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Abstract: We provide counterexamples to P. Olver’s freeness conjecture for C∞ actions. In fact,
we show that a counterexample exists for any connected real Lie group with noncompact center,
as well as for the additive group of the integers.
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1. Introduction

P. Olver’s freeness conjecture (in his words) asserts: “If a Lie group acts effectively on a manifold,
then, for some n < ∞, the action is free on [a nonempty] open subset of the jet bundle of order n.”
There is some ambiguity in this wording: No mention is made of connectedness of the group or
manifold, the particular choice of jet bundle isn’t made precise and the smoothness of the action is
left unspecified.

In this note, we provide counterexamples to one interpretation of the freeness conjecture for C∞

actions and higher order frame bundles. Those who know Olver’s work will understand that there are
a family of associated jet bundles to which he generally refers, and work in frame bundles then informs
results in these jet bundles, through the associated bundle construction. In the C∞ context, Olver has
noted that, to avoid elementary counterexamples, “effective” must be strengthened to “fixpoint rare”,
which we define in Section 2 below. In Theorem 1 and Lemma 2, we show that a counterexample exists
for any connected real Lie group with a noncompact center, as well as for the additive group of the
integers. We also prove [1] the validity of the conjecture for connected real Lie groups with compact
center. Finally, in [2], we describe a certain “meager” modification of the Cω conjecture, and prove it
holds for all connected real Lie groups.

For any fixed group, the C∞ conjecture implies the Cω conjecture, so the Cω conjecture (on frame
bundles) is now proved for connected real Lie groups with compact center. In [3], we offer a Z-action
on a manifold with an infinitely generated fundamental group, which, after induction of actions,
provides a Cω counterexample for any connected Lie group with a noncompact center. There is the
possibility that the construction in Theorem 1 could be modified to make counterexamples to the Cω

conjecture on a contractible manifold, e.g., R4. The main difficulty in such an extension appears to be
technical, and revolves around developing a good understanding of convergence of sequences in Cω

with respect to some well-chosen topology. For this, D. Morris’ unpublished note [4] may be useful.

2. Miscellaneous Notation and Terminology

A subset of a topological space is meager (a.k.a. of first category) if it is a countable union of
nowhere dense sets. A subset of a topological space is nonmeager (a.k.a. of second category) if it is
not meager. A subset of a topological space is comeager (a.k.a. residual) if its complement is meager.

Let N := {1, 2, 3, . . .}. For all d ∈ N, let Idd : Rd → Rd be the identity map, defined by Idd(σ) = σ.
For every subset S ⊆ R, for every d ∈ N, we define Sd := S× S× · · · × S ⊆ Rd.
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Define V0 : R4 → R4 by: for all σ ∈ R4, V0(σ) = (0, 0, 0, 1).
Let d ≥ 1 be an integer. A function V : Rd → Rd will be said to be complete if it is C∞ and

represents a complete vector field on Rd. For any complete V : Rd → Rd, we will use the notation
ΦV

t : Rd → Rd to denote the time t flow of V, defined by the ODE (d/dt)(ΦV
t (σ)) = V(ΦV

t (σ)) and by
the initial value condition ΦV

0 = Idd.
Let d ≥ 1 be an integer. Let V : Rd → Rd be complete. For any A ⊆ R, for any B ⊆ Rd,

let ΦV
A(B) := {ΦV

a (b) | a ∈ A, b ∈ B}. For any A ⊆ R, for any b ∈ Rd, let ΦV
A(b) := {ΦV

a (b) | a ∈ A}.
For any a ∈ R, for any B ⊆ Rd, let ΦV

a (B) := {ΦV
a (b) | b ∈ B}.

Let d ≥ 1 be an integer. Let V : Rd → Rd be complete. Let σ ∈ Rd. We say that (V, σ) is periodic
if there exists an integer n 6= 0 such that ΦV

n (σ) = σ. For any integer k ≥ 0, we say that (V, σ) is
periodic to order k if there is an integer n 6= 0 such that the map ΦV

n : Rd → Rd agrees with the identity
Idd : Rd → Rd to order k at σ. We say that (V, σ) is periodic to all orders if there is an integer n 6= 0
such that the map ΦV

n : Rd → Rd agrees with Idd : Rd → Rd to all orders at σ.
An action of a group G on a topological space X is fixpoint rare if, for any nonempty open subset

U of X, for all g ∈ G\{1G}, there exists u ∈ U such that gu 6= u. Any fixpoint rare action is effective.
For a Cω action on a connected manifold, fixpoint rare and effective are equivalent. Any continuous
transitive action of a real Lie group preserves a Cω structure, from which it follows that: By lemma 6.1
of [5], a continuous action of a connected real Lie group G on a topological space X is fixpoint rare iff,
for every nonempty G-invariant open subset V of X, the G-action on V is effective.

3. Description of the Proof

To aid the reader, we give a broad description of how to construct a counterexample.
Here, we focus only on flows in R4. We identify vector fields on R4 with smooth maps R4 → R4.

Let V : R4 → R4 be any complete vector field on R4. Then, PRPV will denote the set of all x ∈ R4

such that t 7→ ΦV
t (x) : R→ R4 is proper. We say V is generically proper if PRPV is comeager in R4.

Note that PRPV0 = R4, so V0 is generically proper.
Let {ω1, ω2, ω3, . . .} be a countable dense subset of R4. For all j ∈ N, let Bj denote the ball about

(0, 0, 0, 0) of radius j in R4 with its usual Euclidean metric. Let Id := Id4, the identity map R4 → R4.
Let σ1 := ω1. Choose a complete vector field V1 on R4 such that, for some T1 ∈ R\{0}, ΦV1

T1
agrees

with Id on a neighborhood of σ1. (For example, V1 : R4 → R4 could be the identically zero.) Note that
V1 is NOT generically proper because every point near σ1 has a periodic (hence nonproper) orbit.
Let Σ1 := ΦV1

R (σ1) denote the orbit of σ1 under the flow of V1. Then, Σ1 is compact. Let C1 denote
an open ball in R4 containing Σ1.

Let A1 denote the set of all complete vector fields V : R4 → R4 such that V agrees with V1 to
infinite order at every point of Σ1.

Exercise for the reader: Find a generically proper vector field V2 in A1. We expect that many
(and perhaps MOST) vector fields in A1 are generically proper.

By density, choose σ2 ∈ PRPV2 such that |σ2 −ω2| < 1/2.
Since σ2 ∈ PRPV2 , for all sufficiently large t > 0, we have both ΦV2

t (σ2) /∈ C1 and ΦV2
−t(σ2) /∈ C1.

Choose a complete vector field V′2 on R4 such that V′2 agrees with V2 on C1 and for some T2 ∈
R\{0}, ΦV′2

T2
= Id on some neighborhood of σ2.

Note that V′2 is NOT generically proper because every point near σ2 has a closed (hence nonproper)

orbit. Let Σ2 := ΦV′2
R (σ2) denote the orbit of σ2 under the flow of V′2. Then, Σ2 is compact. Let C2

denote an open ball in R4 containing B1 ∪ C1 ∪ Σ1.
Let A2 denote the set of all complete vector fields V : R4 → R4 such that V agrees with V′2 to

infinite order at every point of Σ2 and such that V agrees with V2 on C1.
Exercise for the reader: Find a generically proper vector field V3 in A2. We expect that many

(and perhaps MOST) vector fields in A2 are generically proper.
By density, choose σ3 ∈ PRPV3 such that |σ3 −ω3| < 1/3.
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Since σ3 ∈ PRPV3 , for all sufficiently large t > 0, we have both ΦV3
t (σ3) /∈ C2 and ΦV3

−t(σ3) /∈ C2.
Choose a complete vector field V′3 on R4 such that V′3 agrees with V3 on C2 and for some T3 ∈

R\{0}, ΦV′3
T3

= Id on a neighborhood of σ3.
Note that V′3 is NOT generically proper because every point near σ3 has a closed (hence nonproper)

orbit. Let Σ3 := ΦV′3
R (σ2) denote the orbit of σ3 under the flow of V′3. Then, Σ3 is compact. Let C3

denote an open ball in R4 containing B2 ∪ C2 ∪ Σ3.
Let A3 denote the set of all complete vector fields V : R4 → R4 such that V agrees with V′3 to

infinite order at every point of Σ3 and such that V agrees with V2 on C1.
Exercise for the reader: Find a generically proper vector field V3 in A3. We expect that many

(and perhaps MOST) vector fields in A3 are generically proper.
Continuing, we construct a sequence V1, V2, . . . of vector fields on R4. By construction, there is

a unique vector field W on R4 such that:

∀j ∈ N, W = Vj on Cj.

The flow of W agrees to infinite order with Id on the set {σ1, σ2, . . .}. Since {ω1, ω2, . . .} is dense in
R4, we see that {σ1, σ2, . . .} is dense in R4 as well. It remains to argue that the flow of W is fixpoint rare.

Given t ∈ R\{0} and a nonempty open set U in R4, we want: ∃u ∈ U s.t. ΦW
t (u) 6= u. Assume,

for a contradiction that ∀u ∈ U, ΦW
t (u) = u.

For all j ∈ N, let Qj := {z ∈ R4 |ΦW
t (z) = Φ

Vj
t (z)}. By construction,

⋃
j∈N

Qj = R4, so

⋃
j∈N

(Qj ∩U) = U. By the Baire Category Theorem, U is nonmeager in R4, so choose j ∈ N such

that Qj ∩ U is nonmeager in R4. Since Vj is generically proper, we get: PRPVj is comeager in R4.
Then, Qj ∩ U ∩ PRPVj 6= ∅, and we fix a point z ∈ Qj ∩ U ∩ PRPVj . As z ∈ Qj, we see that

ΦW
t (z) = Φ

Vj
t (z). As z ∈ U, we see that ΦW

t (z) = z. Then, Φ
Vj
t (z) = z. As z ∈ PRPVj , we see

that s 7→ Φ
Vj
s (z) : R → R4 is proper. Since t 6= 0 and Φ

Vj
t (z) = z, we get: s 7→ Φ

Vj
s (z) : R → R4 is

nonproper. Contradiction.
The exercises for the reader (given above) have not been completed by the author. They motivate

the following OPEN PROBLEM:
Let V : R4 → R4 be a complete, generically proper vector field. Let C ⊆ R4 have compact closure

in R4, and let p ∈ PRPV . Prove: there is a complete, generically proper vector field Ṽ : R4 → R4 such
that Ṽ agrees with V on C and for some T ∈ R\{0}, ΦṼ

T agrees with Id at p to infinite order.
To solve this open problem, one needs to take the V-orbit of p (which leaves compact sets, in both

positive and negative time), and “bend” it, outside of C, so that it turns into an orbit that is periodic to
infinite order. Moreover, this must be done in such a way as to preserve completeness and generic
properness.

It is possible that this problem may admit a simple solution, in which case a relatively easy
counterexample would be possible, as described above. In this paper, we replace “generically proper”
by a stronger condition, “porous”. We provide the iterative step in Lemma 1. Its proof is complicated
and appears in [6].

4. The Iteration

Let I := {(−a, a) ⊆ R | a ∈ N}. For every I ∈ I , let aI := sup I, so aI ∈ N and I = (−aI , aI).
For every I ∈ I , for every integer n ≥ 1, we define nI := (−naI , naI) ∈ I ; then, anI = naI . For every
I ∈ I , let I := [−aI , aI ] be the closure in R of I. We define I0 := (−1, 1) ∈ I ; then, aI0 = 1.

Let C be the set of C∞ maps V : R4 → R4 such that V(R4) ⊆ I4
0. Then, V0 ∈ C. For all V ∈ C,

the vector field V : R4 → R4 is complete.
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Let V ∈ C. Let Π : R4 → R be projection onto the 4th coordinate, defined by Π(x1, x2, x3, x4) = xj.
We say σ ∈ R4 is undeterred by V if Π(ΦV

R(σ)) = R. The undeterred set for V is the set U (V) of all
σ ∈ R4 such that σ is undeterred by V. This set U (V) is V-invariant. We say V is porous if U (V) is
dense in R4. For example, U (V0) = R4, so V0 is porous. By a deterrence system, we mean an element
(V, I) ∈ C × I such that V = V0 on (R4)\(I4). Let D be the set of all deterrence systems. Note, for all
(V, I) ∈ D, that V ∈ V(aI).

For any I ∈ I , we define CI := {P ∈ C | P = V0 on ( 3I )4}.
Let (V, I) ∈ D. For any (W, J) ∈ D, we say (W, J) is a modification of (V, I) if: both [ aI < aJ ]

and [ W = V on I4 ].
We define

M(V, I) := { (W, J) ∈ D | (W, J) is a modification of (V, I) }.

Let I ∈ I . We define D×I := {(P, K) ∈ D | 4I ⊆ K and P ∈ CI}. We denote by PI the set of
(P, K) ∈ D×I such that, for some integer m > 2aI , we have:

• ΦP
m agrees with Id4 to all orders at (0, 0, 0,−aI) and

• for all τ ∈ I3 × {−aI}, for all t ∈ (0, m),

[ΦP
t (τ) ∈ I4 ] ⇔ [ t < 2aI ].

Lemma 1. Let (V, I) ∈ D. Assume V is porous. Let σ′ ∈ U (V). Then, there exists (V′, I′) ∈ M(V, I) such
that V′ is porous and such that (V′, σ′) is periodic to all orders.

Proof. See Lemma 16.1 of [6].

5. A Result about Cyclic Groups

Lemma 2. If G is a connected real Lie group whose center Z(G) is noncompact, then Z(G) has an infinite
cyclic closed subgroup.

Proof. This is Lemma 17.3 of [6].

6. The Counterexamples

Note that Theorem 1 below applies when G is discrete and isomorphic to the additive group Z.
Lemma 2 shows that Theorem 1 also applies when G is a connected real Lie group whose center Z(G)

is noncompact. In addition, note by (ii) below that, if

either G is connected or G = Z,

then M is connected.
For any C∞ manifold M, for any integer k ≥ 0, let πM

k : Fk M → M denote the kth order frame
bundle of M. Let Π : R4 → R be projection onto the 4th coordinate, defined by Π(x1, x2, x3, x4) = xj.

Theorem 1. Let G be a real Lie group. Assume the center Z(G) of G admits an infinite cyclic closed subgroup
Z. Then, there is a C∞ manifold M and a fixpoint rare C∞ action of G on M such that:

(i) for any integer k ≥ 0, there is a dense subset D of Fk M such that, for all δ ∈ D, the stabilizer StabZ(δ) is
infinite and

(ii) the number of connected components of M and G/Z are equal.

Proof. We have (V0, I0) ∈ D. In addition, U (V0) = R4, so V0 is porous.
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Let | • | : R4 → [0, ∞) be a norm on R4. Let {ω1, ω2, ω3, . . .} be a countable dense subset of R4.
Choose σ1 ∈ R4 such that |σ1 −ω1| < 1. Then, σ1 ∈ R4 = U (V0).

By Lemma 1, choose (V1, I1) ∈ M(V0, I0) such that V1 is porous and such that (V1, σ1) is periodic
to all orders. Because V1 is porous, U (V1) is dense in R4, so fix σ2 ∈ U (V1) such that |σ2 −ω2| < 1/2.

By Lemma 1, choose (V2, I2) ∈ M(V1, I1) such that V2 is porous and such that (V2, σ2) is periodic
to all orders. Because V2 is porous, U (V2) is dense in R4, so fix σ3 ∈ U (V2) such that |σ3 −ω3| < 1/3.

By Lemma 1, choose (V3, I3) ∈ M(V2, I2) such that V3 is porous and such that (V3, σ3) is periodic
to all orders. Because V3 is porous, U (V3) is dense in R4, so fix σ4 ∈ U (V3) such that |σ4 −ω4| < 1/4.

Continuing yields a countable dense subset {σ1, σ2, σ3, . . .} of R4, and a sequence
(V1, I1), (V2, I2), (V3, I3), . . . in D. For each integer j ≥ 1,

• aIj+1 > aIj ,

• Vj+1 = Vj on I4
j ,

• Vj is porous, and
• (Vj, σj) is periodic to all orders.

We have aI1 < aI2 < aI3 < · · · and aI1 , aI2 , aI3 , . . . ∈ N. It follows both that I1 ⊆ I2 ⊆ I3 ⊆ · · · and
that I1 ∪ I2 ∪ I3 ∪ · · · = R. Then, I4

1 ⊆ I4
2 ⊆ I4

3 ⊆ · · · and I4
1 ∪ I4

2 ∪ I4
3 ∪ · · · = R4. Define V∞ ∈ C by the

rule: For all integers j ≥ 1, V∞ = Vj on I4
j . Let X :=

∞⋂
k=1

(U (Vk)).

Claim 1: For all t ∈ R\{0}, for all σ ∈ X, we have ΦV∞
t (σ) 6= σ.

Proof of Claim 1. Let t ∈ R\{0} and let σ ∈ X. Assume, for a contradiction, that we have ΦV∞
t (σ) = σ.

Since ΦV∞
R (σ) = ΦV∞

[0,t](σ), we see that ΦV∞
R (σ) is compact. Then, since I4

1 ⊆ I4
2 ⊆ I4

3 ⊆ · · ·
and I4

1 ∪ I4
2 ∪ I4

3 ∪ · · · = R4, fix an integer j ≥ 1 such that ΦV∞
R (σ) ⊆ I4

j . We have Vj = V∞ on I4
j .

Then, by Lemma 6.1 of [6], Φ
Vj
R (σ) = ΦV∞

R (σ).

Then, Π(Φ
Vj
R (σ)) = Π(ΦV∞

R (σ)) ⊆ Π(I4
j ) = Ij. However because σ ∈ X ⊆ U (Vj), it follows that

Π(Φ
Vj
R (σ)) = R. Thus, we have R ⊆ Ij, contradiction.

Claim 2: For all integers j ≥ 1, (V∞, σj) is periodic to all orders.

Proof of Claim 2. Fix an integer j ≥ 1. We wish to show that (V∞, σj) is periodic to all orders.

Because (Vj, Ij) ∈ D and (Vj, σj) is periodic, we conclude, from Lemma 8.13 of [6], that Φ
Vj
R (σj) ⊆

I4
j . For all τ ∈ I4

j , because V∞ and Vj agree on I4
j , which is an open neighborhood of τ, it follows that

they agree to all orders at τ. Thus, for all t ∈ R, V∞ and Vj agree to all orders at Φ
Vj
t (σj). Then, by

Lemma 6.3 of [6], for all t ∈ R ΦV∞
t : R4 → R4 and Φ

Vj
t : R4 → R4 agree to all orders at σj. Thus, as

(Vj, σj) is periodic to all orders, it follows (V∞, σj) is periodic to all orders as well.

Because Z is infinite cyclic, it follows that Z is isomorphic to the additive discrete group Z.
Let f : Z → Z be an isomorphism. Define a Z-action on R4 by: for all z ∈ Z, for all σ ∈ R4,
zσ = ΦV∞

f (z)(σ). Let M := G×Z R4. Because the Z-action on R4 is C∞, it follows that the G-action on

M is C∞ as well. By construction, M is (the total space of) a fiber bundle over G/Z with fiber R4,
so, because R4 is connected, M has the same number of connected components as does G/Z.

By Corollary 8.4(i) of [6], U (V) is an open subset of R4. For all integers k ≥ 1, Vk is porous.

Then, U (Vk) is a dense open subset of R4. Then, because X =
∞⋂

k=1

(U (Vk)), we see, by the Baire

Category Theorem, that X is dense in R4. By Claim 1, for all z ∈ Z\{1Z}, for all σ ∈ X, we have
ΦV∞

f (z)(σ) 6= σ, i.e., we have zσ 6= σ. Thus, the Z-action on R4 is fixpoint rare. Then, the G-action on M
is also fixpoint rare.
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Let p : G × R4 → G ×Z R4 = M be the canonical map. Define an injection ι : R4 → M by
ι(σ) = p(1G, σ). Let Σ := ι({σ1, σ2, σ3, . . .}). Because {σ1, σ2, σ3, . . .} is dense in R4, A := GΣ is dense
in M.

Fix an integer k ≥ 0, and let π := πM
k : Fk M → M be the kth order frame bundle of M.

Let D := π−1(A). Since A is dense in M, and since π : Fk M→ M is open, it follows that D is dense in
Fk M. Fix δ ∈ D. We wish to show that StabZ(δ) is infinite.

Let S := StabG(δ). Then, StabZ(δ) = S ∩ Z. We therefore wish to show that S ∩ Z is infinite.
Since π(δ) ∈ A = GΣ, fix g0 ∈ G, τ0 ∈ Σ such that π(δ) = g0τ0. Let δ0 := g−1

0 δ. Then, π(δ0) = τ0,
i.e., δ0 ∈ π−1(τ0). Let S0 := StabG(δ0). Then, S = g0S0g−1

0 . As Z ⊆ Z(G), we have Z = g0Zg−1
0 .

Then, S ∩ Z = g0(S0 ∩ Z)g−1
0 , so it suffices to show that S0 ∩ Z is infinite.

Recall that Id4 : R4 → R4 is the identity map defined by Id4(σ) = σ. Let Id : M → M be the
identity map defined by Id(ρ) = ρ.

Since τ0 ∈ Σ = ι({σ1, σ2, σ3, . . .}), fix an integer j ≥ 1 such that τ0 = ι(σj). By Claim 2, fix n0 ∈
Z\{0} such that ΦV∞

n0 : R4 → R4 agrees with the identity Id4 : R4 → R4 to all orders at σj.
Let z0 := f−1(n0). Then, z0 ∈ Z\{1Z}, and, for all σ ∈ R4, we have z0σ = ΦV∞

n0 (σ). Then, the map
σ 7→ z0σ : R4 → R4 is equal to ΦV∞

n0 : R4 → R4, and therefore agrees with Id4 : R4 → R4 to all orders at
σj. Then, since Z ⊆ Z(G) and since ι(σj) = τ0, it follows that the map ρ 7→ z0ρ : M→ M agrees with
Id : M→ M at τ0 to all orders. In particular, ρ 7→ z0ρ : M→ M agrees with Id : M→ M at τ0 to order
k. Then, for all ρ ∈ π−1(τ0), we have z0ρ = ρ. Thus, since δ0 ∈ π−1(τ0), we get z0δ0 = δ0. That is,
z0 ∈ StabZ(δ0) = S0 ∩ Z. Let C0 be the cyclic subgroup of S0 ∩ Z generated by z0. Every nontrivial
subgroup of an infinite cyclic group is infinite, so C0 is infinite. Thus, because C0 ⊆ S0 ∩ Z, it follows
that S0 ∩ Z is infinite, as desired.
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