
mathematics

Article

Bipolar Fuzzy Relations

Jeong-Gon Lee 1,* and Kul Hur 2

1 Division of Applied Mathematics, Nanoscale Science and Technology Institute, Wonkwang University,
Iksan 54538, Korea

2 Department of Applied Mathematics, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538,
Korea; kulhur@wku.ac.kr

* Correspondence: jukolee@wku.ac.kr

Received: 22 September 2019; Accepted: 31 October 2019; Published: 3 November 2019
����������
�������

Abstract: We introduce the concepts of a bipolar fuzzy reflexive, symmetric, and transitive relation.
We study bipolar fuzzy analogues of many results concerning relationships between ordinary reflexive,
symmetric, and transitive relations. Next, we define the concepts of a bipolar fuzzy equivalence
class and a bipolar fuzzy partition, and we prove that the set of all bipolar fuzzy equivalence classes
is a bipolar fuzzy partition and that the bipolar fuzzy equivalence relation is induced by a bipolar
fuzzy partition. Finally, we define an (a, b)-level set of a bipolar fuzzy relation and investigate some
relationships between bipolar fuzzy relations and their (a, b)-level sets.

Keywords: bipolar fuzzy relation; bipolar fuzzy reflexive (resp., symmetric and transitive) relation;
bipolar fuzzy equivalence relation; bipolar fuzzy partition; (a, b)-level set

1. Introduction

In 1965, Zadeh [1] introduced the concept of a fuzzy set as the generalization of a crisp set. In 1971,
he [2] defined the notions of similarity relations and fuzzy orderings as the generalizations of crisp
equivalence relations and partial orderings playing basic roles in many fields of pure and applied
science. After that time, many researchers [3–11] studied fuzzy relations. Dib and Youssef [7] defined
the fuzzy Cartesian product of two ordinary sets X and Y as the collection of all L-fuzzy sets of X×Y,
where L = I × I and I denotes the unit closed interval. In particular, Lee [10] obtained many results by
using the notion of fuzzy relations introduced by Dib and Youssef.

In 1994, Zhang [12] introduced the notion of a bipolar fuzzy set (refer to [13–15]). After then,
Jun and Park [16], Jun et al. [17], and Lee [18] applied bipolar fuzzy sets to BCK/BCI-algebras.
Moreover, Akram and Dudek [19] studied bipolar fuzzy graph, and Majumder [20] introduced the
bipolar fuzzy Γ-semigroup. Moreover, Talebi et al. [21] investigated operations on a bipolar fuzzy
graph. Azhagappan and Kamaraj [22] dealt with some properties of rw-closed sets and rw-open
sets in bipolar fuzzy topological spaces. Recently, Kim et al. [23] constructed the category consisting
of bipolar fuzzy set and preserving mappings between them and studied this in the sense of a
topological universe. Lee et al. [24] found some properties of bases, neighborhoods, and continuities
in bipolar fuzzy topological spaces. In particular, Dudziak and Pekala [25] referred to an intuitionistic
fuzzy relation as a bipolar fuzzy relation and investigated some properties of equivalent bipolar
fuzzy relations.

In this paper, first, we introduce a bipolar fuzzy relation from a set X to Y and the composition
of two bipolar fuzzy relations. Furthermore, we introduce some operations between bipolar fuzzy
relations and obtain some of their properties. Second, we define a bipolar fuzzy reflexive, symmetric,
and transitive relation and find bipolar fuzzy analogues of many results concerning relationships
between ordinary reflexive, symmetric, and transitive relations. Third, we define the concepts of a

Mathematics 2019, 7, 1044; doi:10.3390/math7111044 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6515-5658
http://www.mdpi.com/2227-7390/7/11/1044?type=check_update&version=1
http://dx.doi.org/10.3390/math7111044
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 1044 2 of 18

bipolar fuzzy equivalence class and a bipolar fuzzy partition, and we prove that the set of all bipolar
fuzzy equivalence classes is a bipolar fuzzy partition and that the bipolar fuzzy equivalence relation is
induced by a bipolar fuzzy partition. Finally, we define an (a, b)-level set of a bipolar fuzzy relation
and investigate some relationships between bipolar fuzzy relations and their (a, b)-level sets.

2. Preliminaries

In this section, we introduce the concept of the bipolar fuzzy set, the complement of a bipolar
fuzzy set, the inclusion between two bipolar fuzzy sets, and the union and the intersection of two
bipolar fuzzy sets. Furthermore, we introduce the intersection and union of arbitrary bipolar fuzzy
sets and list some properties.

Definition 1. ([13]). Let X be a nonempty set. Then, a pair A = (A−, A+) is called a bipolar-valued fuzzy set
(or bipolar fuzzy set) in X, if A+ : X → [0, 1] and A− : X → [−1, 0] are mappings.

In particular, the empty fuzzy empty set (resp. the bipolar fuzzy whole set) (see [22]), denoted by 0bp =

(0−bp, 0+bp) (resp. 1bp = (1−bp, 1+bp)), is a bipolar fuzzy set in X defined by: for each x ∈ X,

0+bp(x) = 0 = 0−bp(x) (resp. 1+bp(x) = 1 and 1−bp(x) = −1).

We will denote the set of all bipolar fuzzy sets in X as BPF(X).
For each x ∈ X, we use the positive membership degree A+(x) to denote the satisfaction degree of the

element x to the property corresponding to the bipolar fuzzy set A and the negative membership degree A−(x)
to denote the satisfaction degree of the element x to some implicit counter-property corresponding to the bipolar
fuzzy set A.

If A+(x) 6= 0 and A−(x) = 0, then it is the situation that x is regarded as having only positive satisfaction
for A. If A+(x) = 0 and A−(x) 6= 0, then it is the situation that x does not satisfy the property of A, but
somewhat satisfies the counter-property of A. It is possible for some x ∈ X to be such that A+(x) 6= 0 and
A−(x) 6= 0 when the membership function of the property overlaps that of its counter-property over some
portion of X.

It is obvious that for each A ∈ BPF(X) and x ∈ X, if 0 ≤ A+(x) − A−(x) ≤ 1, then A is an
intuitionistic fuzzy set introduced by Atanassov [26]. In fact, A+(x) (resp. −A−(x)) denotes the membership
degree (resp. non-membership degree) of x to A.

Definition 2. ([13]). Let X be a nonempty set, and let A, B ∈ BPF(X).

(i) We say that A is a subset of B, denoted by A ⊂ B, if for each x ∈ X,

A+(x) ≤ B+(x) and A−(x) ≥ B−(x).

(ii) The complement of A, denoted by Ac = ((Ac)−, (Ac)+), is a bipolar fuzzy set in X defined as: for each
x ∈ X, Ac(x) = (−1− A+(x), 1− A+(x)), i.e.,

(Ac)+(x) = 1− A−(x), (Ac)−(x) = −1− A−(x).

(iii) The intersection of A and B, denoted by A ∩ B, is a bipolar fuzzy set in X defined as: for each x ∈ X,

(A ∩ B)(x) = (A−(x) ∨ B−(x), A+(x) ∧ B+(x)).

(iv) The union of A and B, denoted by A ∪ B, is a bipolar fuzzy set in X defined as: for each x ∈ X,

(A ∪ B)(x) = (A−(x) ∧ B−(x), A+(x) ∨ B+(x)).



Mathematics 2019, 7, 1044 3 of 18

Definition 3. (see [13,22]). Let X be a nonempty set, and let A, B ∈ BPF(X). We say that A is equal to B,
denoted by A = B, if A ⊂ B and B ⊂ A.

Result 1. ([23], Proposition 3.5). Let A, B, C ∈ BPF(X). Then:

(1) (Idempotent laws): A ∪ A = A, A ∩ A = A,
(2) (Commutative laws): A ∪ B = B ∪ A, A ∩ B = B ∩ A,
(3) (Associative laws): A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C,
(4) (Distributive laws): A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
(5) (Absorption laws): A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A.
(6) (De Morgan’s laws): (A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc,
(7) (Ac)c = A,
(8) A ∩ B ⊂ A and A ∩ B ⊂ B,
(9) A ⊂ A ∪ B and B ⊂ A ∪ B,

(10) if A ⊂ B and B ⊂ C, then A ⊂ C,
(11) if A ⊂ B, then A ∩ C ⊂ B ∩ C and A ∪ C ⊂ B ∪ C.

Definition 4. ([23]). Let X be a nonempty set, and let (Aj)j∈J ⊂ BPF(X).

(i) The intersection of (Aj)j∈J , denoted by
⋂

j∈J Aj, is a bipolar fuzzy set in X defined by: for each x ∈ X,

(
⋂
j∈J

Aj)(x) = (
∨
j∈J

A−j (x),
∧
j∈J

A+
j (x)).

(ii) The union of (Aj)j∈J , denoted by
⋃

j∈J Aj, is a bipolar fuzzy set in X defined by: for each x ∈ X,

(
⋃
j∈J

Aj)(x) = (
∧
j∈J

A−j (x),
∨
j∈J

A+
j (x)).

Result 2. ([23], Proposition 3.8). Let A ∈ BPF(X), and let (Aj)j∈J ⊂ BPF(X). Then:

(1) (Generalized distributive laws): A ∪ (
⋂

j∈J Aj) =
⋂

j∈J(A ∪ Aj),

A ∩ (
⋃

j∈J Aj) =
⋃

j∈J(A ∩ Aj),
(2) (Generalized De Morgan’s laws): (

⋃
j∈J Aj)

c =
⋂

j∈J Ac
j , (

⋂
j∈J Aj)

c =
⋃

j∈J Ac
j .

From Results 1 and 2, it is obvious that (BPF(X),∪,∩,c , 0bp, 1bp) is a complete distributive lattice
satisfying De Morgan’s laws.

3. Bipolar Fuzzy Relations

In this section, we introduce the concepts of the bipolar fuzzy relation, the composition of two
bipolar fuzzy relations, and the inverse of a bipolar fuzzy relation and study some their properties.

Throughout this paper, X, Y, Z denote ordinary non-empty sets, and we define the union,
the intersection, and the composition between bipolar fuzzy relations by using only the
min-max operator.

Definition 5. R = (R−, R+) is called a bipolar fuzzy relation (BPFR) from X to Y, if R+ : X × Y → [0, 1]
and R− : X×Y → [−1, 0] are mappings, i.e.,

R ∈ BPF(X×Y).

In particular, a BPFR from from X to X is called a BPFR on X (see [21]).
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The empty BPFR (resp. the whole BPFR) on X, denoted by R0 = (R−0 , R+
0 ) (resp. R1 = (R−1 , R+

1 )), is
defined as follows: for each (x, y) ∈ X× X,

R+
0 (x, y) = 0 = R−0 (x, y) [resp. R+

1 (x, y) = 1 and R−1 (x, y) = −1].

We will denote the set of all BPFRs on X (resp. from X to Y) as BPFR(X) (resp. BPFR(X×Y)).

It is obvious that if R = (R−, R+) ∈ BPFR(X), then −R− and R+ are fuzzy relations on X, where
(−R−1)(x, y) = −R−(x, y) for each (x, y) ∈ X× X.

Definition 6. Let R ∈ BPFR(X×Y). Then:

(i) the inverse of R, denoted by R−1 = ((R−1)−, (R−1)+), is a BPFR from Y to X defined as follows:
for each (y, x) ∈ Y× X, R−1(x, y) = R(y, x), i.e.,

(R−1)+(y, x) = R+(x, y), (R−1)−(y, x) = R−(x, y).

(ii) the complement of R, denoted by Rc = ((Rc)−, (Rc)+), is a BPFR from X to Y defined as follows: for each
(x, y) ∈ X×Y,

(Rc)+(x, y) = 1− R+(x, y), (Rc)−(x, y) = −1− R+(x, y).

Proposition 1. Let R, S, P ∈ BPFR(X×Y). Then:

(1) R0 ⊂ R ⊂ R1,
(2) (Rc)−1 = (R−1)c,
(3) (R−1)−1 = R,
(4) R ⊂ R ∪ S and S ⊂ R ∪ S,
(5) R ∩ S ⊂ R and R ∩ S ⊂ S,
(6) if R ⊂ S, then R−1 ⊂ S−1,
(7) if R ⊂ P and S ⊂ P, then R ∪ S ⊂ P,
(8) if P ⊂ R and P ⊂ S, then P ⊂ R ∩ S,
(9) if R ⊂ S, then R ∪ S = S and R ∩ S = R,

(10) (R ∪ S)−1 = R−1 ∪ S−1, (R ∩ S)−1 = R−1 ∩ S−1,

Proof. (1) The proof is obvious.
(2) Let (x, y) ∈ X×Y. Then

[(Rc)−1]−(x, y) = (Rc)−(y, x) = −1− R−(y, x)

= −1− (R−1)−(x, y)

= [(R−1)c]−(x, y).
Similarly, we have [(Rc)−1]+(x, y) = [(R−1)c]+(x, y). Thus, the result holds.

(3) The proof is easy by Definition 6.
(4) Let (x, y) ∈ X×Y. Then,

(R ∪ S)−(x, y) = R−(x, y) ∧ S−(x, y) ≤ R−(x, y)
and

(R ∪ S)+(x, y) = R−(x, y) ∨ S−(x, y) ≥ R+(x, y).
Thus, R ⊂ R ∪ S. Similarly, we have S ⊂ R ∪ S.
The remainder can be proven from Definitions 2, 3, and 6.

The following is the similar results of Results 1 and 2.
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Proposition 2. Let R, S, P ∈ BPFR(X×Y), and let (Rj)j∈J ⊂ BPFR(X×Y). Then:

(1) (Idempotent laws): R ∪ R = R, R ∩ R = R,
(2) (Commutative laws): R ∪ S = S ∪ R, R ∩ S = S ∩ R,
(3) (Associative laws): R ∪ (S ∪ P) = (R ∪ S) ∪ P, R ∩ (S ∩ P) = (R ∩ S) ∩ P,
(4) (Distributive laws): R ∪ (S ∩ P) = (R ∪ S) ∩ (R ∪ P), R ∩ (S ∪ P) = (R ∩ S) ∪ (R ∩ P),
(4)

′
(Generalized distributive laws): R ∪ (

⋂
j∈J Rj) =

⋂
j∈J(R ∪ Rj), R ∩ (

⋃
j∈J Rj) =

⋃
j∈J(R ∩ Rj),

(5) (Absorption laws): R ∪ (R ∩ S) = R, R ∩ (R ∪ S) = R,
(6) (De Morgan’s laws): (R ∪ S)c = Rc ∩ Sc, (R ∩ S)c = Rc ∪ Sc,
(6)

′
(Generalized De Morgan’s laws): (

⋃
j∈J Rj)

c =
⋂

j∈J Rc
j , (

⋂
j∈J Rj)

c =
⋃

j∈J Rc
j .

(7) (Involution): (Rc)c = R.

Example 1. Let X = {a, b, c}, and let R be a BPFR on X given by the following Table 1.

Table 1. R.

a b c

a (−0.4, 0.6) (−0.7, 0.5) (−1, 0.8)
b (−0.3, 0.8) (−0.6, 0.3) (−0.2, 0.6)
c (−0.5, 0.7) (−0.8, 0.3) (−0.6, 0.3)

Then, the inverse and the complement of R are given as below Tables 2–5.

Table 2. R−1.

a b c

a (−0.4, 0.6) (−0.3, 0.8) (−0.5, 0.7)
b (−0.7, 0.5) (−0.6, 0.3) (−0.8, 0.3)
c (−1, 0.8) (−0.2, 0.6) (−0.6, 0.3)

Table 3. Rc.

a b c

a (−0.6, 0.4) (−0.3, 0.5) (0, 0.2)
b (−0.7, 0.2) (−0.4, 0.7) (−0.8, 0.4)
c (−0.5, 0.3) (−0.2, 0.7) (−0.4, 0.7)

Table 4. R ∩ Rc.

a b c

a (−0.4, 0.4) (−0.3, 0.5) (0, 0.2)
b (−0.3, 0.2) (−0.4, 0.3) (−0.2, 0.4)
c (−0.5, 0.3) (−0.2, 0.3) (−0.4, 0.3)

Table 5. R ∪ Rc.

a b c

a (−0.6, 0.6) (−0.7, 0.5) (−1, 0.8)
b (−0.7, 0.8) (−0.6, 0.7) (−0.8, 0.6)
c (−0.5, 0.7) (−0.8, 0.7) (−0.6, 0.7)
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Remark 1. For each R ∈ BPFR(X), R ∩ Rc = R0 and R ∪ Rc = R1 do not hold, in general.

Consider the BPFR in Example 1. Then, R ∩ Rc 6= R0 and R ∪ Rc 6= R1.

Definition 7. Let R ∈ BPFR(X×Y), and let S ∈ BPFR(Y× Z). Then, the composition of R and S, denoted
by S ◦ R = ((S ◦ R)+, (S ◦ R)−), is a BPFR from X to Z defined as: for each (x, z) ∈ X× Z,

(S ◦ R)+(x, z) = (S+ ◦ R+)(x, z) =
∨

y∈Y
[R+(x, y) ∧ S+(y, z)],

(S ◦ R)−(x, z) = (S− ◦ R−)(x, z) =
∧

y∈Y
[R−(x, y) ∨ S−(y, z)].

We can easily see that (−S− ◦ −R−)(x, y) =
∨

y∈Y[−R+(x, y) ∧−S−(x, y)].

Proposition 3.

(1) P ◦ (S ◦ R) = (P ◦ S) ◦ R), where R ∈ BPFR(X×Y), S ∈ BPFR(Y× Z), and P ∈ BPFR(Z×W).
(2) P ◦ (R ∪ S) = (P ◦ R) ∪ (P ◦ S), P ◦ (R ∩ S) = (P ◦ R) ∩ (P ◦ S), where R, S ∈ BPFR(X×Y) and

P ∈ BPFR(Y× Z).
(3) If R ⊂ S, then P ◦ R ⊂ P ◦ S, where R, S ∈ BPFR(X×Y) and P ∈ BPFR(Y× Z).
(4) (S ◦ R)−1 = R−1 ◦ S−1, where R ∈ BPFR(X×Y) and S ∈ BPFR(Y× Z).

Proof.

(1) The proof is straightforward.
(2) The proof is straightforward.
(3) Let R, S ∈ BPFR(X×Y) and P ∈ BPFR(Y× Z). Suppose R ⊂ S, and let (x, z) ∈ X× Z. Then

(P ◦ R)−(x, z) =
∧

y∈Y[R−(x, y) ∨ P−(y, z)]

≥ ∧
y∈Y[S−(x, y) ∨ P−(y, z)]

[Since R ⊂ S, R−(x, y) ≥ S−(x, y)]

= (P ◦ S)−(x, z).

Similarly, we can prove that (P ◦ R)+(x, z) ≤ (P ◦ S)+(x, z). Furthermore, the proof of the
second part is similar to the first part. Thus, the result holds.

(4) Let R ∈ BPFR(X×Y) and S ∈ BPFR(Y× Z), and let (x, z) ∈ X× Z. Then

[(S ◦ R)−1]−(z, x) = (S ◦ R)(x, z)

=
∧

y∈Y[R−(x, y) ∨ S−(y, z)]

=
∧

y∈Y[(S−1)−(z, y) ∨ (R−1)−(y, x)]

= (R−1 ◦ S−1)−(z, x).

Similarly, we can see that [(S ◦ R)−1]+(z, x) = (R−1 ◦ S−1)+(z, x). Thus, the result holds.

Remark 2. For any BPFRs R and S, S ◦ R 6= R ◦ S, in general.

Let IFR(X) be the set of all intuitionistic fuzzy relations on a set X introduced by Bustince and
Burillo [27]. Then, we have the following result.
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Proposition 4. Let BPFRb(X) = {R ∈ BPFR(X) : R+(x) − R−(x) ≤ 1, ∀ (x, y) ∈ X × X} ∪
{R0b , R1b}, where R0b (resp. R1b ) denotes the bipolar fuzzy empty (resp. whole) relation on BPFb(X) defined
by: for each x ∈ X,

R0b(x) = (−1, 0) (resp. R1b = (0, 1)).

We define two mappings f : BPFRb(X) → IFR(X) and g : IFR(X) → BPFRb(X) as
follows, respectively:

[ f (R)](x, y) = (R+(x, y),−R−(x, y)), ∀R ∈ BPFRb(X), ∀(x, y)x ∈ X× X,

[g(S)](x, y) = (−νS(x, y), µS(x, y)), ∀S ∈ IFR(X), ∀(x, y) ∈ X× X.

Then g ◦ f = 1BPFRb(X), f ◦ g = 1IFR(X).

Proof. The proof is similar to Proposition 3.14 in [23].

Let IVR(X) be the set of all interval-valued fuzzy relations on a set X (see [28]). Then, we have
the following result.

Proposition 5. We define two mappings f : IVR(X) → IFR(X) and g : IFR(X) → IVR(X) as
follows, respectively:

[ f (R)](x, y) = (RL(x, y), 1− RU(x, y)), ∀R ∈ IVR(X), ∀(x, y) ∈ X× X,

[g(S)](x, y) = [µS(x), 1− νS(x)], ∀S ∈ IFS(X), ∀(x, y) ∈ X× X.

Then g ◦ f = 1IVR(X), f ◦ g = 1IFR(X).

Proof. The proof is similar to Lemma 1 in [29].

From Propositions 4 and 5, we have the following.

Corollary 1. We define two mappings f : BPFRb(X) → IVR(X) and g : IVR(X) → BPFRb(X) as
follows, respectively:

[ f (R)](x, y) = [R+(x, y), 1 + R−(x, y)], ∀R ∈ BPFRb(X), ∀(x, y) ∈ X× X,

[g(S)](x, y) = (−1 + SU(x, y), SL(x, y)), ∀S ∈ IVR(X), ∀(x, y) ∈ X× X.

Then, g ◦ f = 1BPFRb(X), f ◦ g = 1IVR(X).

4. Bipolar Fuzzy Reflexive, Symmetric, and Transitive Relations

In this section, we introduce bipolar fuzzy reflexive, symmetric, and transitive relations and
obtain some properties related to them.

Definition 8. The bipolar fuzzy identity relation on X, denoted by IX (simply, I), is a BPFR on X defined as:
for each (x, y) ∈ X× X,

I−X (x, y) =

{
−1 if x = y
0 if x 6= y,

I+X (x, y) =

{
1 if x = y
0 if x 6= y.

It is clear that I = I−1 and Ic = (Ic)−1. Moreover, it is obvious that if IX is the bipolar fuzzy
identity relation on X, then −I−1

X and I+X are fuzzy identity relations on X.

Definition 9. R ∈ BPFR(X) is said to be:
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(i) reflexive, if for each x ∈ X, R(x, x) = (−1, 1), i.e.,

R−(x, x) = −1, R+(x, x) = 1,

(ii) anti-reflexive, if for each x ∈ X, R(x, x) = (0, 0).

From Definitions 8 and 9, it is obvious that R is bipolar fuzzy reflexive if and only if I ⊂ R.
The following is the immediate results of the above definition.
It is clear that R = (R−1, R+) is a bipolar fuzzy reflexive (resp. anti-reflexive) relation on X,

then −R− and R+ are fuzzy reflexive (resp. anti-reflexive) relations on X. Thus, R and S are fuzzy
reflexive (resp. anti-reflexive) relations on X iff (−R, S) or (−S, R) are bipolar fuzzy reflexive (resp.
anti-reflexive) relations on X.

Proposition 6. Let R ∈ BPFR(X).

(1) R is reflexive if and only if R−1 is reflexive.
(2) If R is reflexive, then R ∪ S is reflexive, for each S ∈ BPFR(X).
(3) If R is reflexive, then R ∩ S is reflexive if and only if S ∈ BPFR(X) is reflexive.

The following is the immediate result of Definitions 2, 3, 6, and 9.

Proposition 7. Let R ∈ BPFR(X).

(1) R is anti-reflexive if and only R−1 is anti-reflexive.
(2) If R is anti-reflexive, then R ∪ S is anti-reflexive if and only if S ∈ BPFR(X) is anti-reflexive.
(3) If R is anti-reflexive, then R ∩ S is anti-reflexive, for each S ∈ BPFR(X).

Proposition 8. Let R, S ∈ BPFR(X). If R and S are reflexive, then S ◦ R is reflexive.

Proof. Let x ∈ X. Since R and S are reflexive,

R−(x, x) = −1, R+(x, x) = 1 and S−(x, x) = −1, S+(x, x) = 1.

Thus
(S ◦ R)−(x, x) =

∧
y∈X [R−(x, y) ∨ S−(y, x)]

= [
∧

x 6=y∈X(R−(x, y) ∨ S−(y, x))] ∧ [R−(x, x) ∨ S−(x, x)]
= [

∧
x 6=y∈X(R−(x, y) ∨ S−(y, x))] ∧ (−1∧−1)

= −1,

(S ◦ R)+(x, x) =
∨

y∈X [R+(x, y) ∧ S+(y, x)]
= [

∨
x 6=y∈X(R+ ∧ S+(y, x))] ∨ [R+(x, x) ∧ S+(x, x)]

= [
∨

x 6=y∈X(TR(x, y) ∧ TS(y, x))] ∨ (1∧ 1)
= 1.

Therefore, S ◦ R is reflexive.

Definition 10. Let R ∈ BPFR(X). Then:

(i) R is said to be symmetric, if for each x, y ∈ X,

R(x, y) = R(y, x), i.e., R−(x, y) = R−(y, x) and R+(x, y) = R+(y, x),

(ii) R is said to be anti-symmetric, if for each (x, y) ∈ X× X with x 6= y,

R(x, y) 6= R(y, x), i.e., R−(x, y) 6= R−(y, x) and R+(x, y) 6= R+(y, x).
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From Definitions 9 and 10, it is obvious that R0 is a symmetric and anti-reflexive BPFR, R1 and I
are symmetric and reflexive BPFRs, and Ic is an anti-reflexive BPFR.

The following is the immediate result of Definitions 6 and 10.

Proposition 9. Let R ∈ BPFR(X). Then, R is symmetric iff R = R−1.

Proposition 10. Let R, S ∈ BPFR(X). If R and S are symmetric, then R ∪ S and R ∩ S are symmetric.

Proof. Let (x, y) ∈ X× X. Then, since R and S and are symmetric,

(R ∪ S)−(x, y) = R−(x, y) ∧ S−(x, y) = R−(y, x) ∧ S−(y, x) = (R ∪ S)−(y, x)

and:
(R ∪ S)+(x, y) = R+(x, y) ∨ S+(x, y) = R+(y, x) ∧ S+(y, x) = (R ∪ S)+(y, x).

Thus, R ∪ S is symmetric.
Similarly, we can prove that R ∩ S is symmetric.

Remark 3. R and S are symmetric, but S ◦ R is not symmetric, in general.

Example 2. Let X = {a, b, c}, and consider two BPFRs R and S on X given by the following Tables 6 and 7.

Table 6. R.

a b c

a (−0.4, 0.5) (−0.3, 0.6) (−0.6, 0.3)
b (−0.3, 0.6) (−0.6, 0.7) (−0.2, 0.4)
c (−0.6, 0.3) (−0.2, 0.4) (−0.4, 0.7)

Table 7. S.

a b c

a (−0.6, 0.7) (−0.7, 0.5) (−1, 0.8)
b (−0.7, 0.5) (−0.4, 0.3) (−0.8, 0.6)
c (−1, 0.8) (−0.8, 0.6) (−0.6, 0.7)

Then, clearly, R and S are symmetric. However:

(S ◦ R)+(a, b) = 0.5 6= 0.6 = (S ◦ R)+(b, a).

Thus, S ◦ R is not symmetric.

The following gives the condition for its being symmetric.

Proposition 11. Let R, S ∈ SVNR(X). Let R and S be symmetric. Then, S ◦ R is symmetric if and only if
S ◦ R = R ◦ S.

Proof. Suppose S ◦ R is symmetric. Then
S ◦ R = S−1 ◦ R−1 (by Proposition 9)

= (R ◦ S)−1 (by Proposition 3 (4))
= R ◦ S (by the hypothesis).

Conversely, suppose S ◦ R = R ◦ S. Then
(S ◦ R)−1 = R−1 ◦ S−1 (by Proposition 3 (4))
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= R ◦ S (since R and S and are symmetric)
= S ◦ R (by the hypothesis).

This completes the proof.

The following is the immediate result of Proposition 11.

Corollary 2. If R is symmetric, then Rn is symmetric, for all positive integers n, where Rn = R ◦ R ◦ ...
n times.

Definition 11. R ∈ BPFR(X) is said to be transitive, if R ◦ R ⊂ R, i.e., R2 ⊂ R.

It is clear that if R = (R−, R+) is a bipolar fuzzy transitive relation on X, then −R− and R+ are
fuzzy transitive relations on X. Thus, R and S are fuzzy transitive relations on X iff (−R, S) and
(−S, R) are bipolar fuzzy transitive relations on X.

Proposition 12. Let R ∈ BPFR(X). If R is transitive, then R−1 is also.

Proof. Let (x, y) ∈ X× X. Then
(R−1)−(x, y) = R−(y, x)

≤ (R ◦ R)−(y, x)
=

∧
z∈X [R−(y, z) ∨ R−(z, x)]

=
∧

z∈X [(R−1)−(z, y) ∨ (R−1)−(x, z)]
=

∧
z∈X [(R−1)−(x, z) ∨ (R−1)−(z, y)]

= (R−1 ◦ R−1)−(x, y).
Similarly, we can prove that:

(R−1)+(x, y) ≥ (R−1 ◦ R−1)+(x, y).

Thus, the result holds.

Proposition 13. Let R ∈ BPFR(X). If R is transitive, then so is R2.

Proof. Let (x, y) ∈ X× X. Then
(R2)−(x, y) =

∧
z∈X [R−(x, z) ∨ R−(z, y)]

≤ ∨
z∈X [(R2)−(x, z) ∨ (R2)−(z, y)]

= [(R2)− ◦ (R2)−](x, y).
Similarly, we can see that (R2)−(x, y) ≥ [(R2)− ◦ (R2)−](x, y). Thus, the result holds.

Proposition 14. Let R, S ∈ BPFR(X). If R and S are transitive, then R ∩ S is transitive.

Proof. Let (x, y) ∈ X× X. Then
[(R ∩ S) ◦ (R ∩ S)]−(x, y)
=

∧
z∈X [(R ∩ S)−(y, z) ∨ (R ∩ S)−(z, x)]

=
∧

z∈X [(R−(x, z) ∨ S−(x, z)) ∨ (R−(z, y) ∨ S−(z, y)]
=

∧
z∈X [(R−(x, z) ∨ R−(z, y)) ∨ (S−(x, z) ∨ S−(z, y))]

= (
∧

z∈X [R−(x, z) ∧ R−(z, y)]) ∨ (
∧

z∈X [S−(x, z) ∨ S−(z, y)])
= (R ◦ R)−(x, y) ∨ (S ◦ S)−(x, y)
≥ R−(x, y) ∨ S−(x, y) (since R and S are transitive)
= (R ∩ S)−(x, y).

Similarly, we can prove that:

[(R ∩ S) ◦ (R ∩ S)]+(x, y) ≤ R ∩ S)+(x, y).
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Thus, R ∩ S is transitive.

Remark 4. For two bipolar fuzzy transitive relation R and S in X, R ∪ S is not transitive, in general.

Example 3. Let X = {a, b, c}, and consider two BPFRs R and S in X given by the following Tables 8 and 9.

Table 8. R.

a b c

a (−0.4, 0.5) (−0.3, 0.6) (−0.3, 0.7)
b (−0.3, 0.6) (−0.6, 0.7) (−0.5, 0.4)
c (−0.3, 0.7) (−0.5, 0.4) (−0.6, 0.8)

Table 9. S.

a b c

a (−0.3, 0.7) (−0.2, 0.5) (−0, 2, 0.6)
b (−0.7, 0.5) (−1, 0.3) (−0.2, 0.6)
c (−0.2, 0.6) (−0.2, 0.6) (−0.8, 0.7)

Then, we can easily see that R and S are transitive. Moreover, we have Table 10 as R ∪ S.

Table 10. R ∪ S.

a b c

a (−0.4, 0.7) (−0.3, 0.6) (−0.3, 0.7)
b (−0.7, 0.6) (−1, 0.7) (−0.5, 0.6)
c (−0.3, 0.7) (−0.5, 0.6) (−0.8, 0.8)

Thus, [(R ∪ S) ◦ (R ∪ S)]−(c, a) = −0.5 6≥ −0.3 = (R ∪ S)−(c, a). Therefore, R ∪ S is not transitive.

5. Bipolar Fuzzy Equivalence Relation

In this section, we define the concept of a bipolar fuzzy equivalence class and a bipolar fuzzy
partition, and we prove that the set of all bipolar fuzzy equivalence classes is a bipolar fuzzy partition
and induce the bipolar fuzzy equivalence relation from a bipolar fuzzy partition.

Definition 12. R ∈ BPFR(X) is called a:

(i) tolerance relation on X, if it is reflexive and symmetric,
(ii) similarity (or equivalence) relation on X, if it is reflexive, symmetric, and transitive.

(iii) partial order relation on X, if it is reflexive, anti-symmetric, and transitive.

We will denote the set of all tolerance (resp., equivalence and order) relations on X as BPFT(X) (resp.
BPFE(X) and BPFO(X)).

We can easily see that R = (R−, R+) is a bipolar fuzzy tolerance (resp. similarity and partial
order) relation on X, then −R− and R+ are fuzzy tolerance (resp. similarity and partial order) relations
on X. Furthermore, R and S are fuzzy tolerance (resp. similarity and partial order) relations on X iff
(−R, S) and (−S, R) are bipolar fuzzy tolerance (resp. similarity and partial order) relations on X.

The following is the immediate result of Propositions 6, 10, and 14.
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Proposition 15. Let (Rj)j∈J ⊂ BPFT(X) (resp., BPFE(X) and BPFO(X)). Then,
⋂

Rj ∈ BPFT(X) (resp.,
BPFE(X) and BPFO(X)).

Proposition 16. Let R ∈ BPFE(X). Then, R = R ◦ R.

Proof. From Definition 11, it is clear that R ◦ R ⊂ R.
Let (x, y) ∈ X× X. Then

(R ◦ R)−(x, y) =
∧

z∈X [R−(x, z) ∨ R−(z, y)]
≤ R−(x, x) ∨ R−(x, y)
= −1∨ R−(x, y) (since R is reflexive)
= R−(x, y),

(R ◦ R)+(x, y) =
∨

z∈X [R+(x, z) ∧ R+(z, y)]
≥ R+(x, x) ∧ R+(x, y)
= 1∧ R−(x, y) (since R is reflexive)
= R+(x, y).

Thus, R ◦ R ⊃ R. Therefore, R ◦ R = R.

Definition 13. Let A ∈ BPF(X). Then, A is said to be normal, if:∧
x∈X

A−(x) = −1,
∨

x∈X
A+(x) = 1.

Definition 14. Let R ∈ BPFE(X), and let x ∈ X. Then, the bipolar fuzzy equivalence class of x by R, denoted
by Rx, is a BPFS in X defined as:

Rx = (R−x , R+
x ),

where R+
x : X → [0, 1] and R−x : X → [−, 0] are mappings defined as: for each y ∈ X,

R+
x (y) = R+(x, y) and R−x (y) = R−(x, y).

We will denote the set of all bipolar fuzzy equivalence classes by R as X/R, and it will be called the bipolar
fuzzy quotient set of X by R.

Proposition 17. Let R ∈ BPFE(X), and let x, y ∈ X. Then:

(1) Rx is normal; in fact, Rx 6= 0bp,
(2) Rx ∩ Ry = 0bp iff R(x, y) = (0, 0),
(3) Rx = Ry iff R(x, y) = (−1, 1),
(4)

⋃
x∈X Rx = 1bp.

Proof. (1) Since R is reflexive,

R+
x (x) = R+(x, x) = 1 and R−x (x) = R−(x, x) = −1.

Then,
∨

y∈X R+
x (y) = 1 and

∧
y∈X R−x (y) = −1. Therefore, Rx is normal. Moreover, Rx =

(−1, 1) 6= (0, 0) = 0bp(x). Hence, Rx 6= 0bp.
(2) Suppose Rx ∩ Ry = 0bp, and let z ∈ X. Then

0 = (Rx ∩ Ry)−(z)
= R−x (z) ∨ R−y (z)
= R−(x, z) ∨ R−(y, z) (by Definition 14)
= R−(x, z) ∨ R−(z, y) (since R is symmetric),
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0 = (Rx ∩ Ry)+(z)
= R+

x (z) ∧ R+
y (z)

= R+(x, z) ∧ R+(y, z) (by Definition 14)
= R−(x, z) ∧ R−(z, y) (since R is symmetric).

Thus
0 =

∧
z∈X [R−(x, z) ∨ R−(z, y)]

= (R ◦ R)−(x, y)
= R−(x, y) (by Proposition 16),

0 =
∨

z∈X [(R+(x, z) ∧ R+(z, y)]
= (R ◦ R)+(x, y)
= R+(x, y) (by Proposition 16).

Therefore, R(x, y) = (0, 0).
The sufficient condition is easily proven.
(3) Suppose Rx = Ry, and let z ∈ X. Then, R(x, z) = R(y, z). In particular, R(x, y) = R(y, y).

Since R is reflexive, R(x, y) = (−1, 1).
Conversely, suppose R(x, y) = (−1, 1), and let z ∈ X. Since R is transitive, R ◦ R ⊂ R. Then:

R−(x, y) ∨ R−(y, z) ≥ R−(x, z), R+(x, y) ∧ R+(y, z) ≤ R+(x, z).

Since R(x, y) = (−1, 1), R+(x, y) = 1 and R−(x, y) = −1. Thus:

R−(y, z) ≥ R−(x, z), R+(y, z) ≤ R+(x, z).

Therefore, R−y (z) ≥ R−x (z), R+
y (z) ≤ R+

x (z). Hence, Ry ⊂ Rx.
Similarly, we can see that Rx ⊂ Ry. Therefore, Rx = Ry.
(4) Let y ∈ X. Then

[
⋃

x∈X Rx](y) = (
∨

x∈X R+
x (y),

∧
x∈X R−x (y))

= (
∨

x∈X R+(x, y),
∧

x∈X R−(x, y))
= (R+(y, y), R−(y, y)) = (−1, 1)
= 1bp(y).

Thus, the result holds.

Definition 15. Let Σ = (Aj)j∈J ⊂ BPF(X). Then, Σ is called a bipolar fuzzy partition of X, if it satisfies
the following:

(i) Aj is normal, for each j ∈ J,
(ii) either Aj = Ak or Aj 6= Ak, for any j, k ∈ J,

(iii)
⋃

j∈J Aj = 1bp.

The following is the immediate result of Proposition 17 and Definition 15.

Corollary 3. Let R ∈ BPFE(X). Then, X/R is a bipolar fuzzy partition of X.

Proposition 18. Let Σ be a bipolar fuzzy partition of X. We define
R(Σ) = (R(Σ)+, R(Σ)−) as: for each (x, y) ∈ X× X,

R(Σ)+(x, y) =
∨

A∈Σ

[A+(x) ∧ A+(y)], R(Σ)−(x, y) =
∧

A∈Σ

[A−(x) ∨ A−(y)],

where R(Σ)+ : X× X → [0, 1] and R(Σ)− : X× X → [−1, 0] are mappings.
Then, R(Σ) ∈ BPFE(X).
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Proof. Let x ∈ X. Then, by Definition 15 (iii),

R(Σ)−(x, x) =
∧

A∈Σ

[A−(x) ∨ A−(x)] =
∧

A∈Σ

A−(x) = −1

and
R(Σ)+(x, x) =

∨
A∈Σ

[A+(x) ∧ A−(x)] =
∨

A∈Σ

A+(x) = 1.

Thus, R(Σ) is reflexive.
From the definition of R(Σ), it is clear that R(Σ) is symmetric.
Let (x, y) ∈ X× X. Then

[R(Σ) ◦ R(Σ)]−(x, y)
=

∧
z∈X [R(Σ)−(x, z) ∨ R(Σ)−(z, y)]

=
∧

z∈X [
∧

A∈Σ(A−(x) ∨ A−(z)) ∨∧
B∈Σ(B−(z) ∨ B−(y))]

=
∧

z∈X [(
∧

A∈Σ A−(z) ∨∧
B∈Σ B−(z)) ∨ (A−(x) ∨ B−(y))]

=
∧

z∈X [(−1∨−1) ∨ (A−(x) ∨ B−(y))] (since A and B are normal)
=

∧
z∈X [A−(x) ∨ B−(y)]

= R(Σ)−(x, y).
Similarly, we can prove that [R(Σ) ◦ R(Σ)]+(x, y) = R(Σ)+(x, y). Thus, R(Σ) is transitive.

Therefore, R(Σ) ∈ BPFE(X).

Proposition 19. Let R, S ∈ BPFE(X). Then, R ⊂ S iff Rx ⊂ Sx, for each x ∈ X.

Proof. Suppose R ⊂ S, and let x ∈ X. Let y ∈ X. Then, by the hypothesis,

R−x (y) = R−(x, y) ≥ S−(x, y) = S−x (y),

R+
x (y) = R+(x, y) ≤ S+(x, y) = S+

x (y).

Thus, Rx ⊂ Sx.
The converse can be easily proven.

Proposition 20. Let R, S ∈ BPFE(X). Then, S ◦ R ∈ BPFE(X) iff S ◦ R = R ◦ S.

Proof. Suppose S ◦ R = R ◦ S. Since R and S are reflexive, by Proposition 8, S ◦ R is reflexive. Since R
and S are symmetric, by the hypothesis and Proposition 11, S ◦ R is symmetric. Then, it is sufficient to
show that S ◦ R is transitive:

(S ◦ R) ◦ (S ◦ R) = S ◦ (R ◦ S) ◦ R (by Proposition 3 (1))
= S ◦ (S ◦ R) ◦ R)
= (S ◦ S) ◦ (R ◦ R)
⊂ S ◦ R.

Thus, S ◦ R is transitive. Therefore, S ◦ R ∈ BPFE(X).
The converse can be easily proven.

Proposition 21. Let R, S ∈ BPFE(X). If R ∪ S = S ◦ R, then R ∪ S ∈ BPFE(X).

Proof. Suppose R ∪ S = S ◦ R. Since R and S are reflexive, by Proposition 6 (2), R ∪ S is reflexive.
Since R and S are symmetric, by the hypothesis and Proposition 10, R ∪ S is symmetric. Then, by the
hypothesis, S ◦ R is symmetric. Thus, by Proposition 11, S ◦ R = R ◦ S. Therefore, by Proposition 20,
S ◦ R ∈ BPFE(X). Hence, R ∪ S ∈ BPFE(X).
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6. Relationships between a Bipolar Fuzzy Relation and Its Level Set

Each member of [−1, 0] × [0, 1] will be called a bipolar point. We define the order ≤ and the
equality = between two bipolar points as follows: for any (a, b), (c, d) ∈ [−1, 0]× [0, 1],

(i) (a, b) ≤ (c, d) iff a ≥ c and b ≤ d,
(ii) (a, b) = (c, d) iff a = c and b = d.

Definition 16. Let R ∈ BPFR(X×Y), and let (a, b) ∈ [−1, 0]× [0, 1].

(i) The strong (a, b)-level subset or strong (a, b)-cut of R, denoted by [R]∗(a,b), is an ordinary relation from X
to Y defined as:

[R]∗(a,b) = {(x, y) ∈ X×Y : R−(x, y) < a, R+(x, y) > b}.

(ii) The (a, b)-level subset or (a, b)-cut of R, denoted by [R](a,b), is an ordinary relation from X to Y defined
as:

[R](a,b) = {(x, y) ∈ X×Y : R−(x, y) ≤ a, R+(x, y) ≥ b}.

Example 4. Consider the BPFR R in Example 1. Then
[R](−0.3,0.8) = {(x, y) ∈ X× X : R+(x, y) ≥ 0.8, R−(x, y) ≤ −0.3} = {(a, c), (b, a)},
[R]∗(−0.3,0.8) = {(x, y) ∈ X× X : R+(x, y) > 0.8, R−(x, y) < −0.3} = φ,
[R](−0.4,0.5) = {(a, a), (a, b), (a, c), (c, a)},
[R]∗(−0.4,0.5) = {(a, c), (c, a)}.

Proposition 22. Let R, S ∈ BPFR(X×Y), and let (a, b), (a1, b1), (a2, b2) ∈ [−1, 0]× [0, 1].

(1) If R ⊂ S, then [R](a,b) ⊂ [S](a,b) and [R]∗((a,b) ⊂ [S]∗(a,b).

(2) If (a1, b1) ≤ (a2, b2), then [R](a2,b2
) ⊂ [R](a1,b1)

and [R]∗(a2,b2)
⊂ [R]∗(a1,b1)

.

Proof. The proofs are straightforward.

Proposition 23. Let R ∈ BPFR(X×Y). Then:

(1) [R](a,b) is an ordinary relation from X to Y, for each (a, b) ∈ [−1, 0]× [0, 1],
(2) [R]∗(a,b) is an ordinary relation from X to Y, for each (a, b) ∈ (−1, 0]× [0, 1),

(3) [R](a,b) =
⋂
(c,d)<(a,b)[R](c,d), for each (a, b) ∈ [−1, 0)× (0, 1],

(4) [R]∗(a,b) =
⋃
(c,d)>(a,b)[R]∗(c,d), for each (a, b) ∈ (−1, 0]× [0, 1).

Proof. The proofs of (1) and (2) are clear from Definition 16.
(3) From Proposition 22, it is obvious that {[R](a,b) : (a, b) ∈ [−1, 0]× [0, 1]} is a descending family

of ordinary relations from X to Y. Let (a, b) ∈ (0, 1]× [−1, 0) Then, clearly, [R](a,b) ⊂
⋂
(c,d)<(a,b)[R](c,d).

Assume that (x, y) /∈ [R](a,b). Then, R+(x, y) < b or R−(x, y) > a. Thus, there is (c, d) ∈ [−1, 0)× (0, 1]
such that:

R+(x, y) < d < b or R−(x, y) > c > a.

Therefore, (x, y) /∈ [R](c,d), i.e., (x, y) /∈ ⋂
(c,d)<(a,b)[R](c,d). Hence:

⋂
(c,d)<(a,b)

[R](c,d) ⊂ [R](a,b).

Therefore, the result holds.
(4) Furthermore, from Proposition 22, it is obvious that {[R]∗(a,b) : (a, b) ∈ [−1, 0] × [0, 1]} is

a descending family of ordinary relations from X to Y. Let (a, b) ∈ (−1, 0] × [0, 1). Then, clearly,
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[R]∗(a,b) ⊂
⋃
(c,d)>(a,b)[R]∗(c,d). Assume that (x, y) /∈ [R]∗(a,b). Then, R+(x, y) ≤ b or R−(x, y) ≥ a. Thus,

there exists (c, d) ∈ (−1, 0]× [0, 1) such that:

R+(x, y) ≤ b < c or R−(x, y) ≥ a > d.

Thus, (x, y) /∈ [R](c,d), i.e., (x, y) /∈ ⋃
(c,d)>(a,b)[R]∗(c,d). Therefore,

⋃
(c,d)>(a,b)

[R]∗(c,d) ⊂ [R]∗(a,b).

Hence, [R]∗(a,b) =
⋃
(c,d)>(a,b)[R]∗(c,d).

Definition 17. Let X, Y be non-empty sets; let R be an ordinary relation from X to Y; and let RB ∈ BPFR(X×
Y). Then, RB is said to be compatible with R, if R = S(RB), where S(RB) = {(x, y) : R+

B (x, y) >

0, R−B (x, y) < 0}.

Example 5. (1) Let X, Y be non-empty sets, and let φX×Y be the ordinary empty relation from X to Y. Then,
clearly, S(R0) = φX×Y. Thus, R0 is compatible with φX×Y.

(2) Let X, Y be non-empty sets, and let X×Y be the whole ordinary relation from X to Y. Then, clearly,
S(R1) = X×Y. Thus, R1 is compatible with X×Y.

From Definitions 9, 10, and 16, it is clear that R ∈ BPFR(X) is reflexive (resp. symmetric),
then [R](a,b) and [R]∗(a,b) are ordinary reflexive (resp. symmetric) on X, for each (a, b) ∈ [−1, 0]× [0, 1].

Proposition 24. Let R ∈ BPFR(X), and let (a, b) ∈ [−1, 0]× [0, 1]. If R is transitive, then [R](a,b) and
[R]∗(a,b) are ordinary transitive on X.

Proof. Suppose R is transitive. Then, R ◦ R ⊂ R, and let (x, z) ∈ [R](a,b) ◦ [R](a,b). Then, there exists
y ∈ X such that (x, z), (z, y) ∈ [R](a,b). Thus:

R+(x, z) ≥ b, R−(x, z) ≤ a and R+(z, y) ≥ b, R−(z, y) ≤ a.

Therefore, R+(x, z) ∧ R+(z, y) ≥ b, R−(x, z) ∨ R−(z, y) ≤ a. Since R ◦ R ⊂ R,

R+(x, y) ≥ R+(x, z) ∧ R+(z, y), R−(x, y) ≤ R−(x, z) ∨ R−(z, y).

Hence, R+(x, y) ≥ b, R−(x, y) ≤ a, i.e., (x, y) ∈ [R](a,b). Therefore, [R](a,b) is ordinary transitive.
The proof of the second part is similar.

The following is the immediate results of Definitions 9, 10, and 16 and Proposition 24.

Corollary 4. Let R ∈ BPFE(X), and let (a, b) ∈ [−1, 0]× [0, 1]. Then, [R](a,b) and [R]∗(a,b) are the ordinary
equivalence relation on X

7. Conclusions

This paper dealt with the properties of bipolar fuzzy reflexive, symmetric, and transitive relations
and bipolar fuzzy equivalence relations. In particular, we defined a bipolar fuzzy equivalence class
of a point in a set X modulo a bipolar fuzzy equivalence relation R and a bipolar fuzzy partition of a
set X. In addition, we proved that the set of all bipolar fuzzy equivalence classes is a bipolar fuzzy
partition and induced the bipolar fuzzy equivalence relation by a bipolar fuzzy partition. Furthermore,
we defined the (a, b)-level set of a BPFR and investigated some relationships between BPFRs and their
(a, b)-level set. Then, we could see that bipolar fuzzy relations generalized fuzzy relations.
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In the future, we expect that one will study bipolar fuzzy relations on a fixed BPFS A and deal
with a decomposition of a mapping f : X → Y by bipolar fuzzy relations. Furthermore, we think that
the bipolar fuzzy relation can be applied to congruences in a semigroup, algebras, topologies, etc.
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