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1. Introduction

IfO< Y ;a2 <coand 0 < Y72 | b2 < oo, then we have the following discrete Hilbert’s inequality
with the best possible constant factor 7 (cf., [1], Theorem 315):

co co 1/2
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n=1
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Correspondingly, if 0 < fooo f2(x)dx < coand 0 < fom ¢%(y)dy < oo, we still have the following
Hilbert’s integral inequality (cf., [1], Theorem 316):
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where the constant factor r is the best possible.

As is known to us, Inequalities (1) and (2) and their extensions with conjugate exponents as well
as independent parameters play an important role in analysis and their applications (cf., [2-13]).

Concerning with Inequalities (1) and (2), we have the following half-discrete Hilbert-type inequality
(cf., [1], Theorem 351):

If K(x)(x > 0) is a decreasing function and p > 1, % + % =10 < ¢(s) = fooo K(x)x*ldx < oo,
f(x) 20,0 < [[7 fP(x)dx < oo, then
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In recent years, some new extensions of the Inequality (3) were provided in [14-19].
In 2006, with the help of the Euler-Maclaurin summation formula, Krnic et al. [20] gave an
extension of (1) with the kernel (mjn) +(0 < A <14). In 2019, Adiyasuren et al. [21] considered an

extension of (1) with p,q > 1(% + % = 1) involving the partial sums. In 2016-2017, by using the weight
functions, Hong [22,23] considered some equivalent statements of the extensions of (1) and (2) with
several parameters. Some related works can be found in [24-26].

In this paper, following the way of [20,22], by using the weight functions, the idea of introduced
parameters, and the Euler-Maclaurin summation formula, a reverse half-discrete Hardy-Hilbert’s
inequality with the homogeneous kernel (Hln) +(0 < A < 5) and the reverse equivalent forms are

established. The equivalent statements of the best possible constant factor related to several parameters
are presented. As applications, two corollaries related to the case of the non-homogeneous kernel and
some particular cases are obtained.

2. Some Lemmas

In what follows, we assume that

0<p<i(q< 0),%+% — 1,4 € (0,50 € (0,2]N(0,A), 1€ (0,1),

f(x)>0(xeRy =(0,00)),a8,>20(neN=1{1,2,---}) satisfying

0< f xp[l_(%+%)]_1fp(x)dx <ocoand 0 < Z nq[l_(%+A@l)]_laZ < co.
0

n=1
Lemma 1. Define a weight function by
N 0 o-1
@(0,x) :=x"7) ———(x€Ry). 4)
n=1 (x + 1’l)

Then, we have

B(o,A-0)(1-ps(x)) <@(0,x) <B(o,A—0)(x€Ry), 5)
where, ps(x) := U%E;Gj{) o)% =0(%) € (0,1)(0x € (0,1);x > 0). = fo 1ft LH (u,v>0) is
the beta function.
Proof. For fixed x > 0, we set function g, (t) := (xt;l)/\ (t > 0). Using the Euler-Maclaurin summation

formula (cf., [20]), for p(t) := t — [t] — 1, we have

Z gx(n) = [T ge(D)dt + 1ge(1) + [T p(t)gh(B)dt = [ gx(t)dt —h(x),
= fo ge()dt-3g:(1) = [ p(t)gx(t)dt

-1
2(x+1)"

Thus, we obtain —4¢,(1) =

fogx )t = fO +t 1f0 gxtﬁ: - "|0 Afo ft‘)ingl

dro+1
- (x+1 MH 0 (x+1)"1
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11 A i1 gl A(A+1) o+1
> (x+1)" RSy [(x+t)“1]0 o(o+1)(x+1) “Zfo tdt
_1 1A+ A 1/\1 A(A+1) 1A2/
O (x41)"  0(o+D) )M T 0(0+1)(042) (x41)M
—gl(b) = _ (o-1)o2 Aol (o)t A2 A2
* " (:;+t); ) (x+t)”; @)t )t ()t
_ (AH1-0)t77  Axpo-
(x+1)t (x+t)ML"
For0<o<2,0<A<5, wefind
dl ta—Z . dz' ta—Z
(-1) ]>0,(-1)—=[———]>0(t>0;i=0,1,2,3),
ati (x4 1)t dtt (x 4 M1

and then by using the Euler-Maclaurin summation formula (cf., [20]), we find

00 g-2 _
(/\+1—a)f p()——ar> - 210
1 (x+1) 12(x+1)
A A 1972 "
X/\fl t At > 12(xi1)A+1 - %[(H—t pEs] ]t:
(x+1)/\ A (x+1)/\[(/\+1)(/\+2) 2(A+1)(2-0) (2—0)(3—0)]
2(x+1)H T 720 (x+1)173 1) 2 )AL
_ A _ A _ L[(/H-l)()\-&-Z) 2(A41)(2-0) (2—6)(3—0’)}
12041 120(+D)MT 7200 (eyp)AH2 (x4+1)M1 (x+1)
Hence, we have
h Ah AA+1)hs
h(x) > —— + s A2
(x+1) (x+1) (x+1)
where,fy =}~ ) - o - A0 gy 4 () g
hy = 1 A2

o(o+1)(c+2) 720 °

For A € (0,5], 7/2\—0 < 21—4,(7 € (0,2], it follows that

1 1 1-¢ (2-0)(3-0) 24-200+70%2-0°
h>=-—=-— - =
o 240

2712 24 > 0.

In fact, setting g(0) := 24 — 200 + 702 — 6> (0 € (0,2]), we obtain

72 11
¢’ (0) = =20 + 1402 - 30% = —3(c - =)

P 0[
3 3
and then we obtain i > 2(4? > % m >0 (0 €(0,2]).
We observe that i, > — - % - 31620 = 20 >0, and h3 > 21—4 — % = 72230 > 0. Hence, we deduce that
h(x) > 0, and thus we have

@(o,x) X0 Z Qx(n) <x}‘_"f000 Qx(F)dt

A—o °° o~ 1dt
=X
0 (x41) J(;

U 1d“ = B(o,A —0).
(14u)*
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On the other-hand, we also have

Z gx(n fl Sx(t dt"‘ zgx +f1 t)gy(t

:fl gx(t dt+H()
18D+ [T p(t)gh(t

H(x):

We obtain 3 g¢,(1) = 2(3&1%1)/\ and

—~(A+1-0)t2  Axto2
(x+1)" (x+ )M

8x(t) =

For o € (0, 2] N (O, A),0<A <5, by the Euler-Maclaurin summation formula, we obtain

00 t0‘—2
—(/\—!—1—0)]; p(t) ~dt >0,

(x+1)
x/\fl _H))Hl dt
xA — LA A A > A
T2+ 2+D)M T 26+t T 2+t T e+t
Hence, we have
1 A -A
H(x) > - __ >0,

2+ 1) 12+ 12(x+ )7
and then
@(0,x) = xN~ “Z gx(n) >x/“Ufloogx

/\aj(‘) gxtdt_)\afogx
= B(g,A -0)

a/\af() 1+

By the integral mid-value theorem, we find

v ool 1 : 11 1
f 4 ~du = /\f uldy = —— < (6:€(0,-)).
0 (1+4u) (1+6,)" Jo o(1+40,)" X X
This proves Inequality (5). O
Lemma 2. The following reverse inequality is valid:

o X x)ay 1 1
I:fo nél%dx>BP(a,/\—a) (A=)

(xtn)
00 A=c | H 1 a ( % (6)
([ (1—pg(x))x'”“*T*a”‘lfﬂ(x)dx}”{z =G+ 501, 7

n

Proof. For nn € N, setting x = nu, we obtain the following weight function:

A ® xHldx _ © ubldy _ B(uA—
ol = [ =y | ) %
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For 0 < p < 1,9 <0, by the reverse Holder’s inequality (cf., [27]) and the Lebesgue term by term
integration theorem (cf., [28]), we obtain

B X fosdr= 7 X e ) e anldx
o X a1 l & u-1 q 1
> { ], [Elﬁwﬂw] 1A }E fo w T ey X)) 1
1 1
= 1 @lo ) CF I i 5 e mn G+

Then by (5) and (7), we obtain Inequality (6). O

Remark 1. For u + o = A, we find

sl o-1

®(0,x) = x (x eRy),

A
n=1 (x + Tl)

0< f =071 P (x)dx < o0 and 0 < Z n11=0)=140 < oo,

0 n=1

and then we reduce (6) as follows:

1 oo 1

foo Z (x4 n)* x> Bluo )[fom (1= po ()3 1771 2 ()] () mili=0)-149) | ®)

n=1

Lemma 3. The constant factor B(u, o) in (8) is the best possible.

Proof. For 0 < € < pu, we set

~ 00<x<1, _ o—E_1
= & = 9 .
Fl)i=1 gt ) =TT e N)

If there exists a positive constant M (M > ( 0)) such that (8) is valid when replacing B(u, o) by M,

then by a substitution of f(x) = f(x),a, = a,, we get

T::fomil ﬁx)EnAdx>M

=1 (x+n)

1

ad q
), n?a)

n=1

00

(1 = po(x)) P77 P (x)dx]

s

X
S

1

q

=M™ (1= 0w ) (£ e

R
ZM(f1 x~¢ldx - fl W—fﬂ)dx)p(fl x~E )
M
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For y1— 4 >0(0 <p < 1), by (7), we obtain

T ¥ et lots) (o Hop) el ots) o )
= n§1n b f1 (rn)" o) < ;Eln e fo (x4n)" 4]
= L n*o(u=-5n)=Bu-50+5) 1+ L nT)
n=1 1 ”:2 i
<B(u-50+5) (1+ [ xeldx) = <2 B(p—5,0+5).

Then we have c .
(s+1)B(y—;—7,a+—) >el>M(1-¢0(1))r.

For ¢ — 07, in view of the continuity of the beta function, it follows that B(y, ) > M. Therefore,
M = B(u, 0) is the best possible constant factor of (8). Lemma 3 is proved. O

Remark 2. Setting i := /\T + %,6 =

and for A — u—ao € (—pu, p(A — u)), we find
Ao Upu g g pp(A) g
> +==0,4a< 7 + s A,
0<6=A-0<AB(f1,6) €eRy.
We can reduce (6) to the following
Sx)an :
f 2 dx>B (0,A=0)B7(u,A—p)

n=1 (x+ n)"* 1 o
X (1= pa(x) 1R o ()] [ X, (1011487

n=1

Lemmad4. If A—u—o € (—pu,p(A — u)), the constant factor B (0,A-0)B %(y,/\ w) in (9) is the best
possible, then we have u+ o0 = A.

Proof. If the constant factor B (0,A—0)B Bi (4, A — u) in (9) is the best possible, then by (8), the unique
best possible constant factor must be B(f1,5)(€ R+) namely,

B(f,3) =B7 (0,4~ 0)BT (1, A ~ ).

By the reverse Holder's inequality (cf., [27]), we find

. A=o K
Ooty—l oothrql

B(f,6) = |, Tt =h S )A dt—fo m T )t
> [ (1+1t)At/\_a td]v [}, L) (10)

= B%(a,/\ —a)B%(y,/\ - ).

==

o

We observe that (10) keeps the form of equality if and only if there exist constants A, B such that they
are not all zero and
APV = Bt g e in R,
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Suppose that A # 0. We find that t*=#79 = Z a.e.in Ry, and thus we conclude that A =y -0 =0, i.e,
p+o=A. Lemma4is proved. O

3. Main Results

Theorem 1. Inequality (6) is equivalent to the following inequalities:

1
¥ O o ) P
o= {ngln t [O (x+n)* 1 (11)
: ! 00 pl1—( b
> B7 (0,A=0)Bi (A=)l [y (1~ po(x))x fP(x)dx}”,
oo AAFTH1 9 1 1
J2 :{fo x_p qq—l[z ] dx}i
1 (I=po(x))"™" " =1 (x+n) 1 (12)

oo G A=
> B (0,1 — 0)B1 (1, A — ) (£t A=+,

If the constant factor B (0,A-0)B Bi (4, A =) in (6) is the best possible, then so is the constant factor in (11)
and (12).

In particular, for u+ o0 = Ain (6), (11) and (12), we have Inequality (8) and the following equivalent
versions of reverse inequalities with the best possible constant factor B(,0):

chflf

-

14

i) >B<u,o>[f0°°<1—pa< NP9 ()] 13)

1

q

© xw! ' a 1 S
| : 2, ] it B ) it (19)

1-po(x)"™ A= (x+n) o

—_

Proof. Suppose that (11) is valid. By the Lebesgue term by term integration theorem and the reverse
Holder’s inequality (cf., [27,28]), we have

—1 QA;IJ ~ 1_(g Ap
= £ L= B [ L)
1 (15)
)]17}

/\ u

2l L

Then by (11), we have Inequality (6). On the other-hand, assuming that Inequality (6) is valid, we set
g A ©0 p_l
ap = np(PJraF)_l[f L)Adx] ,neN.

If J; = oo, then Inequality (11) is naturally valid; if J; = 0, so it is impossible to make Inequality (11)
valid, namely [; > 0. Suppose that 0 < J; < co. By (6), we have

0o g, A-u
Y a1 — P 1> B (0,A - 0)BY (1, A - )
=1
1
1nq[l—<;+vn—1az}q/

A
ek

) (1= po ()T DI ()
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1

P = 1> BY (0,4 - 0)BT (1,4 — )

A-u

{ oi =G+
n=1

==

00 — (A= By-
XUy (1= pa ) ()
namely, Inequality (11) follows, which is equivalent to Inequality (6).
Suppose that Inequality (12) is valid. By the reverse Holder’s inequality, we have

1 ,_(;_A'_ﬂ) x 9
I = 1 o p 1 P i
fO p X f(x)][ 1_pa(x))1/l’ el (x+n) (16)

(
—(Azaty 1
=1k ﬂ—mwﬁf”(P+Mlﬁ@MﬂUz
Then by (12), we obtain Inequality (6). On the other-hand, assuming that Inequality (6) is valid, we set
00 q—l

f(x) ::xq(/%u%)_l[ i ~] ,xeRy
n=1 (x+n)

If J = oo, then Inequality (12) is naturally valid; if J, = 0, then it is impossible to make Inequality (12)
valid, namely [, > 0. Suppose that 0 < J, < co. By (6), we have

J(;oo (1 _ p(j(x))xp[l_()\p;g‘i'%)]_lfp(x)dx = ]Z =1> B%(a A— G)B%(”,A H)
00 _(Aza 4 By 1 A= y 1
X{fo (1—Po(x))xp[l (G245 1fP(x)alx}”{gl - +=0)1-1 q}‘i
A= | By 1 1
B @ = pa ()P EF D ()an)” = 1> BP (0,4 - 0)BY (1, A~ )
(¥ a1 T
n=1

namely, Inequality (12) follows, which is equivalent to Inequality (6).
Hence, Inequalities (6), (11) and (12) are equivalent.

1 1
If the constant factor B7 (06, A — 0)B7(u, A — ) in (6) is the best possible, then so is the constant
factor in (11) and (12). Otherwise, by (15) (or (16)), we would reach a contradiction that the constant
factor in (6) is not the best possible. This completes the proof of Theorem 1. O

Theorem 2. The following statements (i), (ii), (iii) and (iv) are equivalent.

(i) B (0,A - O)B%( A — ) is independent of p, q;

(ii) B (0,A - G)B% (4, A — ) is expressible as a single integral;
(iii) B; (0,A-0) B%( A — ) is the best possible of (6);

(iv) IfA—u—oe€(—pu,p(A—u)), thenu+o=A.

Q\r—'

Proof. (i) = (ii). In view of B (0,A—0)Bi(u, A — ) is independent of p, g, we find
B (0,4~ 0)B1 (A~ p).
= lim B%(o A—G)Bﬂ(y,/\—y):B(a,/\—G),
p—17,

g— —o0

which is a single integral fooo (fI:)A
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A—g B _
£ 7 Tt

1+t
Then (10) keeps the form of equality. By the proof of Lemma 4, for A — u— o € (—pu, p(A — 1)), we have
p—+o=A.

(iv)= (). If y+0 = A, then

(ii) = (iv). Suppose that B (o,A— O)B% (4, A — u) is expressible as a single integral fooo

BY (0,4~ )BT (4, A~ 1) = B(,0),

which is independent of p, g.
Hence, (i) & (ii) © (iv).
(vi) = (iii). By Lemma 3, for i + o = A, B (6,1 — 0)B
(iii) = (iv). By Lemma 4, we have u 4+ 0 = A.
Therefore, we show that (iv )« (iii), and then the statements (i), (ii), (iii) and (iv) are equivalent.
The proof Theorem 2 is complete. O

=

(u, A — ) is the best possible of (6).

4. Two Corollaries and Some Particular Inequalities

Replacing x by 1, and then setting F(x) = x*~2f(1) in Theorems 1 and 2, we find

(1 + ex_l )_)t

0B(0,A —0) x7=0(x7) € (0,1)(0,-1 € (0,x);x > 0),

po(x7t) =
and obtain the following corollaries:

Corollary 1. If F(x), a, > 0 such that

o0 (g Ay - (g Aty
0<f G 1137(x)dx<ooandO<Z‘nq[1 G+ 111Z<oo,
0 n=1

then the following inequalities are equivalent:

00 X F(x)an 1 1
FE S oo
1 17)

o A= p © o A q
XU (1= pul )1 T e £
n=

1
0 (QJF/\—;:)_l o F(x) pr
{nglnp p g U(.) (1+xn)Adx] }

(18)
1
a /\7 »
> B (0,A— a)B% (A — y){fooo (1- pg(x‘l))xp[l_(ﬁ+7y)]_113p(x)dx}p,
P q
00 xﬂ(ﬁJrT)*l & an 1
{fO (1-po(x1))? 1[112‘1 (1+xn)A] : 1 (19)
g A= q
> B?(0,A - a)B% (A= X nll (E+TH)}_1QZ}W

1 1
If the constant factor B¥ (6, A —a)B7 (i, A — ) in (17) is the best possible, then so is the constant factor
in (18) and (19).
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In particular, for y = A — o in (17), (18) and (19), we have the following equivalent inequalities with the
best possible constant factor B(A —0,0):

f""f F@m g0 5 B(A-0,0)

0 1 (1+xn)?
1 1 (20)
x[fy (1= po(x™))a?=) PP (x)d Jrr ni(-0-1a1)",
v (x) X
po—17 [© _Fx d P
{nZ::ln [j(; (l+xn)/\ x] } . (21)
>B(A=0,0)[ 57 (1= po(ax))?1=)71FP (x)dx]”,
o Q. 1 ® o i
fo _xff l1 - Z‘l T -] dx}7> B(A—o,a)[néln‘ﬂl o)-171", (22)
Corollary 2. The following statements (i), (ii), (iii) and (iv) are equivalent:
(i) B (o,A - G)B%([J,/\ — ) is independent of p,q;
(ii) B (0,A - G)B% (u, A — ) is expressible as a single integral;
(iii) B (0,A - G)B%([J,/\ — ) is the best possible of (17);
(iv) If A—u—oe€(—qo,q(A—0c)), then we have uy = A —o.
Remark 3. (i) Forc =2 < A(<5),u = A=2in(8), (13) and (14), since
T(A-2)T(2) T(A-2) B 1
B(A-22) = ra) (A-1)A-2)T(A-2) (A-1)(A-2)
A-1)(A-2) 1 1 1
=——=0(= 0,1)(6 0,-); 0),
pale) = S 5 = 0lig) 0@ 0,520

we have the following equivalent versions of reverse inequalities with the best possible constant factor m:

1 1

“ N f(x)an 1 0 5 - i
fo Zl<x+n>Adx><A—1><A—z>[fo (1= pax)) WO~V 2 (x)dx ](%n“azw 23)

-

Z 21 f x+n },,> m[fom (1—pz(x))xp(3—/\)—1fp(x)dx}?, (24)

1

o - 1 1 T
{L Z dxq m(anlaZ). (25)

- x+n b

(ii) For o =2 < A(< 5),y =A—-2in(20), (21) and (22), we have
pa(x ‘1) M 2 = O(xz) €(0,1)(0,1 € (0,x);x>0),
2(1+06,- )

and the following equivalent versions of reverse inequalities with the best possible constant factor (A_l)lw:

1 1

f""z 1+xn (A—l)l(A—z)(fom (1_P2(x_1>)x_”_1F”(X)dx)p(Z”‘q‘lai)q, (26)

n=1
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1
Pp 1 %

o [ _F(®) I PN R
{,;M [fo (1—|—xn)/\dx] } >()\—1)()\—2)(f0 (1= p2(x™ )P P (x)dx) . (27)

] q

0 x0T apn 1
dx}a 28
{fo <1—pz<x—1>>“[,;1 <1+xn>ﬂ] ¥ )

5. Conclusions

Let us give a brief summary of this paper, by the way of [20,22] and the use of the weight functions,
the idea of introducing parameters and the Euler-Maclaurin summation formula, a reverse half-discrete
Hardy-Hilbert’s inequality and the reverse equivalent forms are given in Lemma 2 and Theorem 1.
The equivalent statements of the best possible constant factor related to some parameters are proved in
Theorem 2. As applications, two corollaries about the reverse cases of the non-homogeneous kernel
and some particular cases are considered in Corollaries 1, 2 and Remark 3. The above-mentioned
lemmas and theorems reveal some essential characters of this type of Hardy-Hilbert inequality.
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