4 15.4 3 3.6 3 11.8 3

7. Conclusions and Further Directions

The PDHFLTS is a suitable tool for expressing complex linguistic information to cope with
MAGDM problems. This paper combines PDHFLT with the MULTIMOORA method for deriving
solution of sustainable 3PRLP selection problem. The major contributions can be summarized,
as follows:

(1) A novel method is presented to compute the weight of expert both considering hesitant degree
and consensus degree, and a covariance-based correlation coefficient measure is defined to
determine the consensus degree, which is proven to be able to simplify calculations and it is
specifically designed for hesitant fuzzy linguistic environment based on possibility distribution.
A hesitant degree formula under PDHFL context is also introduced.
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(2) The incentive-type variable weight method considering group utility function is developed to
calculate the weight of attributes in which group utility derived by aggregation of individual utility.
Some properties of utility function, combined with the variable weight method, are examined.

(3) A new aggregation operator, named the improved ranking position method, is introduced into
the MULTIMOORA method. When compared to existing MAGDM methods, the proposed
approach has the following advantages: (a). the HFLTS with possibility distribution can carry
more abundant information of experts. (b). the weight of attributes avoids some unreasonable
situations, the weight of expert reflects each individual’s uncertainty and closeness to the group.
(c). the final ranks retain robustness and effectiveness, because three models with different effects
are applied to calculate the group decision matrix.

(4) A sustainable 3PRLP selection problem is solved by the proposed method to verify its rationality
and suitability. Two comparative analyses are made to illustrate the difference of presented
methods and other existing methods.

(5) In the future, the research can focus on several aspects: the MULTIMOORA with improved ranking
position method will be combined with another useful information expression tool to promote it
much wider. Secondly, the PDHFLTs based on other MAGDM methods will be introduced in
later work. What is more, aggregation of heterogeneous evaluation data of sustainable 3PRLP
selection could also continue to mine deeply in the field of MAGDM background.
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