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Abstract: As a significant subset of the family of discrete optimization problems, the 0-1 knapsack
problem (0-1 KP) has received considerable attention among the relevant researchers. The monarch
butterfly optimization (MBO) is a recent metaheuristic algorithm inspired by the migration behavior
of monarch butterflies. The original MBO is proposed to solve continuous optimization problems.
This paper presents a novel monarch butterfly optimization with a global position updating operator
(GMBO), which can address 0-1 KP known as an NP-complete problem. The global position updating
operator is incorporated to help all the monarch butterflies rapidly move towards the global best
position. Moreover, a dichotomy encoding scheme is adopted to represent monarch butterflies
for solving 0-1 KP. In addition, a specific two-stage repair operator is used to repair the infeasible
solutions and further optimize the feasible solutions. Finally, Orthogonal Design (OD) is employed in
order to find the most suitable parameters. Two sets of low-dimensional 0-1 KP instances and three
kinds of 15 high-dimensional 0-1 KP instances are used to verify the ability of the proposed GMBO.
An extensive comparative study of GMBO with five classical and two state-of-the-art algorithms is
carried out. The experimental results clearly indicate that GMBO can achieve better solutions on
almost all the 0-1 KP instances and significantly outperforms the rest.

Keywords: monarch butterfly optimization; greedy optimization algorithm; global position updating
operator; 0-1 knapsack problems

1. Introduction

The 0-1 knapsack problem (0-1 KP) is a classical combinatorial optimization task and a challenging
NP-complete problem as well. That is to say, it can be solved by nondeterministic algorithms in
polynomial time. Similar to other NP-complete problems, such as vertex cover (VC), hamiltonian circuit
(HC), and set cover (SC), the 0-1 KP is intractable. In other words, no polynomial-time exact algorithms
have been found for it thus far. This problem was originated from the resource allocation involving
financial constraints and since then, has been extensively studied in an array of scientific fields, such as
combinatorial theory, computational complexity theory, applied mathematics, and computer science [1].
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Additionally, it has been found to have many practical applications, such as project selection [2],
investment decision-making [3], and network interdiction problem [4]. Mathematically, we can describe
the 0-1 KP as follows:

Maximize f (x) =
n∑

i=1
pixi

subject to
n∑

i=1
wixi ≤ C,

xi = 0 or 1, i = 1, . . . , n,

(1)

where n is the number of items, pi, and wi denote the profit and weight of item i, respectively. C represents
the total capacity of the knapsack. The 0-1 variable xi indicates whether the item i is put into the
knapsack, i.e., if any item i is selected and belongs to the knapsack, xi = 1, otherwise, xi = 0. The objective
of the 0-1 KP is to maximize the total profits of the items placed in the knapsack, subject to the condition
that the sum of the weights of the corresponding items does not exceed a given capacity C.

Since the 0-1 KP was reported by Dantzig [5] in 1957, a large number of researchers have focused
on addressing it in diverse areas. Some of the main early methods in this field are exact methods, such
as the branch and bound method (B&B) [6] and the dynamic programming (DP) method [7]. It is a
breakthrough to introduce the concept of the core by Martello et al. [8]. In addition, some effective
algorithms have been proposed for 0-1 KP [9], the multidimensional knapsack problem (MKP) [10].
With the rapid development of computational intelligence, some modern metaheuristic algorithms have
been proposed for addressing the 0-1 KP. Some of those related algorithms include genetic algorithm
(GA) [11], differential evolution (DE) [12], shuffled frog-leaping algorithm (SFLA) [13], cuckoo search
(CS) [14,15], artificial bee colony (ABC) [16,17], harmony search (HS) [17–21], and bat algorithm
(BA) [22,23]. Many research methods are applied to the 0-1 KP problem. Zhang et al. converted the 0-1
KP problem into a directed graph by the network converting algorithm [24]. Kong et al. proposed
an ingenious binary operator to solve the 0-1 KP problem by simplified binary harmony search [20].
Zhou et al. presented a complex-valued encoding scheme for the 0-1 KP problem [22].

In recent years, inspired by natural phenomena, a variety of novel meta-heuristic algorithms have
been reported, e.g., bat algorithm (BA) [23], amoeboid organism algorithm [24], animal migration
optimization (AMO) [25], artificial plant optimization algorithm (APOA) [26], biogeography-based
optimization (BBO) [27,28], human learning optimization (HLO) [29], krill herd (KH) [30–32],
monarch butterfly optimization (MBO) [33], elephant herding optimization (EHO) [34], invasive
weed optimization (IWO) algorithm [35], earthworm optimization algorithm (EWA) [36], squirrel
search algorithm (SSA) [37], butterfly optimization algorithm (BOA) [38], salp swarm algorithm
(SSA) [39], whale optimization algorithm (WOA) [40], and others. A review of swarm intelligence
algorithms can be referred to [41].

As a novel biologically inspired computing approach, MBO is inspired by the migration behavior
of the monarch butterflies with the change of the seasons. The related investigations [42,43] have
demonstrated that the advantage of MBO lies in its simplicity, being easy to carry out, and efficiency.
In order to address the 0-1 KP, which falls within the domain of the discrete combinatorial optimization
problems with constraints, this paper presents a specially designed monarch butterfly optimization
with global position updating operator (GMBO). What needs special mention is that GMBO is a
supplement and perfection to previous related work, namely, a binary monarch butterfly optimization
(BMBO) and a novel chaotic MBO with Gaussian mutation (CMBO) [42]. The main difference and
contributions of this paper are as follows, compared with BMBO and CMBO.

Firstly, the original MBO was proposed to address the continuous optimization problems, i.e., it
cannot be directly applied in the discrete space. For this reason, in this paper, a dichotomy encoding
strategy [44] was employed. More specifically, each monarch butterfly individual is represented
as two-tuples consisting of a real-valued vector and a binary vector. Secondly, although BMBO
demonstrated excellent performance in solving 0-1 KP, it did not show a prominent advantage [42].
In other words, some techniques can be combined with BMBO for the purpose of improving its global
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optimization ability. Based on this, an efficient global position updating operator [16] was introduced
to enhance the optimization ability and ensure its rapid convergence. Thirdly, a novel two-stage
repair operator [45,46] called the greedy modification operator (GMO), and greedy optimization
operator (GOO), respectively, was adopted. The former repairs the infeasible solutions while the
latter optimizes the feasible solutions during the search process. Fourthly, empirical studies reveal
that evolutionary algorithms have certain dependencies on the selection of parameters. Moreover,
certain coupling between the parameters still exists. However, suitable parameter combination for a
particular problem was not analyzed in BMBO and CMBO. In order to verify the influence degree
of four important parameters on the performance of GMBO, an orthogonal design (OD) [47] was
applied, and then the appropriate parameter settings were examined and recommended. Fifthly,
generally speaking, the approximate solution of an NP-hard problem can be obtained by evolutionary
algorithms. However, the most important thing is to obtain higher quality approximate solutions,
which are closer to the optimal solutions more profitably. In BMBO, the optimal solutions of all the
0-1 KP instances were not provided. It is difficult to judge the quality of an approximate solution
obtained by an evolutionary algorithm. In GMBO, the optimal solutions of 0-1 KP instances are
calculated by a dynamic programming algorithm. Meanwhile, the approximation ratio based on the
best values and the worst values are provided, which clearly reflect the degree of the closeness of the
approximate solutions to the optimal solutions. In addition, the application of statistical methods in
GMBO is one of the differences between GMBO and BMBO, CMBO, including Wilcoxon’s rank-sum
tests [48] with a 5% significance level. Moreover, boxplots can visualize the experimental results from
the statistical perspective.

The rest of the paper is organized as follows. Section 2 presents a snapshot of the original MBO,
while Section 3 introduces the GMBO for large-scale 0-1 KP in detail. Section 4 reports the outcomes of
a series of simulation experiments as well as to compare results. Finally, the paper ends with Section 5
after providing some conclusions, along with some directions for further work.

2. Monarch Butterfly Optimization

Animal migration involves mainly long-distance movement, usually in groups, on a regular
seasonal basis. MBO [33,43] is a population-based intelligent stochastic optimization algorithm that
mimics the seasonal migration behavior of monarch butterflies in nature. It should be noted that the
entire population is divided into two subpopulations, named subpopulation_1 and subpopulation_2,
respectively. Based on this, the optimization process consists of two operators, which operate
on subpopulation_1 and subpopulation_2, respectively. The information is interchanged among the
individuals of subpopulation_1 and subpopulation_2 by applying the migration operator. The butterfly
adjusting operator delivers the information of the best individual to the next generation. Additionally,
Lévy flights [49,50] are introduced into MBO. The main steps of MBO are outlined as follows:

Step 1. Initialize the parameters of MBO. There are five basic parameters to be considered while
addressing various optimization problems, including the number of the population (NP), the
ratio of the number of monarch butterflies in subpopulation_1 (p), migration period (peri), the
monarch butterfly adjusting rate (BAR), the max walk step of the Lévy flights (Smax).

Step 2. Initialize the population with NP randomly generated individuals according to a uniform
distribution in the search space.

Step 3. Sort the individuals according to their fitness in descending order (Here assumptions for the
maximum). The better NP1 (p*NP) individuals constitute subpopulation_1, and NP2 (NP-NP1)
individuals make up subpopulation_2.

Step 4. The position updating of individuals in subpopulation_1 is determined by the migration operator.
The specific procedure is described in Algorithm 1.

Step 5. The moving direction of the individuals in subpopulation_2 depends on the butterfly adjusting
operator. The detailed procedure is shown in Algorithm 2.
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Step 6. Recombine two subpopulations into one population
Step 7. If the termination criterion is already satisfied, output the best solution found, otherwise, go to

Step 3.

Algorithm 1. Migration Operator

Begin
for i = 1 to NP1 (for all monarch butterflies in subpopulation_1)

for j = 1 to d (all the elements in ith monarch butterfly)
r = rand * peri, where rand ~ U(0,1)
if r ≤ p then

xi, j = xr1, j, where r1~U[1, 2,. . . , NP1]
else

xi, j = xr2, j, where r2~U[1, 2,. . . , NP2]
end if

end for j
end for i

End.

where dx is calculated by implementing the Lévy flights. It should be noted that the Lévy flights,
which originated from the Lévy distribution, are an impactful random walk model, especially on
undiscovered, higher-dimensional search space. The step size of Lévy flights refers to Equation (2).

StepSize = ceil(exprnd(2 ∗Maxgen)) (2)

where function exprnd(x) returns random numbers of an exponential distribution with mean x and ceil(x)
gets a value to the nearest integer greater than or equal to x. Maxgen is the maximum number of iterations.

The parameter ω is the weighting factor which has inverse proportional relationship to the
current generation.

Algorithm 2. Butterfly Adjusting Operator

Begin
for i = 1 to NP2 (for all monarch butterflies in subpopulation_2)

for j = 1 to d (all the elements in ith monarch butterfly)
if rand ≤ p then where rand ~ U(0,1)

xi, j = xbest, j
else

xi, j = xr3, j where r3 ~ U[1,2,. . . , NP2]
if rand > BAR then

xi, j = xi, j +ω× (dx j − 0.5)
end if

end if
end for j

end for i
End.

3. A Novel Monarch Butterfly Optimization with Global Position Updating Operator for the 0-1 KP

In this section, we give the detailed design procedure of the GMBO for the 0-1 KP. Firstly, a
dichotomy encoding scheme [46] is used to represent each individual. Secondly, a global position
updating operator [16] is embedded in GMBO in order to increase the probability of finding the optimal
solution. Thirdly, the two-stage individual optimization method is employed, which successively
tackles the infeasible solutions and then further improves the existing feasible solutions. Finally, the
basic framework of GMBO for 0-1 KP is formed.
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3.1. Dichotomy Encoding Scheme

KP belongs to the category of discrete optimization. The solution space is a collection of discrete
points rather than a contiguous area. For this reason, we should either redefine the evolutionary
operation of MBO or directly apply a continuous algorithm to discrete problems. In this paper, we
prefer the latter for its simplicity of operation, comprehensibility, and generality.

As previously mentioned, each monarch butterfly individual is expressed as a two-tuple <X, Y>.
Here, real number vectors X still constitute the search space as in the original MBO, which can be
regarded as a phenotype similar to the genetic algorithm. Binary vectors, Y, form the solution space,
which can be seen as a genotype common in the evolutionary algorithm. It should be noted that Y
may be a valid solution because 0-1KP is a constraint optimization problem. Here we abbreviate the
monarch butterfly population to MBOP. Then the structure of MBOP is given as follows:

MBOP =


(x1,1, y1,1)(x1,2, y1,2) · · · (x1,d, y1,d)

(x2,1, y2,1)(x2,2, y2,2) · · · (x2,d, y2,d)

· · · · · · · · · · · ·

(xNP,1, yNP,1)(xNP,2, yNP,2) · · · (xNP,d, yNP,d)

 (3)

The first step to adopting a dichotomous encoding scheme is to transfer the phenotype to genotype.
Therefore, a surjective function g is used to realize the mapping relationship from each element of X to
the corresponding element of Y.

g(x) =
{

1 i f sig(x) ≥ 0.5
0 else

(4)

where sig(x) = 1/(1+ e−x) is the sigmoid function. The sigmoid function is often used as the threshold
function of neural networks. It was applied to the binary particle swarm optimization (BPSO) [51] to
convert the position of a particle from a real-valued vector to a 0-1 vector. It should be noted that there
are other conversion functions [52] can be used.

Now assume a 0-1 KP problem with 10 items, Figure 1 shows the above process, in which each
xi ∈ [−5.0, 5.0] (1 ≤ i ≤ 10) is randomly chosen based on the uniform distribution.
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3.2. Global Position Updating Operator

The main feature of particle swarm optimization (PSO) is that the particle always tends to converge
to two extreme positions viz. the best position ever found by itself and the global best position. Inspired
by the behavior of swarm intelligence of PSO, a novel position updating operator was recently proposed
and successfully embedded in HS for solving 0-1 KP [16]. After that, the position updating operator
combines with CS [14] to deal with 0-1 KP.

It is well-known that the evolutionary algorithm can yield strong optimization performance under
the condition of the balance between exploitation and exploration, or attraction and diffusion [53].
The original MBO concentrates much on the exploration ability but weak exploitation capability [33,43].
With the aim of enhancing the exploitation capability of MBO, we introduce a global position updating
operator mentioned above. The procedure is shown in Algorithm 3, where “best” and “worst” represent
the global best individual and the global worst individual, respectively. r4, r5, and rand are uniform
random real numbers in [0, 1]. The pm parameter is mutation probability.
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Algorithm 3. Global Position Updating Operator

Begin
for i = 1 to NP (for all monarch butterflies in the whole population)

for j = 1 to d (all the elements in ith monarch butterfly)
step j =

∣∣∣xbest, j − xworst, j
∣∣∣

if (rand ≥ 0.5) where rand ~ U(0,1)
x j = xbest, j + r4 × step j where r4 ~ U(0,1)

else
x j = xbest, j − r4 × step j

end if
if (rand ≤ pm)

x j = L j + r5 × (U j − L j) where r5 ~ U(0,1)
end if

end for j
end for i

End.

3.3. Two-Stage Individual Optimization Method Based on Greedy Strategy

Since KP is a constrained optimization problem, it may lead to the occurrence of infeasible
solutions. There are usually two major methods: Redefining the objective function by penalty function
method (PFM) [54,55] and individual optimization method based on the greedy strategy (IOM) [56,57].
Unfortunately, the former shows poor performance when encountering large-scale KP problems. In
this paper, we adopt IOM to address infeasible solutions.

A simple greedy strategy, namely GS [58], is proposed to choose the item with the greatest density
pi/wi first. Although the feasibility of all individuals can be guaranteed, it is obvious that there are
several imperfections. Firstly, for a feasible individual, there is a possibility that the corresponding
objective function value may turn to be worse by applying GS. Secondly, the lack of further optimization
for all individuals can lead to unsatisfactory solutions.

In order to overcome the shortcomings of GS, the two-stage individual optimization method is
proposed by He et al. [45,46]. A greedy modification operator (GMO) is used to repair the infeasible
individuals in the first stage. It is followed by the application of the greedy optimization operator
(GOO), which further optimizes the feasible individuals. The method proceeds as follows.

Step 1. Quicksort algorithm is used to sort all items in the non-ascending order according to pi/wi, and
the index of items is stored in an array H[1], H[2]. . . , H[n], respectively.

Step 2. For an infeasible individual X = {x1, x2, . . . , xn} ∈ {0, 1}n, GMO is applied.
Step 3. For a feasible individual X = {x1, x2, . . . , xn} ∈ {0, 1}n, GOO is performed.

After the above repair process, it is easy to verify that each optimized individual is feasible.
The significance of GMO and GOO seems particularly prominent while solving high dimensional KP
problems [45,46]. The pseudo-code of GMO and GOO can be shown in Algorithms 4 and 5, respectively.

Algorithm 4. Greedy Modification Operator

Begin
Input: X = {x1, x2, . . . , xn} ∈ {0, 1}n, W = {w1, w2, . . . , wn}, P =

{
p1, p2, . . . , pn

}
, H[1 . . . n], C.

Weight = 0
for i = 1 to n

weight = weight + xH[i] ∗wH[i]
if weight > C

weight = weight− xH[i] ∗wH[i]
xH[i] = 0

end if
end for i
Output: X = {x1, x2, . . . , xn} ∈ {0, 1}n

End.
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Algorithm 5. Greedy Optimization Operator

Begin
Input: X = {x1, x2, . . . , xn} ∈ {0, 1}n, W = {w1, w2, . . . , wn}, P =

{
p1, p2, . . . , pn

}
H[1 . . . n], C.

Weight = 0
for i = 1 to n

weight = weight + xi ∗wi
end for i
for i = 1 to n

if xH[i] = 0 and weight + wH[i] ≤ C
xH[i] = 1
weight = weight + wH[i]

end if
end for i
Output: X = {x1, x2, . . . , xn} ∈ {0, 1}n

End.

Algorithm 6. GMBO for 0-1 KP

Begin

Step 1: Sorting. Quicksort is used to sort all items in the non-ascending order by pi/wi, 1 ≤ i ≤ n and the
index of items is stored in array H [1. . . n].

Step 2: Initialization. Set the generation counter g = 1; set migration period peri, the migration ratio p,
butterfly adjusting rate BAR, and the max walk step of Lévy flights Smax; set the maximum
generation MaxGen. Set the generation interval between recombination RG. Generate NP monarch
butterfly individuals randomly {<X1, Y1>, <X2, Y2>, . . . , <XNP, YNP>}. Calculate the fitness of
each individual, f (Yi), 1 ≤ i ≤ NP.

Step 3: While (stopping criterion)

Divide the whole population (NP individuals) into subpopulation_1 (NP1 individuals) and
subpopulation_2 (NP2 individuals) according to their fitness;

Calculate and record the global optimal individual <Xgbest, Ygbest>.

Update subpopulation_1 with migration operator.

Update subpopulation_2 with butterfly adjusting operator.

Update the whole population with Global position updating operator.

Repair the infeasible solutions by performing GMO.

Improve the feasible solutions by performing GOO.

Keep best solutions.

Find the current best solution (Ygbest, f (Ygbest)).

g = g + 1.

if Mod(g, RG) = 0

Reorganize the two subpopulations into one population.

end if
Step 4: end while
Step 5: Output the best results

End.
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3.4. The Procedure of GMBO for the 0-1 KP

In this section, the procedure of GMBO for 0-1 KP is described in Algorithm 6, and the flowchart
is illustrated in Figure 2. Apart from the initialization, it is divided into three main processes.
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(1) In the migration process, the position of each monarch butterfly individual in subpopulation_1
is updated. We can view this process as exploitation by combining the properties of the currently
known individuals in subpopulation_1 or subpopulation_2.

(2) In the butterfly adjusting process, partial genes of the global best individual are passed on to
the next generation. Moreover, Lévy flights come into play owing to longer step length in exploring
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the search space. This process can be considered as exploration, which may find new solutions in the
unknown domain of the search space.

(3) In the global position updating process, we can define the distance of the global best individual
and the global worst individual as the adaptive step. Obviously, the two extreme individuals differ
greatly at the early stage of the optimization process. In other words, the adaptive step has a larger
value, and the search scope is broader, which is beneficial to the global search over a wide range.
With the progress of the evolution, the global worst individual tends to be more similar to the global
best individual, and then the difference becomes small at the late stage of the optimization process.
Meanwhile, the adaptive step has a smaller value, and the search area narrows, which is useful for
performing the local search. In addition, the genetic mutation is applied to preserve the population
diversity and avoid premature convergence. It should be noted that, unlike the original MBO, in
GMBO, the two newly-generated subpopulations regroup one population at a certain generation rather
than each generation, which can reduce time consumption.

3.5. The Time Complexity

In this subsection, the time complexity of GMBO is simply estimated (Algorithm 6). It is not
hard to see that the time complexity of GMBO mainly hinges on steps 1–3. In Step 1, Quicksort
algorithm costs time O (n log n). In Step 2, the initialization of NP individuals consumes time O (NP *
n). The calculation of fitness has time O (NP). In Step 3, migration operator costs time O (NP1 * n), and
the butterfly adjusting operator has time O (NP2 * n). Moreover, the global position updating operator
consumes O (NP * n). It is noticed that GMO and GOO cost the same time complexity O (NP * n). Thus,
the time complexity of GMBO would be O (n log n) + O (NP * n) + O (NP) + O (NP1 * n) + O (NP2 * n) +

O (NP * n) + O (NP * n) = O (n2).

4. Simulation Experiments

We chose 3 different sets of 0-1 KP test instances to verify the feasibility and effectiveness of the
proposed GMBO method. The test set 1 and test set 2 were widely used low-dimensional benchmark
instances with dimension = 4 to 24. The test set 3 consisted of 15 high-dimensional 0-1 KP test instances
generated randomly with dimension = 800 to 2000.

4.1. Experimental Data Set

The generation form of test set 3 was firstly given. Since the difficulty of the knapsack problems
was greatly affected by the correlation between the profits and weights [59], 3 typical large scale 0-1
KP instances were randomly generated to demonstrate the performance of the proposed algorithm.
Here function Rand (a, b) returned a random integer uniformly distributed in [a, b]. For each instance,
the maximum capacity of the knapsack equaled 0.75 times of the total weights. The procedure is
as follows:

• Uncorrelated instances:
w j = Rand(10, 100)
p j = Rand(10, 100)

(5)

• Weakly correlated instances:

w j = Rand(10, 100)
p j = Rand(w j − 10, w j + 100)

(6)

• Strongly correlated instances:
w j = Rand(10, 100)

p j = w j + 10
(7)
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In this section, 3 groups of large scale 0-1 KP instances with dimensionality varying from 800
to 2000 were considered. These 15 instances included 5 uncorrelated instances, 5 weakly correlated
instances, and 5 strongly correlated instances. The dimension size was 800, 1000, 1200, 1500, and 2000,
respectively. We simply denoted these instances by KP1–KP15.

4.2. Parameter Settings

As mentioned earlier, GMBO included 4 important parameters: p, peri, BAR, and Smax. In order
to examine the effect of the parameters on the performance of GMBO, Orthogonal Design (OD) [47]
was applied with uncorrelated 1000-dimensional 0-1 KP instance. Our experiment contained 4 factors,
4 levels per factor, and 16 combinations of levels. The combinations of different parameter values are
given in Table 1.

For each experiment, the average value of the total profits was obtained with 50 independent
runs. The results are listed in Table 2.

Table 1. Combinations of different parameter values.

Parameters
Factor Level

1 2 3 4

p 1/12 3/12 5/12 10/12
peri 0.8 1 1.2 1.4
BAR 1/12 3/12 5/12 10/12
Smax 0.6 0.8 1 1.2

Table 2. Orthogonal array and the experimental results.

Experiment. Factors
Results

Number p peri BAR Smax

1 1 1 1 1 R1 = 49,542
2 1 2 2 2 R2 = 49,538
3 1 3 3 3 R3 = 49,503
4 1 4 4 4 R4 = 49,528
5 2 1 2 3 R5 = 49,745
6 2 2 1 4 R6 = 49,739
7 2 3 4 1 R7 = 49,763
8 2 4 3 2 R8 = 49,739
9 3 1 3 4 R9 = 49,704
10 3 2 4 3 R10 = 49,728
11 3 3 1 2 R11 = 49,730
12 3 4 2 1 R12 = 49,714
13 4 1 4 2 R13 = 49,310
14 4 2 3 1 R14 = 49,416
15 4 3 2 4 R15 = 49,460
16 4 4 1 3 R16 = 49,506

Using data from Table 2, we can carry out factor analysis, rank the 4 parameters according to the
degree of influence on the performance of GMBO, and deduce the better level of each factor. The factor
analysis results are recorded in Table 3, and the changing trends of all the factor levels are shown in
Figure 3.

As we can see from Table 3 and Figure 3, p is the most important parameter and needs a reasonable
selection for the 0-1 KP problems. A small p signifies more elements from subpopulation_2. Conversely,
more elements were selected from subpopulation_1. For peri, the curve was in a small range in an
upward trend. This implied individual elements from subpopulation_2 had more chance to embody in
the newly generated monarch butterfly. For BAR and Smax, it can be seen from Figure 3 that the effect
on the algorithm was not obvious.
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According to the above analysis based on OD, the most suitable parameter combination is p2 = 3/12,
peri4 = 1.4, BAR1 = 1/12, and Smax3 = 1.0, which will be adopted in the following experiments.

Table 3. Factor analysis with the orthogonal design (OD) method.

Levels
Factor Analysis

p peri BAR Smax

1
(R1 + R1 + R1 + R1)/4 (R1 + R5 + R9 + R13)/4 (R1 + R6 + R11 + R16)/4 (R1 + R7 + R12 + R14)/4

49,528 49,575 49,629 49,609

2
(R5 + R6 + R7 + R8)/4 (R2 + R6 + R10 + R14)/4 (R2 + R5 + R12 + R15)/4 (R1 + R1 + R1 + R1)/4

49,746 49,605 49,603 49,579

3
(R9 + R10 + R11 + R12)/4 (R3 + R7 + R11 + R15)/4 (R3 + R8 + R9 + R14)/4 (R3 + R5 + R10 + R16)/4

49,719 49,614 49,590 49,620

4
(R13 + R14 + R15 + R16)/4 (R4 + R8 + R12 + R16)/4 (R4 + R7 + R10 + R13)/4 (R4 + R6 + R9 + R15)/4

49,423 49,622 49,582 49,608
Std 134.06 17.72 17.78 15.13

Rank 1 3 2 4
results p2 peri4 BAR1 Smax3
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4.3. The Comparisons of the GMBO and the Classical Algorithms

In order to investigate the ability of GMBO to find the optimal solutions and to test the convergence
speed, 5 representative classical optimization algorithms, including the BMBO [42], ABC [60], CS [61],
DE [62] and GA [11], were selected for comparison. GA was an important branch in the field
of computational intelligence that has been intensively studied since it was developed by John
Holland et al. In addition, GA was representative of the population-based algorithm. DE was a
vector-based evolutionary algorithm, and more and more researchers have paid attention to it since it
was first proposed. Since then, it has been applied to solve many optimization problems. CS is one
of the latest swarm intelligence algorithms. The similarity of CS with GMBO lies in the introduction
of Levy flights. ABC is a relatively novel bio-inspired computing method and has the outstanding
advantage of the global and local search in each evolution.

There are several points to explain. Firstly, all 5 comparative methods (not including GA) used
the previously mentioned dichotomy encoding mechanism. Secondly, all 6 comparative methods used
GMO and GOO to carry out the additional repairing and optimization operations. Thirdly, ABC, CS,
DE, GA, MBO, and GMBO were short for 6 methods based on binary, respectively.

The parameters were set as follows. For ABC, the number of food sources is set to 25 and
maximum search times = 100. CS, DE, and GA are set the same parameters as that of [15]. For MBO,
we take the same parameters suggested in Section 4.2. In addition, the 2 subpopulations recombined
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every 50 generations. GMBO and MBO have identical parameters except for that mutation probability
pm = 0.25 is included in GMBO.

For the sake of fairness, the population sizes of six methods are set to 50. The maximum run
time is set to 8 s for 800, 1000, and 1200 dimensional instances but 10 s for 1500 and 2000 dimensional
instances. 50 independent runs are performed to achieve the experimental results.

We use C++ as the programming language and run the codes on a PC with Intel (R) Core(TM)
i5-2415M CPU, 2.30GHz, 4GB RAM.

4.3.1. The Experimental Results of GMBO on Solving Two Sets of Low-Dimensional 0-1
Knapsack Problems

In this section, 2 sets of 0-1 KP test instances were considered for testing the efficiency of the
GMBO. The maximum number of iterations was set to 50. As mentioned earlier, 50 independent runs
were made. The first set, which contained 10 low-dimensional 0-1 knapsack problems [19,20], was
adopted with the aim of investigating the basic performance of the GMBO. The standard 10 0-1 KP test
instances were studied by many researchers, and detailed information about these instances can be
taken from the literature [13,19,20]. Their basic parameters are recorded in Table 4. The experimental
results obtained by GMBO are listed in Table 5.

Table 4. The basic information of 10 standard low-dimensional 0-1KP instances.

f Dim Opt.value Opt.solution

f 1 10 295 (0,1,1,1,0,0,0,1,1,1)
f 2 20 1024 (1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,1)
f 3 4 35 (1,1,0,1)
f 4 4 23 (0,1,0,1)
f 5 15 481.0694 (0,0,1,0,1,0,1,1,0,1,1,1,0,1,1)
f 6 10 52 (0,0,1,0,1,1,1,1,1,1)
f 7 7 107 (1,0,0,1,0,0,0)
f 8 23 9767 (1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0)
f 9 5 130 (1,1,1,1,0)

f 10 20 1025 (1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,1,0,1,1,1)

Table 5. The experimental results of 10 standard low-dimensional 0-1 KP instances obtained by GMBO.

f SR Time(s) MinIter MaxIter MeanIter Best Worst Mean Std

f 1 100% 0.0032 1 1 1 295 295 295 0
f 2 100% 0.0092 1 52 6.10 1024 1024 1024 0
f 3 100% 0.0003 1 1 1 35 35 35 0
f 4 100% 0.0004 1 1 1 23 23 23 0
f 5 100% 0.0072 1 4 1.30 481.07 481.07 481.07 0
f 6 100% 0.0023 1 1 1 52 52 52 0
f 7 100% 0.0000 1 1 1 107 107 107 0
f 8 100% 0.0024 1 3 1.45 9767 9767 9767 0
f 9 100% 0.0000 1 1 1 130 130 130 0
f 10 100% 0.0000 1 1 1 1025 1025 1025 0

Here, “Dim” is the dimension size of test problems; Opt.value is the optimal value obtained by
DP method [7]; Opt.solution is the optimal solution; “SR” is success rate; “Time” is the average time
to reach the optimal solution among 50 runs; “MinIter”, “MaxIter” and “MeanIter” represents the
minimum iterations, maximum iterations, and the average iterations to reach the optimal solution
among 50 runs, respectively. “Best”, “Worst”, “Mean” and “Std” are the best value, worst value, mean
value, and the standard deviation, respectively.

As can be seen from Table 5, GMBO can achieve the optimal solution for all 10 instances with 100%
success rates. Furthermore, the best value, the worst value, and the mean value are all equal to the
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optimal value for every test problem. Obviously, the efficiency of GMBO is very high for the considered
set of instances because GMBO can get the optimal solution in a very short time. The minimum
iterations are only 1, and the mean iterations are less than 6 for all the test problems. In particular,
for f 6, HS [18], HIS [63], and NGHS [19] can only achieve the best value 50 while GMBO can get the
optimal value 52.

The second set, which includes 25 0-1 KP instances, was taken from references [64,65]. For all we
know, the optimal value and the optimal solution of each instance are provided for the first time in this
paper. The primary parameters are recorded in Table 6. The experimental results are summarized in
Table 7. Compared to Table 5 above, three new evaluation criteria, that is “ARB”, “ARW”, and “ARM”,
are used to evaluate the proposed method. “Opt.value” represents the optimal solution value obtained
by the DP method. Here, the following definitions are given:

ARB =
Opt.value

Best
(8)

ARW =
Opt.value

Worst
(9)

ARM =
Opt.value

Mean
(10)

Here, “ARB” represents the approximate ratio [66] of the optimal solution value (Opt.value) to the best
approximate solution value (Best). Similarly, “ARW” and “ARM” are based on the worst approximate
solution value (Worst) and the mean approximate solution value (mean), respectively. ARB, ARW, and
ARM indicate the proximity of Best, Worst, and Mean to the Opt.value, respectively. Plainly, ARB,
ARW, and ARM are real numbers greater than or equal to 1.0.

Table 6. The basic information of 25 low-dimensional 0-1KP instances.

0-1 KP Dim Opt.value Opt.solution

ks_8a 8 3,924,400 1 1 1 0 1 1 0 0
ks_8b 8 3,813,669 1 1 0 0 1 0 0 1
ks_8c 8 3,347,452 1 0 0 1 0 1 0 0
ks_8d 8 4,187,707 0 0 1 0 0 1 1 1
ks_8e 8 4,955,555 0 1 0 1 0 0 1 1

ks_12a
ks_8b 12 5,688,887 1 0 0 0 1 1 0 1 1 0 1 0

ks_12b 12 6,498,597 0 0 0 1 1 0 1 0 1 1 1 0
ks_12c 12 5,170,626 0 1 1 0 1 0 0 1 1 0 1 1
ks_12d 12 6,992,404 1 1 0 0 0 1 1 1 0 1 0 0
ks_12e 12 5,337,472 0 1 0 0 0 0 0 0 1 1 0 1
ks_16a 16 7,850,983 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0
ks_16b 16 9,352,998 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0
ks_16c 16 9,151,147 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0
ks_16d 16 9,348,889 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0
ks_16e 16 7,769,117 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0
ks_20a 20 10,727,049 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1
ks_20b 20 9,818,261 1 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1
ks_20c 20 10,714,023 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1
ks_20d 20 8,929,156 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0
Ks_20e 20 9,357,969 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1
ks_24a 24 13,549,094 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1
ks_24b 24 12,233,713 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1
ks_24c 24 12,448,780 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0
ks_24d 24 11,815,315 1 0 1 0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0
ks_24e 24 13,940,099 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0
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From Table 7, it was clear that GMBO could obtain the optimal solution value for all the 25
instances. Among them, GMBO could find the optimal solution values of 13 instances with 100%
SR, and the success rate of nine instances was more than 80%. In addition, the standard deviation of
13 instances was 0. In particular, ARB can reflect well the proximity between the best approximate
solution value and the optimal solution value. ARW and ARM were similar to this. For the three
new evaluation criteria, it can be seen that the values were equal to 1.0 or very close to 1.0 for all the
25 instances.

Thus, the conclusion is that GMBO had superior performance in solving low-dimensional 0-1
KP instances.

Table 7. The experimental results of 25 low-dimensional 0-1 KP instances obtained by GMBO.

0-1 KP SR Best Worst Mean Std ARB ARW ARM

ks_8a 100% 925,369 925,369 925,369 0 1.0000 1.0000 1.0000
ks_8b 100% 3,813,669 3,813,669 3,813,669 0 1.0000 1.0000 1.0000
ks_8c 100% 3,837,398 3,837,398 3,837,398 0 1.0000 1.0000 1.0000
ks_8d 100% 4,187,707 4,187,707 4,187,707 0 1.0000 1.0000 1.0000
ks_8e 100% 4,955,555 4,955,555 4,955,555 0 1.0000 1.0000 1.0000

ks_12a 88% 5,688,887 5,681,360 5,688,046 2283.52 1.0000 1.0013 1.0001
ks_12b 86% 6,498,597 6,473,019 6,495,016 8875.23 1.0000 1.0040 1.0006
ks_12c 100% 5,170,626 5,170,626 5,170,626 0 1.0000 1.0000 1.0000
ks_12d 100% 6,992,404 6,992,404 6,992,404 0 1.0000 1.0000 1.0000
ks_12e 88% 5,337,472 5,289,570 5,331,724 15,566.30 1.0000 1.0091 1.0011
ks_16a 100% 7,850,983 7,850,983 7,850,983 0 1.0000 1.0000 1.0000
ks_16b 100% 9,352,998 9,352,998 9,352,998 0 1.0000 1.0000 1.0000
ks_16c 100% 9,151,147 9,151,147 9,151,147 0 1.0000 1.0000 1.0000
ks_16d 56% 9,348,889 9,300,041 9,342,056 10,405.28 1.0000 1.0053 1.0007
ks_16e 82% 7,769,117 7,750,491 7,765,991 6713.97 1.0000 1.0024 1.0004
ks_20a 100% 10,727,049 10,727,049 10,727,049 0 1.0000 1.0000 1.0000
ks_20b 98% 9,818,261 9,797,399 9,817,844 2920.68 1.0000 1.0021 1.0000
ks_20c 96% 10,714,023 10,700,635 10,713,487 2623.50 1.0000 1.0013 1.0000
ks_20d 100% 8,929,156 8,929,156 8,929,156 0 1.0000 1.0000 1.0000
Ks_20e 48% 9,357,969 9,357,192 9,357,565 388.18 1.0000 1.0001 1.0000
ks_24a 80% 13,549,094 13,504,878 13,543,476 11,554.74 1.0000 1.0033 1.0004
ks_24b 100% 12,233,713 12,233,713 12,233,713 0 1.0000 1.0000 1.0000
ks_24c 96% 12,448,780 12,445,379 12,448,644 666.45 1.0000 1.0003 1.0000
ks_24d 72% 11,815,315 11,810,051 11,813,841 2363.53 1.0000 1.0004 1.0001
ks_24e 98% 13,940,099 13,929,872 13,939,894 1431.78 1.0000 1.0007 1.0000

4.3.2. Comparisons of Three Kinds of Large-Scale 0-1 KP Instances

In this section, in order to make a comprehensive investigation on the optimization ability of
the proposed GMBO, test set 3, which included 5 uncorrelated, 5 weakly correlated, and 5 strongly
correlated large-scale 0-1 KP instances, were considered. The experimental results are listed in
Tables 8–10 below. The best results on all the statistical criteria of each 0-1 KP instances, i.e., the best
values, the mean values, the worst values, the standard deviation, and the approximation ratio, appear
in bold. As noted earlier, Opt and Time represent the optimal value and time spending taken by the
DP method, respectively.

The performance comparisons of the six methods on the five large-scale uncorrelated 0-1 KP
instances are listed in Table 8. It can be seen that GMBO outperformed the other five algorithms on the
six and five evaluation criteria for KP1 and KP4, respectively. In addition, GMBO obtained the best
values concerning the best and the mean value for KP3 and was superior to the other five algorithms
in the worst value for KP2. Unfortunately, GMBO failed to come up with superior performance while
encountering 2000-dimensional 0-1 KP instances (KP5). MBO beat the competitors on KP5. Moreover,
an apparent phenomenon can be observed, which points out that ABC has better stability. The best
value of KP2 was achieved by CS. Obviously, DE and GA showed the worst performance for KP1–KP5.
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Meanwhile, the approximation ratio of the best value of GMBO for KP1 equaled approximately 1.0.
Additionally, there was little difference between the worst approximation ratio of the best value (1.0242)
of GMBO and the best approximation ratio of the best value (1.0237) of MBO for KP5.

Table 8. Performance comparison on large-scale five uncorrelated 0-1KP instances.

KP1 KP2 KP3 KP4 KP5

DP Opt 40,686 50,592 61,846 77,033 102,316

Time(s) 0.952 1.235 1.914 2.521 2.705

ABC

Best 39816 49,374 60,222 74,959 99,353
ARB 1.0219 1.0247 1.0270 1.0277 1.0298

Worst 39,542 49,105 59,867 74,571 99,822
ARW 1.0289 1.0303 1.0331 1.0330 1.0250
Mean 39,639 49,256 60,059 74,742 99,035

Std 55.5 58.56 82.28 90.07 130.80

CS

Best 40,445 50,104 60,490 75,828 99,248
ARB 1.0060 1.0097 1.0224 1.0159 1.0309

Worst 39,411 49,056 59,764 74,472 98,706
ARW 1.0324 1.0313 1.0348 1.0344 1.0366
Mean 39,602 49,211 59,938 74,666 98,926

Std 218.11 205.08 120.76 245.28 124.58

DE

Best 39,486 49,303 59,921 74,671 98,943
ARB 1.0304 1.0261 1.0321 1.0316 1.0341

Worst 39,154 48,696 59,435 74,077 98,330
ARW 1.0391 1.0389 1.0406 1.0399 1.0405
Mean 39,323 48,945 59,645 74,319 98,645

Std 80.60 111.08 114.17 113.92 154.40

GA

Best 39,190 48,955 59,578 74,372 98,828
ARB 1.0382 1.0334 1.0381 1.0358 1.0353

Worst 38,274 47,809 58,106 72,477 96,830
ARW 1.0630 1.0582 1.0644 1.0629 1.0567
Mean 38,838 48,384 58,996 73,584 97,765

Std 196.70 256.69 362.53 414.02 480.15

MBO

Best 40,276 50,023 61,090 75,405 99,946
ARB 1.0102 1.0114 1.0124 1.0216 1.0237

Worst 39,839 49,411 60,401 74,815 99,017
ARW 1.0213 1.0239 1.0239 1.0296 1.0333
Mean 40,036 49,743 60,732 75,072 99,512

Std 100.34 133.40 163.76 149.57 187.15

GMBO

Best 40,684 49,992 61,764 76,929 99,898
ARB 1.0000 1.0120 1.0013 1.0014 1.0242

Worst 40,527 49,524 60,225 75,410 98,848
ARW 1.0039 1.0216 1.0269 1.0215 1.0351
Mean 40,641 49,732 61,430 76,691 99,424

Std 40.09 116.12 379.76 267.90 200.38

Table 9 records the comparison of the performances of six methods on five large-scale weakly
correlated 0-1 KP instances. The experimental results in Table 9 differ from that in Table 8. It is
clear that GMBO had a striking advantage in almost all the six statistical standards for KP6–KP9.
For KP10, similarly to KP5, GMBO was still not able to win out over MBO. It is worth mentioning
that the approximation ratio of the best value of GMBO for KP6–KP7, and KP9 equaled 1.0. Moreover,
the standard deviation value of KP6–KP7 and KP9 obtained by GMBO was much smaller than the
corresponding value of the other five algorithms.
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Table 9. Performance comparison of large-scale five weakly correlated 0-1KP instances.

KP6 KP7 KP8 KP9 KP10

DP Opt 35069 43,786 53,553 65,710 118,200

Time(s) 1.188 1.174 1.413 2.717 2.504

ABC

Best 34706 43,321 52,061 64,864 115,305
ARB 1.0105 1.0107 1.0287 1.0130 1.0251

Worst 34,650 43,243 51,711 64,752 114,586
ARW 1.0121 1.0126 1.0356 1.0148 1.0315
Mean 34,675 43,275 51,876 64,806 114,922

Std 16.00 18.74 79.72 25.45 123.59

CS

Best 34,975 43,708 52,848 65,549 116,597
ARB 1.0027 1.0018 1.0133 1.0025 1.0137

Worst 34,621 43,215 51,617 64,749 114,560
ARW 1.0129 1.0132 1.0375 1.0148 1.0318
Mean 34,676 43,326 51,838 64,932 114,879

Std 65.25 143.50 260.46 245.06 428.93

DE

Best 34,629 43,251 51,900 64,770 114,929
ARB 1.0127 1.0124 1.0318 1.0145 1.0285

Worst 34,549 43,140 51,289 64,620 114,199
ARW 1.0151 1.0150 1.0441 1.0169 1.0350
Mean 34,588 43,187 51,547 64,692 114,462

Std 20.93 23.94 123.67 35.66 160.77

GA

Best 34,585 43,172 51,460 64,769 114,539
ARB 1.0140 1.0142 1.0407 1.0145 1.0320

Worst 34,361 42,901 50,112 64,315 112,681
ARW 1.0206 1.0206 1.0687 1.0217 1.0490
Mean 34,476 43,049 50,945 64,535 113,674

Std 60.91 74.36 281.41 85.75 405.23

MBO

Best 34,850 43,487 52,720 65,144 116,466
ARB 1.0063 1.0069 1.0158 1.0087 1.0149

Worst 34,724 43,349 52,185 64,941 115,273
ARW 1.0099 1.0101 1.0262 1.0118 1.0254
Mean 34,795 43,425 52,449 65,041 115,998

Std 31.41 31.78 111.26 48.66 248.70

GMBO

Best 35,069 43,786 53,426 65,708 116,496
ARB 1.0000 1.0000 1.0024 1.0000 1.0146

Worst 35,052 43,781 52,376 65,625 114,761
ARW 1.0005 1.0001 1.0225 1.0013 1.0300
Mean 35,064 43,784 53,167 65,666 115,718

Std 4.04 1.57 300.90 18.48 492.92

A comparative study of the six methods on five large-scale strongly correlated 0-1 KP instances
are recorded in Table 10. Obviously, GMBO outperforms the other five methods for KP11–KP14 on five
statistical standards except for Std. ABC obtains the best Std values for KP11–KP15. To KP15, GMBO
can get better values on the worst. CS, DE, and GA fail to show outstanding performance for this case.
Under these circumstances, the approximation ratio of the worst value of GMBO for KP11–KP15 was
less than 1.0019.
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Table 10. Performance comparison of large-scale five strongly correlated 0-1KP instances.

KP11 KP12 KP13 KP14 KP15

DP Opt 40,167 49,443 60,640 74,932 99,683

Time(s) 0.793 1.123 1.200 1.971 2.232

ABC

Best 40,127 49,390 60,567 74,822 99,523
ARB 1.0010 1.0011 1.0012 1.0015 1.0016

Worst 40,107 49,363 60,540 74,792 99,490
ARW 1.0015 1.0016 1.0017 1.0019 1.0019
Mean 40,116 49,376 60,554 74,805 99,506

Std 4.52 5.61 5.54 6.85 7.29

CS

Best 40,127 49,393 60,559 74,837 99,517
ARB 1.0010 1.0010 1.0013 1.0013 1.0017

Worst 40,096 49,353 60,533 74,779 99,473
ARW 1.0018 1.0018 1.0018 1.0020 1.0021
Mean 40,108 49,364 60,543 74,794 99,489

Std 6.59 6.80 5.39 9.19 8.19

DE

Best 40,137 49,363 60,545 74,778 99,501
ARB 1.0007 1.0016 1.0016 1.0021 1.0018

Worst 40,087 49,323 60,498 74737 99,436
ARW 1.0020 1.0024 1.0023 1.0026 1.0025
Mean 40,119 49,340 60,518 74,759 99,459

Std 10.19 8.31 10.16 10.23 14.03

GA

Best 40,069 49,333 60,520 74,766 99,461
ARB 1.0024 1.0022 1.0020 1.0022 1.0022

Worst 39,930 49,231 60,391 74,606 99,305
ARW 1.0059 1.0043 1.0041 1.0044 1.0038
Mean 40,023 49,287 60,451 74,689 99,382

Std 31.12 29.76 29.87 37.20 38.42

MBO

Best 40,137 49,393 60,580 74,849 99,573
ARB 1.0007 1.0010 1.0010 1.0011 1.0011

Worst 40,102 49,363 60,539 74,778 99,496
ARW 1.0016 1.0016 1.0017 1.0021 1.0019
Mean 40,119 49,379 60,562 74,822 99,536

Std 7.18 9.94 10.77 14.70 15.63

GMBO

Best 40,167 49,442 60,630 74,852 99,553
ARB 1.0000 1.0000 1.0002 1.0011 1.0013

Worst 40,147 49,371 60,540 74,792 99,503
ARW 1.0005 1.0015 1.0017 1.0019 1.0018
Mean 40,162 49,425 60,604 74,825 99,534

Std 5.11 11.58 20.88 12.00 14.14

For a clearer and more intuitive measure of the similar level of the theoretical optimal value and
the actual value obtained by each algorithm, the values of ARB on three types of 0-1 KP instances are
illustrated in Figures 4–6. From Figure 4, the ARB of GMBO for KP1, KP3, and KP4 were extremely
close to or equal to 1. GMBO had the smallest ARB for KP1, KP3–KP5, except for KP2, for which CS
obtained the smallest ARB. Similar to Figure 4, from Figure 5, GMBO still had the smallest ARB values,
which are 1.0 (KP6, KP7, and KP9) or less than 1.015 (KP8, KP10). In terms of the strongly correlated
0-1 KP instances, GMBO consistently outperformed the other five methods (see Figure 6), in which
GMBO had the smallest ARB values except for KP15. Particularly, the ARB of GMBO was even less
than 1.0015 for KP15.
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Overall, Tables 8–10 and Figures 4–6 indicate that GMBO was superior to the other five methods
when addressing large-scale 0-1 KP problems. In addition, if we look at the worst values achieved by
GMBO and the best values obtained by other methods, we can observe that for the majority instances,
the former were even far better than the latter.

With regard to the best values, GMBO can gain better values than the others for almost all
the instances except KP2, KP5, KP10, and KP15, in which CS and MBO twice achieved the best
values, respectively. More specifically, compared to the suboptimal values researched by others, the
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improvements in KP1–KP15 brought by GMBO were 0.59%, −0.22%, 1.10%, 1.45%, −0.05%, 0.27%,
0.18%, 1.09%, 0.24%, −0.09%, 0.07%, 0.10%, 0.00%, and −0.02%, respectively.

With regard to the mean values, they were very similar to the best values. The improvements
in KP1–KP15 were 1.51%, −0.02%, 1.15%, 2.16%, −0.09%, 0.77%, 0.83%, 1.37%, 0.96%, −0.24%, 0.11%,
0.09%, 0.07%, 0.00% and 0.00%, respectively.

With regard to the worst values, GMBO can still reach better values for almost all the 15 instances
except KP3, KP5, and KP10 in which MBO was a little better than GMBO. The improvements in
KP1–KP15 were 1.73%, 0.23%, −0.29%, 0.80%, −0.17%, 0.94%, 1.00%, 0.37%, 1.05%, −0.44%, 0.10%,
0.02%, 0.00%, 0.00%, and 0.01%, respectively.

In order to test the differences between the proposed GMBO and the other five methods, Wilcoxon’s
rank-sum tests with the 5% significance level were used. Table 11 records the results of rank-sum tests
for KP1–KP15. In Table 11, “1” indicates that GMBO outperforms other methods at 95% confidence.
Conversely, “−1”. Particularly, “0” represents that the two compared methods possess similar
performance. The last three rows summarized the times that GMBO performed better than, similar to,
and worse than the corresponding algorithm among 50 runs.

Table 11. Rank sum tests for GMBO with the other five methods on KP1–KP15.

GMBO ABC CS DE GA MBO

KP1 1 1 1 1 1
KP2 1 1 1 1 0
KP3 1 1 1 1 1
KP4 1 1 1 1 1
KP5 1 1 1 1 −1
KP6 1 1 1 1 1
KP7 1 1 1 1 1
KP8 1 1 1 1 1
KP9 1 1 1 1 1

KP10 1 1 1 1 −1
KP11 1 1 1 1 −1
KP12 1 1 1 1 1
KP13 1 1 1 1 1
KP14 1 1 1 1 0
KP15 1 1 1 1 0

1 15 15 15 15 9
0 0 0 0 0 3
−1 0 0 0 0 3

From Table 11, GMBO outperformed ABC, CS, DE, and GA on 15 0-1 KP instances. Compared
with MBO, GMBO performed better than, similar to, or worse than MBO on 9, 3, 3 0-1KP instances,
respectively. Therefore, one conclusion is easy to draw that GMBO was superior to or at least
comparable to the other five methods. This conclusion is consistent with the foregoing analysis.

Tables 12–14 illustrate the ranks of six methods for 15 large-scale 0-1 KP instances on the best
values, the mean values, and the worst values, respectively. These clearly show the performance of
GMBO in comparison with the other five algorithms.

According to Table 12, obviously, the proposed GMBO exhibited superior performance compared
with all the other five methods. In addition, CS and MBO can be regarded as the second-best methods,
having identical performance. GA consistently showed the worst performance. Overall, the average
rank in descending order according to the best values were: GMBO (1.33), MBO (2.33), CS (2.53), ABC
(3.80), DE (4.80), and GA (6).
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Table 12. Rankings of six algorithms based on the best values.

ABC CS DE GA MBO GMBO

KP1 4 2 5 6 3 1
KP2 4 1 5 6 2 3
KP3 4 3 5 6 2 1
KP4 4 2 5 6 3 1
KP5 3 4 5 6 1 2
KP6 4 2 5 6 3 1
KP7 4 2 5 6 3 1
KP8 4 2 5 6 3 1
KP9 4 2 5 6 3 1
KP10 4 1 5 6 3 2
KP11 4 4 2 6 2 1
KP12 4 2 5 6 2 1
KP13 3 4 5 6 2 1
KP14 4 3 5 6 2 1
KP15 3 4 5 6 1 2
Mean rank 3.80 2.53 4.80 6 2.33 1.33

Table 13. Rankings of six algorithms based on the mean values.

ABC CS DE GA MBO GMBO

KP1 3 4 5 6 2 1
KP2 3 4 5 6 1 2
KP3 3 4 5 6 2 1
KP4 3 4 5 6 2 1
KP5 3 4 5 6 1 2
KP6 4 3 5 6 2 1
KP7 4 3 5 6 2 1
KP8 3 4 5 6 2 1
KP9 4 3 5 6 2 1
KP10 3 4 5 6 1 2
KP11 4 5 3 6 2 1
KP12 3 4 5 6 2 1
KP13 3 4 5 6 2 1
KP14 3 4 5 6 2 1
KP15 3 4 5 6 1 2
Mean rank 3.27 3.87 4.87 6 1.73 1.27

Table 14. Rankings of six algorithms based on the worst values.

ABC CS DE GA MBO GMBO

KP1 3 4 5 6 2 1
KP2 3 4 5 6 2 1
KP3 3 4 5 6 1 2
KP4 3 4 5 6 2 1
KP5 3 4 5 6 1 2
KP6 3 4 5 6 2 1
KP7 3 4 5 6 2 1
KP8 3 4 5 6 2 1
KP9 3 4 5 6 2 1
KP10 3 4 5 6 1 2
KP11 2 4 5 6 3 1
KP12 2 4 5 6 2 1
KP13 1 4 5 6 3 1
KP14 1 3 5 6 4 1
KP15 3 4 5 6 2 1
Mean rank 2.60 3.93 5 6 2.07 1.20



Mathematics 2019, 7, 1056 21 of 31

From Table 13, we can see that the average rank of GMBO still occupied the first. MBO consistently
outperformed the other four methods. Note that the rank value of ABC was identical to that of CS. The
detailed rank was as follows: GMBO (1.27), MBO (1.73), ABC (3.27), CS (3.87), DE (4.87), and GA (6).

Table 14 shows the statistical results of the six methods based on the worst values. The ranking
order of the six methods was GMBO (1.20), MBO (2.07), ABC (2.60), CS (3.93), DE (5), and GA (6),
which was identical with that in Table 12.

Then, a comparison of the six highest dimensional 0-1 KP instances, i.e., KP4, KP5, KP9, KP10,
KP14, and KP15, is illustrated in Figures 7–12, which was based on the best profits achieved by 50 runs.
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Figures 7, 9 and 11 illustrate the best values achieved by the six methods on 1500-dimensional
uncorrelated, weakly correlated, and strongly correlated 0-1 KP instances in 50 runs, respectively. From
Figure 7, it can be easily seen that the best values obtained by GMBO far exceed that of the other five
methods. Meanwhile, the two best values of CS outstripped the two worst values of GMBO. By looking
at Figure 9, we can conclude that GMBO greatly outperformed the other five methods. The distribution
of best values of GMBO in 50 times was close to a horizontal line, which pointed towards the excellent
stability of GMBO in this case. With regard to numerical stability, CS had the worst performance. From
Figure 11, the curve of GMBO still overtopped that of ABC, CS, DE, and GA, as illustrated in Figures 7
and 9. This advantage, however, was not obvious when compared with MBO.

Figures 8, 10 and 12 show the best values obtained by six methods on 2000-dimensional
uncorrelated, weakly correlated, and strongly correlated 0-1 KP instances in 50 runs, respectively.
As the dimension becomes large, space is expanded dramatically to 22000, which represents a challenge



Mathematics 2019, 7, 1056 23 of 31

for any method. It can be said with certainty that almost all the values of GMBO are bigger than that of
the other five methods except MBO. Similar to Figure 11, the curves of MBO partially overlaps that of
GMBO in Figure 12, which may be interpreted as the ability of GMBO towards competing with MBO.

For the purpose of visualizing the experimental results from the statistical perspective, the
corresponding boxplots of six higher dimensional KP4–KP5, KP9–KP10, and KP14-15 are shown in
Figures 13–18. On the whole, the boxplot for GMBO has greater value and less height than those of
the other five methods, which indicates the stronger optimization ability and stability of GMBO even
encountering high-dimensional instances.
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In order to examine the convergence rate of GMBO, the evolutionary process and convergent
trajectories of six methods are illustrated in Figures 19–24. It should be noted that six high dimensional
instances, viz., KP4, KP5, KP9, KP10, KP14, and KP15, were chosen. In addition, Figures 19–24 show
the average best values with 50 runs, and not one independent experimental result.

From Figure 19, the curves of GMBO and MBO were almost coincident before 6 s, but afterward,
GMBO converged rapidly to a better value as compared to the others. From Figure 20, it is indeed
interesting to note that MBO has a weak advantage in the average values as compared to GMBO.
From Figure 21, MBO and GMBO have identical initial function values, and the average values obtained
by MBO were better than that of GMBO before 3 s. However, similar to the trend in Figure 19, 3 s later,
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GMBO quickly converged to a higher value. As depicted in Figure 22, unexpectedly, when addressing
the 2000-dimensional weakly correlated 0-1 KP instances, GMBO was inferior to MBO. Figures 23
and 24 illustrate the evolutionary process of strongly correlated 0-1 KP instances. By observation of
2 convergence graphs, we can conclude that GMBO and MBO have similar performance. Throughout
Figures 19–24, GMBO has a stronger optimization ability and faster convergence speed to reach
optimum solutions than the other five methods.Mathematics 2019, 7, x 26 of 32 
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4.4. The Comparisons of the GMBO and the Latest Algorithms

To evaluate the performance of the proposed GMBO, the two latest algorithms, namely, moth
search (MS) [67] and moth-flame optimization (MFO) [68], were especially selected to compare with
GMBO. The following factors were mainly considered. (1) The literature on the application of MS and
MFO to solve 0-1 KP problem was not found. (2) The GMBO, MS, and MFO were novel nature-inspired
swarm intelligence algorithms, which simulated the migration behavior of the monarch butterfly, the
Lévy flight mode, or the navigation method of moths.

For MS, the max step Smax = 1.0, acceleration factor ϕ = 0.618, and the index β = 1.5. For MFO,
the maximum number of flames N = 30. In order to make a fair comparison, all experiments were
conducted in the same experimental environment as described above. The detailed experimental
results of GMBO and the other two algorithms on the three kinds of large-scale 0-1 KP instances were
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presented in Table 15. The best, mean, and standard deviation values in bold indicate superiority.
The dominant times of the three algorithms in the three statistical values are given in the last line of
Table 15. As the results presented in Table 15, the number of times the GMBO algorithm had priority in
the best, the mean, and the standard deviation values were 8, 10, 5, respectively. The simulation results
indicated that GMBO generally provided very excellent performance in most instances compared with
MFO and MS. The two metrics, namely mean and standard deviation, demonstrated again that GMBO
was more stable. The comprehensive performance of MFO was superior to that of MS.

Table 15. Performance comparison of three algorithms on large-scale 0-1 KP instances.

No.
MBO MFO MS

Best Mean Std Best Mean Std Best Mean Std

KP1 40,684 40,641 40.09 40,538 39,976 309.00 40,242 40,101 56.37
KP2 49,992 49,732 116.12 50590 50200 384.72 50,056 49,790 79.57
KP3 61764 61430 379.76 61,836 61,238 608.78 61,059 60,721 101.80
KP4 76,929 76,691 267.90 77,007 76,353 656.36 75,716 75,505 95.94
KP5 99,898 99,424 200.38 102,276 101,475 781.66 100,348 100,036 120.08
KP6 35,069 35,064 4.04 35,069 34,952 116.84 34,850 34,799 20.64
KP7 43,786 43,784 1.57 43,784 43,630 132.21 43,474 43,424 20.34
KP8 53,426 53,167 300.90 53,552 53,048 556.60 52,637 52,489 73.73
KP9 65,708 65,666 18.48 65,692 65,421 253.29 65,093 65,025 27.59
KP10 116,496 115,718 492.92 118,183 117,381 838.07 116,283 115,937 117.92
KP11 40,167 40,162 5.11 40,157 40,142 15.48 40,137 40,127 5.58
KP12 49,442 49,425 11.58 49,433 49,411 15.64 49,403 49,390 7.10
KP13 60,630 60,604 20.88 60,581 60,557 68.28 60,581 60,571 9.24
KP14 74,852 74,852 12.00 74,910 74,874 32.49 74,852 74,833 7.71
KP15 99,553 99,534 14.14 99,643 99,602 37.10 99,572 99,546 9.28
Total 8 10 5 8 5 0 0 0 10

To summarize, by analyzing Tables 4–15 and Figures 4–24, it can be inferred that GMBO had
better optimization capability, numerical stability, and higher convergence speed. In other words, it
can be claimed that GMBO is an excellent MBO variant, which is capable of addressing large-scale
0-1 KP instances.

5. Conclusions

In order to tackle high-dimensional 0-1 KP problems more efficiently and effectively, as well
as to overcome the shortcomings of the original MBO simultaneously, a novel monarch butterfly
optimization with the global position updating operator (GMBO) has been proposed in this manuscript.
Firstly, a simple and effective dichotomy encoding scheme, without changing the evolutionary formula,
is used. Moreover, an ingenious global position updating operator is introduced with the intention of
enhancing the optimization capacity and convergence speed. The inspiration behind the new operator
lies in creating a balance between intensification and diversification, a very important feature in the
field of metaheuristics. Furthermore, a two-stage individual optimization method based on the greedy
strategy is employed, which besides guaranteeing the feasibility of the solutions, is able to improve
the quality further. In addition, the Orthogonal Design (OD) was applied to find suitable parameters.
Finally, GMBO was verified and compared with ABC, CS, DE, GA, and MBO on large-scale 0-1 KP
instances. The experimental results demonstrate that GMBO outperforms the other five algorithms on
solution precision, convergence speed, and numerical stability.

The introduction of a global position operator coupled with an efficient two-stage repairing
operator is instrumental towards the superior performance of GMBO. However, there is room
for further enhancing the performance of GMBO. Firstly, the hybridization of the two methods
complementing each other is becoming more and more popular, such as the hybridization of HS with
CS [69]. Combining MBO with other methods could indeed be very promising and hence worth
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experimentation. Secondly, in the present work, three groups of high-dimensional 0-1 KP instances
were selected. In the future, a multidimensional knapsack problem, quadratic knapsack problem,
knapsack sharing problem, and randomized time-varying knapsack problem can be considered to
investigate the performance of MBO. Thirdly, some typical combinatorial optimization problems, such
as job scheduling problems [70–72], feature selection [73–75], and classification [76], deserve serious
investigation and discussion. For these challenging engineering problems, the key issue is how to
encode and process constraints. The application of MBO for these problems is another interesting
research area. Finally, perturb [77], ensemble [78], learning mechanisms [79,80], or information
feedback mechanisms [81] can be effectively combined with MBO to improve performance.
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