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Abstract: The purpose of this paper is to introduce the split combination of variational inclusion
problem which combines the concept of the modified variational inclusion problem introduced
by Khuangsatung and Kangtunyakarn and the split variational inclusion problem introduced by
Moudafi. Using a modified Halpern iterative method, we prove the strong convergence theorem
for finding a common solution for the hierarchical fixed point problem and the split combination of
variational inclusion problem. The result presented in this paper demonstrates the corresponding
result for the split zero point problem and the split combination of variation inequality problem.
Moreover, we discuss a numerical example for supporting our result and the numerical example
shows that our result is not true if some conditions fail.
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1. Introduction

Throughout this article, we let H be a real Hilbert spaces with inner products (-, -) and norms
|| - || and let C be a nonempty closed convex subset of a real Hilbert spaces H.

Definition 1. Let C be a nonempty subset of a real Hilbert spaces H and Z : C — C be a self mapping. Z is
called a nonexpansive mapping if

|Zx — Zy|| < ||[x —yl||, forallx,y € C.
Z is called a firmly nonexpansive mapping if
|Zx — Zy||? < (x —y, Zx — Zy), forall x,y € C.

A mapping W : C — H is called a-inverse strongly monotone [1], if there exists a positive real
number & such that
(x —y, Wx — Wy) > a|Wx — Wy||%,Vx,y € C. 1)

If W : C — H is a-inverse strongly monotone, then W is monotone mapping, that is,
(Wx —Wy,x—y) >0, Vx,y € H.

Remark 1. (i) If &« = 1 in Equation (1), then W is firmly nonexpansive mapping.
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Fori=1,2,..,N,let A; : H— H be a single-valued mapping and M : H — 2 be a multi-valued
mapping, from the concept of variational inclusion problems, Khuangsatung and Kangtunyakarn [2]
introduced the problem of finding x € H such that

0 € =N a;Aix + Mx, )

for all 4; € (0,1) with Zf\il a; = 1 and 6 is a zero vector. This problem is called the modified variational
inclusion. The set of solutions of Equation (2) is denoted by VI(H, Zfil a;A;, M). If we set A; = B for
i =1,2,..., N then Equation (2) reduces to 6 € Bx + Mx, which is the variational inclusion problem.
The set of solution of variational inclusion problem is denoted by VI(H, B, M).

The variational inclusion problems are extensively studied in mathematical programming, optimal
control, mathematical economics, etc. In recent years, considerable interest has been shown in
developing various extensions and generalization of the variational inclusion problem; for instance [3,4]
and reference therein.

The operator M is called a maximal monotone [5], if M is monotone, ie., (# —v,x —y) > 0,
wherever u € M(x), v € M(y) and the graph G(M) of M (thatis, G(M) := {(x,u) €e Hx H : u €
M(x)}) is not property contained in the graph of any other monotone operator.

Let resolvent operator JY1 : H — H be defined by J¥(x) = (I + AM)~*(x), for all x € H, where M
is a multi-valued maximal monotone mapping, A > 0 and I is an identity mapping.

Let T : C — C be a mapping. A point x € C is called a fixed point of T if Tx = x. The set of
fixed points of T is denoted Fix(T) = {x € C : Tx = x}. Fixed point problem is an important area
of mathematical analysis. This problem applies about the solution in many problem in Hilbert space
such as nonlinear operator equation, variational inclusion problem, etc.; for instance [2-18].

Khuangsatung and Kangtunyakarn [2] proposed the following iterative algorithm:

w1, 1 € H,
YN bi¥i(zny) + (Y — zn, 20 —wa) >0, Vy € C,

7,

Wyt1 = Qnpl + Prwn + ')’nIﬁA(I - /\le'\il a;A;)wy + Ha (I — pn(I = S))wn + Onzn, Y > 1,

where S : H — H is a k-strictly pseudononspreading mapping (i.e., if there exists x € [0,1) such that
|Su— So||2 < |lu—v||?> +«||(I — S)u — (I — S)v||> + 2(u — Su,v — Sv), Vu,v € H) and under certain
assumptions of ¥; : C x C — Ris a bifunction for alli = 1,2, ..., N, they proved strong convergence
theorem for solving the modified variational inclusion problem under some suitable conditions of
(o, (B}, v}, {1}, {60} and {ou}-

Over the decades, there are many mathematicians interested in studying the variational inequality
problem, which is one of the important problems. The methods used to solve this problem can
be applied for other solutions such as physics, economics, finance, optimization, network analysis,
medical images, water resourced and structural analysis. The set of solution of the variational inequality
problem is denoted by

VI(C,A) ={ueC:(v—u,Au) > 0},

forallv € Cand A : C — H is a mapping.

Many iterative methods have been developed for solving variational inequality problem, see,
for instance [7,8].

By using the concept of the variational inequality problem, Moudafi and Mainge [9] firstly
introduced hierarchical fixed point problem for a nonexpansive mapping T with respect to another
nonexpansive mapping S on H: Find x* € Fix(T) such that

(Sx* —x*,x —x*) <0, Vx € Fix(T), 3)
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where S : H — H is a nonexpansive mapping. It is easy to see that Equation (3) is equivalent to the
following fixed point problem: Find x* € H such that

X" = Prjy() 0 Sx%, 4

where Pr;,(7) is the metric projection of H onto Fix(T). The solution set of Equation (3) is denoted by
®={x*€ H: (Sx*—x*,x—x*) <0, Vx € Fix(T)}. It is obvious that ® = VI(Fix(T),I — S). Note
that Equation (3) covers monotone variational inequality on fixed point sets, minimization problem,
etc. Many iterative methods have been developed for solving the hierarchical fixed point problem in
Equation (3), see example [9-11].

By using the concept of Krasnoselski-Mann iterative algorithm, Moudafi [10] introduced iterative
scheme (5) for nonexpansive mapping S, T on a subset C of Hilbert space:

xg € C, (5)
X1 = (1 —ay)xy + an (0, Pxy + (1 —0yy)Txy), ¥ > 0.

He proved the weak convergence theorem of the sequence {x, }, where {«, },{0} C (0,1) satisfies

() %o < +oo,
(ii) E;,':% An (1 - ‘Xn) = +oo,
(i) limy-, oo Pl — g,

Let Hy and H be two real Hilbert spaces and C, Q be a nonempty closed convex subset of a real
Hilbert spaces Hy and Hj , respectively. Let A : H; — Hj be a bounded linear operator. Censor and
Elfving [14] introduced the split feasibility problem (SEP) which is to find a point x € C and Ax € Q.
Many authors have studied this concept of SEP to modified their problem, see example [12-15].

In 2010, Censor, Gibali and Reich [13] introduced the split variational inequality problem which
relies on the split feasibility problem and thus created the iterative algorithm for solving a strong
convergence theorem of the split variational inclusion problem; more detail [13].

The split monotone variational inclusion problem, which consists of special cases, which is
being used in practice as a model in the intensity-modulated radiation therapy treatment planning,
the modeling of many inverse problems, and other problems; see for instance [11-15].

Foreveryi=1,2,..,N. Let A; : H| — Hj, B; : H)p — Hj be mappings and M4 : H; — 2M1 and
Mp : Hy — 2H2 be multi-value mappings. Inspired and motivated by Moudafi [12] and Khuangsatung
and Kangtunyakarn [2], we define the split combination of the variational inclusion problem (SCVIP) which
is find x* € Hj such that

N
O, € Y a;iAix* + Max*, (6)
i=1
and
N
y* = Ax* such that 0, € ) b;Biy* + Mpy”, V)
i=1
where A : H; — H, is a bounded linear operator and YN ; a; = YN, b; = 1.

The set of all the solutions for Equations (6) and (7) are denoted by QO = {x €
VI(Hy, YN a;A;, My) : Ax € VI(Ha, YN, b;B;, M3)}.

Ifweset Aj = Aand B; = Bforalli = 1,2, ..., N then SCVIP reduces to the split monotone variational
inclusion problem (SMVI), which is,

find x* € Hy such that0 € A(x*) + M (x*), (8)

and such that
y* = Ax* € Hpsolves0 € B(y*) + Mg(y*), )



Mathematics 2019, 7, 1037 4 of 26

introduced by Moudafi [12]. The set of all these solutions for Equations (8) and (9) are denoted by
O ={x* € VI(Hy, f,By): Ax* € VI(H,4,B2)}.

Very recently, Kazmi et al. [11] proved the strong convergence theorem under suitable condition
of parameters for solving the hierarchical fixed point problem and SMVI by using hybrid iterative
method as follows:

x0€C,Cy=C;

uy = (1 —ay)xy + anPe(04Sxy + (1 — 03) Wixy);

Zn = ]/1\\/11(1 — Af)(un);

wy = ])]:42(1 — Q) (Azy);

Yn = zn + YA (Wn — Azy);

Co={z€C: lyn—2lI* < (1 = anon) [ xn — 2I|* + @00 [|Sxy — z[|*};
Qn{zeC:{xy,—zx—xy) >0};

Xp+1 = PcannxO,n > 0.

(10)

where M; : H; — 2™, M, : Hy — 252 are multi-valued maximal monotone operators, f : C — Hj
is 61-inverse strongly monotone mapping, ¢ : Q — Hj is 6,-inverse strongly monotone mapping,
{T;}Y, : C — Cis a finite family of nonexpansive mappings and W, is a W-mapping generated by
Ty, Ty, ..., Tnand Ay 1, Ao, ..., Ay v for all m € NU {0}.

Based on the results mentioned above, we give our theorem for SCVIP and some important results
as follows:

(i) We first establish Lemma 8 which shows the equivalence between SCVIP and fixed point problem
of nonexpansive mapping under suitable conditions on our parameters. Further, we give
some example to support Lemma 8 and the example shows that Lemma 8 is not true if some
condition fails.

(ii) We establish a strong convergence theorem of the sequences generated by the modified Halpern
iterative method for finding a common solution of hierarchical fixed point problem for a
nonexpansive mapping and SCVIP.

(iii) We apply our main result to obtain a strong convergence theorem of the sequences generated by
the modified Halpern iterative method for finding a common solution of hierarchical fixed point
problem for a nonexpansive mapping and split combination of variational inequality problem
and a strong convergence theorem for finding a common solution of hierarchical fixed point
problem for nonexpansive mapping and split zero point problem.

(iv) We give some illustrative numerical examples to support our main result and our examples show
that our main result is not true if some conditions fail.

2. Preliminaries

In this paper, we denote weak and strong convergence by the notations '—" and '—’, respectively.
We recall some concepts and results needed in the sequel.

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Then for any
x € H, there exists a unique nearest point in C, denoted by Pcx, such that

[l = Pex|| < [lx =yl vy € C. 11

The mapping Pc is called the matric projection of H onto C. It is well known that Pc is
nonexpansive and satisfies

(x —y, Pcx — Pey) > ||Pcx — Pey|)?, Vx € H. (12)
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Moreover, Pcx is characterized by the fact Pcx € C and
(x = Pcx,y — Pcx) <0, Yy € C, (13)

which implies that
lx = ylI* > f|x — Pex|® + [ly — Pex|?, Vx € H, y € C. (14)

Lemma 1 ([4]). Let {an}, {cn} C R" {a,} C (0,1) and {b,} C R be sequences such that
aps1 = (1 —ay)an + by + cu, foralln > 0.

Assume Y ;> ¢y < oo. Then the following results hold:

(i) if by < a,C where C > 0, then {ay} is a bounded sequence,
(ii) if Y an = oo and limsup,, ., 2~ by <0, then limy, 00 ay = 0.

Lemma 2 ([19]). Let E be a uniformly convex Banach space, C a nonempty closed convex subset of E, and S :
C — C a nonexpansive mapping with Fix(S) # @. Then 1 — S is demiclosed at zero.

Lemma 3 ([4]). Let u € H be a solution of variational inclusion if and only if u = JM(u — ABu), VA > 0, i.e.,
VI(H,B, M) = Fix(JY(I - AB)), YA > 0.

where B : H — H is a single-valued mapping. Further, if A € (0,2a], then VI(H, B, M) is a closed convex
subset in H.

Lemma 4 ([4]). The resolvent operator ™ associated with M is single-valued, nonexpansive for all A > 0 and
1-inverse strongly monotone.

Lemma 5 ([2]). Let H be a real Hilbert space and let M : H — 21 be a multi-valued maximal monotone
mapping. For every i = 1,2,..,N, let A; : H — H be w;-inverse strongly monotone mapping with j =
min;_1,  n{a;} and NN, VI(H, A;, M) # @. Then

N N
VI (H,ZaiAi, M) = VI(H, A, M),

i=1 i=1

where Zfil a;=1and 0 < a; <1 foreveryi =1,2,.., N. Moreover, ]/J\VI(I — Azlzil a;A;) is a nonexpansive
mapping, for all 0 < A < 27.

Example 1. Let H =R. Foreveryi=1,2,..,N,let A; : R — R deﬁne by A x =D (i+ 1)f0r allx e H
and M : R — 2% be defined by Mx = {1} forall x € R. Let a; = for alli =1,2,..,N. Then
VI(H, L%, aiAi, M) = (L, VI(H, Aj, M),

N4N

Proof of Solution. Since A;x = ﬂ (i + 1), we have A; is %-inverse strongly monotone mapping.

By definition of a; and A;, we have
N N N ix .
L nAx = ) (5 g )4 ; N4N (3 +E+1).

From Lemma 5, we have VI(H, YN, a;A;, M) = NN, VI(H, A;, M) = {—4}. O
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Example 2. Let H=R. Foreveryi =1,2,..,N, let A; : R — R define by Ajx = % + (i +1) forall x € H
and M : R — 2R be defined by Mx = {1} forall x € R. Let a; = % + %(4%, +1) foralli =1,2,...,N.
Then VI(H, YN, a;A;, M) # NN, VI(H, A;, M).

Proof of Solution. Since A;x = g (i+1), we have A, is %-inverse strongly monotone mapping.

By definition of 4; and A;, we have

N N N .
3., 1.1 3. 1.1 ix
l;az iX 1:21(4 +N(4N ; 4 N 4N+ ))(4 +(l+1))
Then ﬂzzil VI(H,A;,M) = {—4} and VI(H,Zfil a;A;, M) # {—4}. It implies that

VI(H, YN, a;A;, M) # NN, VI(H, A;, M) because YN ; 2, =2. O

Remark 2. Example 1 shows that Lemma 5 is true where Zfil a; = 1 and Example 2 shows that Lemma 5 is
not true if a condition fails, that is YN ja; # 1.

Lemma 6 ([17]). Let C C H be a nonempty closed and convex set and let T : C — H be a nonexpansive
mapping. Then Fix(T) is closed and convex.

Lemma 7. Let Hy and Hy be Hilbert spaces. Let My : H] — 2 be a multi-valued maximal monotone
mapping and Mg : Hy — 2M2 be a multi-valued maximal monotone mapping. Let A : H; — Hj be a
bounded linear operator. For everyi = 1,2,...,N, let A; : Hi — Hj be a;-inverse strongly monotone with
Ha = mini_1o n{a;} and B; : Hy — H, be ;-inverse strongly monotone with yp = min;_1, _N{Bi}-
For each x,y € Hy, then

IIJMAI—/\AZaA )(x — yA*(I ]MBIfABZbB ))Ax)
i=1 i=1

MAIf)LAZaA )(y — yA*(I ]MBIf/\BZbB )Ay) |2
i=1 i=1

< lx - yl\zwufﬂ)lluf}mIfABZbB A%(I#MBI—ABZbB )Ayl?,
i=1 i=1

where A € (0,2n4), Ag € (0,2175), YN a; = YN, b; = Land y € (0, 1) with L is the spectral radius
of A*A

Proof. Let x,y € H;. Consider

IUMAI—/\AZaA )(x — yA*(I ]MBI—/\BZbB ))Ax)
i=1 i=1

MA (I—Aa ZaA (y —yA*(I ]/QiB(I—/\B sz‘Bi))Ay)Hz
i=1 i=1

<[l(x—y)— (A (I—JMBI—ABDB Ax — A*(I JMBI—ABZbB )Ay)|[?
i=1 i=1

= lx—y|?—2y(x—y, A (I—]MBI—/\BZbB Ax— A (I—]MBI—ABZbB ))Ay)
i=1 i=1

+ 92| A*(1 ]MBI—/\BZbB Ax — A*(I ]MBI—ABZbB )Ay|)?
i=1 i=
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< Jlx = ylI* + 27 (Ay — Ax, (I = T35 ( I—ABZbB — (I =Ty I—ABZZJB ) Ay)
=1

+ 2L = T35 ( I—/\BZbB ))Ax — (I =3 ( I—ABZbB ) Ay|[?
i=1 i=1

= [lx =yl + 27{ Ay — Ax + [} 1¥( I—ABZZJB )Ax — 0B ( I—ABEbB
i=1

—|—]MBI—ABZbB )Ay — ]A I—ABZbiBi)Ay,(I— MBI—/\BZZJB
i=1 i=1

— (I =Ty I—/\BZbB ) Ay)
=1

+92L|(I - MBI—/\BZbB Ax—(I—]MBI—ABZbB ) Ay|)?
i=1 i=1

:||x—y||2+2'y{<]A I—/\BZbB Ay — MBI—/\BZbB
i=1

(T =T ( I—ABZbB ))Ax — (I ¥ ( I—/\BZbB ) Ay)
i=1 i=1

<(1—]MBI—ABZbB Ax—(l—]MBI—ABZbB ) Ay,
i=1 i=1

(1o I—ABEbB ))Ax — (I — I3 I—/\BZbB )4y)|
i=1 i=1

+ 2L (I - MBI—/\BZbB Ax—(I—]MBI—/\BZbB )Ay|)?
i=1 i=1

1
< =yl +2y S - 3 (1= As Y 0B Ax — (1= M0 (1 — Ag 3 bB) Ayl
i=1 i=1

[ el I—ABZbB ) Ax — (1— I35 ( I—ABZbB Ay||}
i=1 i=

+ 2L (I - MBI—/\BZbB Ax—(I—]MBI—/\BZbB )Ay|)?
i=1 i=1

= x=ylP =y =2L)[I(I -] MBI—ABZbB Ax—(I—JMBI—ABZbB ) Ay|>.
i=1 i=1

Hence

173 I—AAZaA (x — yA*(I ]MBIfABZbB ))Ax)
i=1 i=1

MAI—AADA )y — yA*(I JQA;(PABZbiBi))Ay)\F
i=1 i=1

<lx = yl2 = y(L=AL) (T = J3B (1= Ap X biBi)) Ax — (I = J{B(I— Ag Y b;By) Ay |2 O

We introduce Lemma 8 which shows an association between the SCVIP and the fixed point
problem of nonexpansive mapping under suitable conditions on our parameters. Furthermore, we
give examples for supporting Lemma 8 and the examples shows that Lemma 8 is not true if parameters
are not satisfied.
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Lemma 8. Let Hy and Hy be Hilbert spaces. Let My : Hy — 21 be a multi-valued maximal monotone
mapping and Mg : Hy — 2M2 be a multi-valued maximal monotone mapping. Let A : H; — Hj be a
bounded linear operator. For everyi = 1,2,...,N, let A; : Hi — Hj be a;-inverse strongly monotone with
o = mini_1o n{a;} and B; : Hy — Hj be p;-inverse strongly monotone with g = min;—1,__N{Bi}-
Suppose that Q) # @. Then the following are equivalent:

i x*eQ
(i) x* = VAT = Aa TN aiAg) (v — y A (I = JE(1 = Ag L, b;B;)) AxY),

where Ay € (0,2n4), Ag € (0,2175), LN a; = YN, b; = Land v € (0, 1) with L is the spectral radius
of A*A

Proof. Let the condition holds.
(i) = (ii) Let x* € ), we have x* € VI(Hl,ZI 1 a;A;, My) and Ax* € VI(HZ,):I 1 biBi, Mp).
From Lemma 3, we have x* € le(]A (I—-AAYN, a;4;)) and Ax* € sz(]MB(I — A YN, b:By)),

which implies that x* _I/\ (I—AAZ:Z 14;A;)x* and Ax* —]MB(I—/\leNle)Ax
By x* —])L AT —Aa YN a;A;)x* and Ax* :]MB(I—)\BZi:1 ;B;)Ax*, we have

N N
VAT = Aa Y @A) (x" = YA (I = Y (I = Ap ) _ b;B;)) Ax”)
i=1 i=1

= I I—AAEaA Xt — YA (Ax* = T ( I—/\BZbB )Ax*)
i=1 i=1

= I I—AAZaA
i=1

=x*.

It implies that

]MAI—AAZaA (x* — yA*(I ]MBI—ABZbB ))Ax*) = (15)
i=1 i=1

(ii) = (i) Let ]/\ Al — Ay Zl 1 i A) (0" — yA (I — ]MB(I — Ap Zfil b;B;))Ax*) = x* and
letw € Q.

We will show that I — Az Zfil a;A;jand I — Ap Efil b;B; are nonexpansive, foralli =1,2,...,N.

Since A; : C — H be a;-inverse strongly monotone mapping with 74 = min;—1, _n{«;} and
Aa € (0,2n74), we have

N N
I(I=Aa Y aiAj)x — (T —An Y a; Ayl
i=1 i=1

N N
=llx—yl* =244 Y ai(x —y, Aix — Aiy) + A5 Y ail| Aix — Ay?
=1 i=1

N N
<lx =yl =244 Y mil| Aix — Ay||? + A% Y ai]| Aix — Ay|)?
= =

N N
<lx =yl =2Aan4 Y aillAix — Ayl|* + A% Y ail| Aix — Ay|?
= =

N
= lx—ylP+Aa Y ai(Aa —214)|| Aix — Ay|]?
=

< Jlx — %
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Thus I —Au Zfil a;A; is a nonexpansive mapping, for all i = 1,2,.., N. By using the same
proof, we obtain that I — Ap Zfil b;iB;, for all i = 1,2,..,N is a nonexpansive mapping and
]MB (I — A TN, b;B;) is nonexpansive mapping.

From w € Q and (i) = (ii), we have ]ﬁB(I — A YN, bB)Aw = Aw and ]ﬁA(I -
A X A (w — YA (1= [P (1= Ap T b;By) Aw) = w.

From Lemma 7 and ]/\B (I—Ap Zfil b;B;) Aw = w, we have

| x* w\|2f||]MAI—/\A2uA (x* — yA*(I ]MBI—/\BZbB )) Ax*)

i=1 i=1
N
—JUAT = Ax Y aiA)) (w — YA (T = T (T = A ZbB ))Aw)||?
A Y B
i=1 i=1

< lx* = > = (1 =y L) [ (I = 2 (1 = Ap ZbiBi))Ax
i=1

— (I =Ty I—ABZbB )) Awl|?
i=1

N
= [l¥" = w[* =y (1 = L) | (I = J32 (1 — Ap ) biBi)) Ax"|| (16)

i=1

Applying Equation (16), we have

N
Ax* € Fix(]f\\gB(I — A Y_b:B))). (17)
i=1

From Lemma 5, we have

N
Ax* € VI <H1, ) b;B;, MB> ) (18)

i=1

From the definition of x* and Equation (17), we have

N
x* = MA (I—Ag ZaA x*—yA*(I ]ﬁB(I—ABZbiBi))Ax*)
i=1 i=1

= MA I—)\AZaA
i=1

From Lemma 5, we have
N
x*eVI <H2, ZuiAir MA> . (19)
i=1

From Equations (18) and (19), we have x* € 0. O

Example 3. Let H; = Hy = R. Foreveryi =1,2,...,N, let A; : R — R define by Aijx = % + (i + 1) for
all x € Hy and B; : R — Rodefine by Biy = 4 + (i+1) forally € Hy. Let My : R — 2% be defined by
Mpx = {3} forall x € Rand Mp : R — 2R be defined by Mpx = {4} for ally € R. Let Ax = x, forall
x €R Leta; = 3+ Ay and by = 2 + Ay foralli = 1,2,..,N. Then [y'A (I = Ay LN, a;A4;) (x*

vA*(l—IiiB(I—ABzi:l ; z>)Ax>——4,



Mathematics 2019, 7, 1037 10 of 26

Proof of Solution. Itis easy to observe A; is %—inverse strongly monotone mapping and B; is %—inverse
strongly monotone mapping. By definition of A;, B; and a;, b;, we have

N N N ;

3 1 3 1 ix
Y aiAix =) (= + —)Aix =) (5 +—x)(=+
Laifiv =)+ ) Ain = LG ) (g

(i+1)),

and N N
2 1 1 i .
biBy = Y57 + ) B = 2<3l 1w (5 + i+ 1)),
1=

M=

=1

Then Q = {—4}. From definition of A, we have L = 1. Choose A4 = &, A = 4 and y = 11—0.
From Lemma 8, we have ])\ AT =2 XN 3 A) (xF — yA* (I ]MB(I — AN, b;B))Ax*) = —4. O

Example 4. Let Hy = Hy = R. Foreveryi = 1,2,..,N, let A; : R — R define by Ajx = % +(i+1)
forall x € Hyand B; : R — R define by Bjy = %y—t—(i—i-l)forally € Hy. Let My : R — 2R
be defined by Max = {%} forall x € R and MB R — 2R pe deﬁned by Mpx = {4} forall y €
R. Let Ax = x, forall x € R. Let a; = 3 + 4N and b; = 2 + 3N foralli = 1,2,..,N. Then
IMA(I — A XN @A) (xF — yA(T ]MB(I —Ap XN, b;B;))Ax* ) =x* forall x* € R.

Proof of Solution. Itis easy to observe A; is %—inverse strongly monotone mapping and B; is %—inverse
strongly monotone mapping. By definition of A;, B; and a;, b;, we have

N N ix
3 —+ NiN)Ax— 2(3 +ﬁ)(—+(z’+1)),

and
N i
ZszV Z B iy=§(2+NLyV)(—y+(i+1)).

Then Q) = {—4}. From definition of A, we have L = 1. Choose A4 = 0, A\ =0and 7 = 5, w
have h (I=Aa XN, @A) (x* — yA* (1 ]MB(I —ApYXN, b;B))Ax*) = x* forall x* € R.
So Example 4 shows that Lemma 8 is not true because Ay = 0and Ag =0. [

3. Main Result

We prove a strong convergence theorem to approximate a common solution of SCVIP and
hierarchical fixed point problem of nonexpansive mapping.

Theorem 1. Let Hq, Hy be real Hilbert spaces. Let My : Hy — 2 pe a multi-valued maximal monotone
mapping and My : Hy — 2M2 be a multi-valued maximal monotone mapping. Let A : Hy — H, be a
bounded linear operator with its adjoint operator A*. Let A; : Hy — Hj be wj-inverse strongly monotone
with §a4 = min;_1{a;} and B; : Hy — Hy be B;-inverse strongly monotone with yg = min;_1{p;}. Let
S,T : Hi — Hj be two nonexpansive mappings. Assume that F = ® N Q # . Let the sequence {x,}
generated by u, x; € Hy and

n—]A (I_/\AEZ 13i4A7) (xn — YA (1 IMB(I—/\BZZI\leiBi))Axn)f
Yn = (1 — an)xn + an (04 Sxy + (1 — 7)) Tx), (20)
Xpi1 = UnUh + QuYn + Ontiy,

where {pn}, {on}, {00}, {an}, {on} C [0,1] with pyp + ¢n+ 60, = 1foralln > 1, Ay € (0,214),
Ap € (0,2y5) and vy € (0, 1) with L is the spectral radius of A* A. Suppose the following conditions hold:

(i) limy e pin =0, 2;0:1 Hn = 00,
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(i) 0<c<@ub,<d<1,3dc,d>0,

(i) Yoiq [Hns1 — Hal < 00,01 [@ni1 — @n| < 00,01 (0541 — O] < 00
(iv) limy 4o 0y =0, 57 1 0% < 0,

() lim,, ”";”Cg”” —0,

(vi) Zl 10 = Z: bi=1,a;>0andb; > 0foralli=1,2,...,N.

Then {x,} converges strongly to zg € IF, where zy = Pgu.

Proof. Stepl. First, we prove that {xn} {yn} and {u, } are bounded.
We will show that J AL A(l—Ag ZZ 1 4;A;) and s Mp (I — Ag N, b;B;) are nonexpansive mapping.
Since A; is a;-inverse strongly monotone with 4 = mmizl {a;}, we have

2 2

N N
(x—y) —Aa()_aiAix =) a;Ay)
i i=1

N
<lx—yl? =204 Y ai(x —y, Aix — Awy)
i=1

N N
(I=Aa ) aiAj)x—(I—Aa ) aiA)y
i=1 i=1

N
+ A% Y aillAx — Ayl
i=1

N
< lx—yll* =244 Y aia;| Aix — Ay?
i=1

N
+ A% Y aillAx — Ayl
i=1

N

< x—yll> +Aa Y ai(An — 274) | Aix — Agy]?
i=1

< lx —yl*

Thus I — A4 YN, a;A; is a nonexpansive mapping, for alli = 1,2, ..., N. By using the same proof,
we obtain that I — Ag Y., b;B; is a nonexpansive mapping. Since ]ﬁf‘ and ])1:28 are nonexpnsive

mapping, we have ]A A(l—Aa Zl 1 a;A;) and ]A B(I—Ap Zfil b;B;) are nonexpansive mapping.
Let p € F then p € Hy and p € ® which Tp = p. Now, we estimate

lyn = pII*> = I1(1 = an)xn + @ (00 + (1 — 04) Tx) — plf®
= [I(1 = an) (xn = p) + @n(00(Sxn — p) + (1 = 00) (Txw — p))|I>
< (1= an) %0 = pI* + aull (00 (Sxn — p) + (1 — 0) (T — p))|I?
< (1 —an)lxn — P”z + an 0 || Sxn — PHZ + an (1 — o) || Txn — PHZ
< (1—an)llxn = pI* + €n0n || Sxn — pII* + (1 — o) | xa — plI?

= (1 — an0) || xn — pI* + an0l|Sxn — plI*. (21)

Since p € F, then p € Q) and ]A AL =AM N, a;A)p = pand h (I—AgYXN,b;B)Ap = Ap.
By Lemma 8, we have

]MAI—)\AZaA )(p — yA* (I—]MBI—)\BZbB ))Ap) = p.
i=1 i=1
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By Lemma 7, we have

n = plI?
M M N
= 17,2 ( I—AAZaA — Y AT (I =]y (I—Ag ) biB;))Axy)
i=1 i=1
M M N 2
— A=A ZaA (p—vA* (I -]y, (I—Ag ) b;B;))Ap)|
i=1 i=1

< lxw = Pl = (1 =y L) (T = T35 I—/\BZbB ))Axy — (I =]} B( I—/\BZbB ))Ap|?
i=1 i=1

< lxw = Pl = (1 =y L) (I = T3 I—/\BZbB ))Ax||?
i=1

<l = pl*. (22)
By Equations (21) and (22), we have

l|xn41 — P”2 = ||t + @uyn + Ontty — P”2
< pinllu = pl* + @ullyn — plI* + 0ullun — pl?

< ualle = 12+ gn [ (1 = a0 l|x = I + a0 S0 — pI12] + a0 — p2

= pinllu = P> + @ullxn — pII* = uenoullxn — plI* + @uanon||Sxn — plI* + 0ullxu — p|I*
= pnllu = pII* + (1= pn) X0 — pII* = @utnonllxn — plI* + @uatnc | Sxn — pl|?

< (1= )20 — plI* + il = plI> + pnnn || Sxn — pl|*. (23)

From Lemma 1(i), therefore {x,} is bounded. So are {u, },{y.}.
Step2. Show that lim, 0 || X541 — Xx|| = 0, limy—e0 || X4 — uy|| = 0 and limy—e0 || X — Y| = 0.

[xu11 = xull = |pntt + @uyn + Ontin — pu—1t — Pu_1Yn—1 — Oy—1tu—1|
= [|(n — pn—1)u + (@0 — @u-1)Yn—1+ @u(Yn — Yn-1)
+ (00 — Op—1)ttn—1 + 0 (un — up_1)||
< pn = 1 lllull + | on — @u-1lllyn—1ll + @nllyn — yu-1l
+ 100 — O l[un—1l + Onllun — tn—1]]- (24)

From definition of u,, Lemma 7 and -y € (0, %), we have

N
i = w1 > = T34 (1= Aa Za A (xn — YA (I = Y3 (I = Ap ) b;B;)) Axy)
i=1 i=1

MAI—AADA ) (X1 — yA*(I JMBI—ABD:B ) Axy_1)]|?
i=1 i=1

<l = 21 P = v (1 = L) (I = T (1= Ag ZbB ) Axn
i=1

— (I =Ty I—ABDB ) Axy 1>
i=1

< latn — 2011

It implies that
Huﬂ_unle < Hxn_xnfl”' (25)
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From definition of y,, we have

[yn = yn-all = 1(1 = an)xn + an(00Sxn + (1 = 00) Txn)
—[(T—ay1)xp1 +ap-1(0-1Sx4-1 + (1 = 03—1) Txp—1)] ||
= [[(xn — Xp1) — @nXn + &y 1 X1 F XXy 1 — nXy
4+ 00 Sxy — &y 104 _15%y—1 + €0 Sxy_1 — 00y SXy_1
+oanTxy —ay1Txy—1 +apTxy_1 —anTx, 1
— 00 Txn + 103 17X 1 + @n0n Ty 1 — €n0n Txy 1|
= ||(T—an)(xn — xp-1) + (€p—1 — &n) X1
+ (n0n — & 103-1)SX, 1 + @n0n (Sxn — Sx4-1)
+an(1—00)(Txy — Txpy_1) + (a0 — 1) Tx 1
+ (@n-100-1 — €n0n) Txy 1|
< (L= an)|lxn = xp-a |l + |an—1 — an[fxp-1]
+ |0y — ay_10m—1]|Sxy—1]|| + 2n0n||Sxn — Sxp_1]|
+ay(1—03)|| Ty — Ty || + |an — a1 ||| Txp—1|
+ o101 — €n 0 ||| Tty 1]
< (1= an)|lxn = xp-all + |an—1 — an[f|xn—1]
+ |anon = an_10u-1][Sxn—1 + anou || xn — xn_1
+ an (1 — o) [|xn — 21| + an — a1 ||| Ty 1|
+ [an—100-1 — €n0u || T, 1|
= [ln — xp 1 [l + [an—1 — @[5 1]
+ |anon — an—10u1[|Sxn—1[] + |an — an_1[[| Tx—1]]

+ ‘“nflanfl - angﬂlHTxnle' (26)
From Equations (24)—(26), we have

[xn+1 = Xnll < [pn = pnalllull + [on = @ualllyn-1ll + @nllyn — yn-1ll

+ 100 — On—1|l[tn—1ll + Onlltn — w1

< lpn = pn—alllull + @n — @urlllyn—1ll
+ @ulllxn = xn-1ll + lan—1 — anlllxn—1]]
+ |anon — an—10y-1|[|Sxp-1[l + |an — an—1[[| Txn—1]]
+ |an-100-1 — anon ||| Txp-1|]
+ 100 — On—a|l[un—1 + Onllxn — xn—1|

= (@n +0n)llxn — xp1 || + |ptn — pn—a[llull + [@n — @u-1lllyn-1ll
+ @ulan—1 — anlllxp1ll + @ulanon — an_10%1][[Sxn1||
+ @nlan — ay 1 |[|[Txp-1 || + @nlan—104-1 — anon|| T2, 1|
+ 100 — 01|11l

< (X = pn)llxn = xpall + |pn — paalllull + [@n — @n-1lllyn-1ll
+ a1 — || X0 -1l + lanon — an 100 1][[Sxp1 ||
+ lan — a1 [| Txp-1 | + |€n-100-1 — @non||| Txn-1|
+10n — On—1ll[un-1ll-
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By Lemma 1(i), conditions (i) and (iii), we have
Jim [[x,41 — x| = 0. (27)
From definition of u,, we have

Xp+1 — Un = Pnlh + QulYn + Optty — Uy
:P‘n(”—”n)+§0n(]/n_”n)- (28)

From Equations (21) and (22), we have

%1 = plI* = llpnte + @uyn + Onen — p|>
= pinlle = pl* + @ullyn — plI* + 6nlltw — plI?
— Pn@nllu — yn”2 — pnnlu — un||* — Pnbnllyn — ||
< pnllu =PI + @ullyn — pI? + Oullun — P> — @ubullyn — ual?
< il = pI1* + @al(1 = an0n) 20 — 1> + an 0| Sxn — p|1*)
+ Onllxn — P”z — @ubnllyn — ”n||2
= pinll = pIP* + @ullxn — plI* — @nnoullxn — plI?
+ @ntnu|Sxn = PI* + 0ull 20 — plI* — @uballyn — unl®
< il = I+ (1 = pn) [0 = pI* + @uttnon || Sxn — pl|?
~ @ubulyn — un|®
< pinllu = Pl + 120 — lI* + @nn0uK — @ubullyn — unll,

where K = sup,, {||Sxx — p||?}. It follow that

@nOullyn — unl* < pnllu — pl* + @noncuK + ||xn — pl|* = |20 — p|I?
< pinllu = plI* + @uanonK + |20 — xpia | (120 = pll + 12041 — plI)
< pnllu = plI* + @uanouK + || x40 = xp 41| L1,

where Ly = sup, {||xx — p|| + ||x4+1 — p||}. From Equation (27), conditions (i), (ii) and (v), we have
Jim [y, — unl| = 0. (29)
From Equations (28) and (29), we have

”xn-i-l - un” = ||;4n(u - un) + q’n(]/n - Mn)”
< pn | — vl + @nllyn — nl-

From Equation (29) and a condition (i), we have
Jim || 241 — unl| = 0. (30)
Since

lxn =ty = ||Xn — Xpg1 + X1 — |

< [lvn = 2l + g1 — |-
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From Equations (28) and (30), we have
lim ||x, — u,|| = 0. (31)

n—o0

Since

X0 — yn = [|xXn — tn + tin — Y|

< lxen — un || + [[un — ynll-

From Equations (29) and (31), we have

lim |[x; — yal| = 0. (32)
Step3. limy,—sco ||Xn — Txp|| = 0.
We have
lxn = Txull < [lxn = yull + [lyn — Txnl|. (33)

Since {x; } is bounded and the mappings S, T are nonexpansive then there exists a K; > 0 such
that ||Sx, — Tx,|| < Ky, for all n > 0. Now, we estimate

lyn — Txn|| = /(1 — an)xn + an(02Sxn + (1 — 0) Txy) — T |
= [[(1 —an)(xn — Txp) + 2 (04Sxn + (1 — 0) Toxyy — Txy) ||
= [|(1 = an)(xn — Txn) + an(04Sxpn — 0 Txy) ||
< (1 —an)||xn — Txnl| + @000 ||Sxn — Txy |
< (1= an) [lxn = vl + lyn — Txnl|] 4+ 2n0nl|Sxn — Tty |
< (T—an)llxn —unll + (1 = an)[[yn — Txnl| + anonl|Sxn — Txnl],

which implies

wnllyn — Txn|l < (1 —an)l[xn — Y|l + €noul|Sxn — Txn||
< lxn = yul| + anon K.

It follow that
(e
Hyn — Tan S 0‘7 + UnKl. (34)
n
Since lim;; s W = 0, we have lim;, HX”TE%’H = limy, 00 0y % =
From limy, W = 0, Equation (34) and a condition (v), we have

Bim [y — Toa| = 0. (35)
Thus, it follows from Equations (32), (33) and (35), we have
nlgrolo [0 — Txnl| = 0. (36)

Step4. x* €
Since {x,} is bounded, there exists a subsequence {x;, } which converges weakly to x*. We may

assume that y X
. ng = Ang
—xy) = lim <—xnk,x —— K xnk>,
k—o00

.. —x
liminf(—x,, x — Yn = Xn
Xy,

n—00 &y
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and

lim inf(Sx,, x — Yn = Xn _ Xp) = lim (Sx,,, x — Yme = Xy

— X ).
n—rc0 oy k—00 o, o

We will show that x* € Fix(T). Assume that x* ¢ Fix(T), then x* # Tx* and using Opial’s
property of Hilbert space and Equation (35), we have
liminf || x,, — x*|| < liminf ||x,, — Tx"||
k—ro0 k—ro0
< liminf (||xn, — Txp, || + || Txn, — Tx*|)
k—o0

< liminf ||x,, — x*||
k—00

which is a contradiction. Therefore, x* € Fix(T).

Next, we show that x* € ®. Consider

Yn —Xn = (1 —an)xy + an(04Sxn + (1 — 0) Txy) — Xy

= 00y (Sxn — xp) + a0y (1 — 0y) (Txy — xp),
which implies

Yn—Xn 0 (1 —0)(Txy — xp)

Sxy —xy; =
o o
_Yn=m (1—0x)(I—T)xy
ﬂéno-n U'n
It follows that
Sy — x — Yn = Xn _ (1—0,)(I—T)xy

XpnOp On

Since T is nonexpansive, we have I — T is monotone. Let x € Fix(T), we have

<an — Xn yocn_(T:n’ yna_nxn - xn>

_ (1 nO'n)<(I_T)xnlx_ynD?nxn_ n>

= Oy — (1) P (1T YTy,
n n n

X Yn x"—xn>
&n

_ A =a) B Yn — Xn Yn —Xn

= T (= T = (1= T) (v = 20, = 220 )
_ _Yn — Xn _Yn—Xn

(= T) (= P, 0= B )|

UL T><x—y” x")x y”"‘”—m
On

(1—o0y) Yn— Xn

< -— — —

- oy ‘(I T)(x "

_(1_Uﬂ) yn_

“ \<I—T><x— HH o

<2(1- Hyr;—axnl\ H Yn=n _
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which implies
—x —x —x
(an—xn,x—ynin—xn)§2(1—Un)Hy" d Hx—y" = — Xy
Ky KpOy Kp
Yn — Xn Yn — Xn
+ < ;X — - xn>
&nOn &n
—x —x
< 3”%1 nll Hx _Yn LA 37)
KOy Xy
Since lim;;, s len=ynll 0, we have
QX
. —x —x
TR AL L P L Sl (38)
k—00 Dink "‘nk
. —X,
From Equation (38) and y"ﬁxfn" + xp, — x*, we have
k
e —x
h}gg}f( — X, X — Yn=Xn _ Xn)
97!
. Y — Xy
= khm (—xp, x — —F—F —x,)
—00 Ky
. Y = Xy Yme — Xy Y = Xy
= lim (—xp — (x — ——F) + (x = ——F), x — —F—F —xy,)
k—o00 ank ank ank
. —x —x
:hm[@_gﬂggﬁ_xwx_%igji_ﬁﬁ
k—o0 Xy Xy
Y = Xy Y — Xy
— - « T _x”’ﬂ
ng ng
. X X X
= lim <x — I R Xn, X Yo T Xn > <x,x _ Y Px _ Xn >
k k k
k— 00 Lo m i
Y — Xy Y — Xy
+ ,X — — xnkﬁ
X, p,
= ||x — x*||% = (x,x — x*). (39)
. . . —X .
Since S is weakly continuous and y"kmfn" + X, — x*, we obtain
k
.. —X . - X
lim inf(Sx,, x — Yn —Xn _ Xp) = lim (Sx,, x — Yrme = X Xpy) = (Sx¥, x —x*). (40)
n—o0 n k—o0 Opy

From Equations (37), (39) and (40), we have

(Sx* —x*,x —x*) = (Sx*, x —x*) — (x*, x — x¥)

= (Sx*,x — x*) 4 [|x — x*||® — (x,x — x¥)

= liminf [(an,x S Xn) — (Xp, x — Yn=In _ xnﬂ
n—o0 Ay Ay
= liminf(Sx, — x,, x — Yn —Xn _ Xn)

n—oo

&n
gmmmﬂw_“”h—w_“—m
n—00 X0y Xy

<0.

Hence x* solve Hierarchical fixed point problem, i.e., x* € ®.
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Next, we show that x* € ). Assume that x* # ]MA(I — A XN @A) (xF — A (T — ]ﬁB(I -
Ap YN, b;B;))Ax*). Applying the Opial’s property, Equation (31) and Lemma 7, we have

lim inf||x,, — x*||
k—o0

N
< liminf |, — ]A I—)\AZaA (x* — yA (I ]ﬁB(I—ABZbiBi))Ax*H

i=1 i=1
N
= liminf | x, - ]A (I— Mg Za A (2, — Y A" (I — ]QABB(I —Ag Y biB:))Axy,
0 i=1 i=1
—i—]MAI—/\AZaA ) (%n, — (I—]MBI—ABZbB ) Axp,
i=1 i=1

MA I—/\AZIZA X" —yA*(I ]ﬁB(I_/\BZbiBi))Ax*”

i=1 i=1
Slilgninf[Hxnk Jya I—AAZaA X, — YA* (1= JM (1 — A ZbB ) Axy |
e i=1 i=1
M M N
Iy (I =Aa ZuiAi)(xnk — YA (I = [y P(I=Ap ) biBi)) Axy,
i=1 i=1

N
MA (I—=2Aa Z;IZA X" —yA*(I ]QABB(I—/\B Z;biBi))Ax*H}
1= 1=

< liminf [0, = s | + 10, — 7]

— (1= yL)[|(I = Ty ( If/\BZbB ) At — (1= I35 If/\BZbB Ax*||}
i=1 i=1

< minf [ [l — o, || 4 [, — x°]]
= liminf [[x,,, — x™||
k—o00

This is a contradiction.  Then x* = JVA(I = AL LN, aA)(x* — yA*(I — J1B(I —
AB Efil b;iB;))Ax*. From Lemma 8, we have x* € Q). Therefore, x* € F.

Step5. Finally, we will prove that {x, } converges strongly to zg = Ppu.

We show that limsup,,_, . (u — zo, x4 — 29) < 0, where zg = Pru. We may assume the subsequence
{xn, } of {x,} with

lim sup(u — zg, Xy — z9) = hm( — 20, Xn, — 20)- (41)
n—o00

Since x,, — x* ask — coand x* € F. By Equations (13) and (41), we have

limsup(u — zo, x, — 29) = hm( — 20, %n, —20) <0 42)
n—oo

From Equations (21) and (22), we have

%1 = 20l = llpntt + @uyn + Ot — 2o
= [[pn (4 — 20) + @n(yn — 20) + 0 (un — 20)
< N@n(yn — 20) + 6(un — 20)11* + 2{pn (u — 20), X1 — 20)
< Pullyn — 20l|* + Olun — zo|1* + 2pn (4 — 20, Xn 41 — 20)
< @ul(1 — an0) |12 — 20]|* + n0u || Sxn — 20[%]

I?

+ 0|0 — ZOH2 + 2un (1 — 20, Xp 1 — 20)
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< @nllxn — Z0||2 + Punou||Sxy — ZOH2
+01|xn — 20| + 2pn (1 — z0, Xn11 — 20)
< (1= pn)|lxn = 2o||* + @uatnon|Sxy — 20|

+ 2pn (U — 20, Xp41 — 20)-

Applying Lemma 1(ii), conditions (i), (iv) and Equation (42), we can conclude that the {x,}
converges strongly to zgp = Ppu. This completes the proof. [

Next, we have the following strong convergence to approximation a common element of solution
the set of SMVI and hierarchical fixed point problem of nonexpansive mapping.

Corollary 1. Let Hy, Hy be real Hilbert spaces. Let M4 : Hy — 2 pe a multi-valued maximal monotone
mapping and My : Hy — 212 be a multi-valued maximal monotone mapping. Let F : Hy — H, be a
bounded linear operator with its adjoint operator F*. Let A : Hy — Hj be a-inverse strongly monotone and
B : Hy — Hj be B-inverse strongly monotone. Let S, T : Hy — Hj be two nonexpansive mappings. Assume
that F = ® N O # @. Let the sequence {x,, } generated by u,x, € Hy and

n = JYA(L = AgA) (xn = YA*(I = J)1P (I = ApB))Fxy),
Yn = (1 —an)xn + an(0nSxy + (1 — 0) Txy), (43)
Xp41 = UnU + QnYn + Ontty,

where {un}, {on}, {6}, {an}, {on} C [0,1] with yy + ¢n+6y, = 1foralln > 1, Ay € (0,2a),
Ap € (0,2B) and «y € (0, 1) with L is the spectral radius of F*F. Suppose the following conditions hold:

(i) limy e un =0, 2;021 HUn = 00,
(i) 0<c<@ub,<d<1,3c,d>0,

(iii) 220:1 |.un+l - ,un| < OO,ZZL |(Pn+1 - §0n| < 00/220:1 0541 — On| < 00
(iv) limy e 0% =0, 22021 Oy < 0,

: llxn—=ynll _
(v) limy e Tanon 0,

Then {x,} converges strongly to zg € IF, where zy = Pgu.

Proof. Put A; = Aand B; = Bforalli = 1,2,..., N in Theorem 1. From Theorem 1, we obtain the
desired result. [

4. Application

4.1. Split Zero Point Problem

Let H be a real Hllbert space. Let M : H — 2 be a maximal monotone operator. Then the zero
point problem is to find x* € H such that
0 € Mx™, (44)

such an x* € H is called a zero point of M. The set of zero point of M is denoted by M~1(0).
Let H; and H, be two real Hilbert spaces. Setting A; = 0and B; =0 foralli =1,2,..,, N in SCVIP,
then SCVIP reduce to the split zero point problem: Find x* € Hj such that

0€ Myx*, (45)

and
y* € Ax* such that0 € Mpy*, (46)

where A : Hy — Hj is bounded linear operator, M4 : H; — 2 and Mg : H, — 22 are multi-valued
mapping. The set of all solution of this problem is denoted by Q0 = {x € M, (0) : Ax € M;'(0)}.
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The split zero point problem which consists of the special cases, split feasibility problem,
variational inequalities, etc., which is used in practice as a model in machine learning, image processing
and linear inverse problem.

Next, we give the strong convergence theorem for solving the split zero point problem and the
hierarchical fixed point problem of nonexpansive mapping.

Corollary 2. Let Hy, H be real Hilbert spaces. Let My : Hy — 2 pe a multi-valued maximal monotone
mapping and Mg : Hy — 212 be a multi-valued maximal monotone mapping. Let A : Hy — H, be a bounded
linear operator with its adjoint operator A*. Let S, T : Hy — H; be two nonexpansive mappings. Assume that
F =®NQOy # . Let the iterative sequence generated by hybrid iterative algorithm:

Uy = ]ﬁif‘ (xy — 'yA*])]:/éBAxn),
Yn = (1= ap)xn + an(04Sxn + (1 — 0) Txy), (47)
Xpt1 = UnU + QuYn + Ontty,

where {6,}, {@n}, {nn}, {an}, {on} C [0,1] with 6, + @u + 1 = 1foralln > 1,and vy € (0, 1) with L is
the spectral radius of A* A. Suppose the following conditions hold:

(i) limy o ptn =0, 2;1.0:1 Hn = 00,

(i) 0<c<@ub,<d<1,3dc,d>0,

(iii) Yoy |1 — pn| < 00,0 [@ni1 — @n| < 00,1571 0511 — On| < o0
(iv) limy e 0y =0, 2;1.0:1 Oy < 0,

: X0 —yull _
(U) hmng)oo W — 0,

Then {x, } converges strongly to z € I, where z = Pyu.

Proof. Put A; = 0and B; = 0 foralli = 1,2,..., N in Theorem 1. From Theorem 1, we obtain the
desired conclusion. [

4.2. Split Combination of Variational Inequalities Problem

Let H be a real Hilbert space, let C be a nonempty closed convex subset of H and let /1 be a proper
lower semicontinuous convex function of H into (—oo, +oo]. The subdifferential o4 of  is defined by

oh(x) ={z€ H:h(x)+ (z,u—x) <h(u), Vu € H},

for all x € H. From Rockafellar [16], we get that ok is a maximal monotone operator. Let ic be the
indicator function of C, i.e.,
. 0;ifxeC,
Ic = .
+oo;ifx &C.

Then ic is a proper, lower semicontinuous and convex function on H and so the subdifferential

dic of ic is a maximal monotone operator. The resolvent operator ]3 '€ of dic for A > 0 defined by

%ic(x) = (I + Adic)~1(x), x € H, then we have J'C(x) = Pcx forall x € H and A > 0; see more

detail [18]. Moreover, let h : H — H be a single valued operator, we have x € VI(H, h,dic) = VI(C,h).

Setting My = diy, and Mp = dip, in Equations (6) and (7), then SCVIP reduce to the split
combination of variational inequality problem, that is find x* € H; such that

N
(Z a;A;x*,x —x*) >0, Vx € Hy, (48)
i=1

and

N
y* = Ax* € Hysuch that () b;Biy*,y —y*) >0, Vy € Hy, (49)
i=1
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where A : H| — Hj; is bounded linear operator and le'\i1 a; = Zfil b; = 1. The set of all this is denoted
by Q3 = {x € VI(Hy, YN, a;4;) : Ax € VI(Hp, XN, b;B;)}.
Remark 3. If M4 = diy, and Mp = 9ip,, then we have () reduce to ()3.

Proof. We will show that VI(Hy, YN | a;A;, M4) = VI(Hy, YN | a;A;). We have for x* € H;.

Consider,
N N
x* € VI(Hy, ZaiAi/ My) & Oy, € ZaiAix* + Myx*
i=1 i=1

N
= 9H1 S ZaiAix* + aiHl (X*)
i=1

™M=

= — aiAix* S aiHl (X*)

I
—

N
= (Z a;iA;x*,x —x*) >0, Vx € Hy,
i=1

z

& x* € VI(Hy, Y a;iAy).
i=1

Similarly, we also have VI(HZ,ZI-I\L1 b;iB;, M) = VI(Hz,ZiI\Ll b;B;). Then Q) = Q3 where My =
aiHl and MB = ain. O

The split combination of variational inequality problem has played an essential role for
concrete problems in dynamic emission tomographic image reconstruction, signal recovery problems,
beam-forming problems, power-control problems, bandwidth allocation problems and optimal
control problems.

Next, we establish a strong convergence theorem for solving the split combination of variational
inequality problem and hierarchical fixed point problem of nonexpansive mapping by using a modified
Halpern iterative method as follows:

Theorem 2. Let Hy, Hy be real Hilbert spaces. Let A : Hy — Hp be a bounded linear operator with its adjoint
operator A*. Let A; : Hy — Hj be a;-inverse strongly monotone with 4 = min;_1{«;} and B; : Hy — Hp
be Bj-inverse strongly monotone with yp = min;_1{p;}. Let S, T : H; — Hj be two nonexpansive mappings.
Assume that F = ® N Q3 # @. Let the sequence {x,, } generated by u,x; € Hy and

wy = Py (I = Aa TN a;Ay) (xn — YA*(I = Py (I = Ag X biB;)) Axy),
Yn = (1 — an)xn + an (00 Sxy + (1 — 7)) Txy), (50)
Xpt1 = UnU + QnlYn + Onity,

where {pn}, {@n}, {00}, {an}, {on} C [0,1] with py + ¢n+ 6, = 1 foralln > 1, Ay € (0,2n74),
Ap € (0,2np) and «y € (0, 1) with L is the spectral radius of A* A. Suppose the following conditions hold:

(i) limy e pn =0, 220:1 HUn = O,

(i) 0<c<@ub,<d<1,dc,d>0,

(i) Y0q a1 — Hal < 00,01 [@ni1 — @n| < 00,01 [0p41 — O] < 00
(iv) limy o0y =0, 50 1 0n < 0,

(v)  limy e xn =yl 0,

(vi) Zl\il a; = Zf\il bi=1,a;>0andb; >0foralli=1,2,..,N.

Then {x,} converges strongly to zg € IF, where zy = Pgu.
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Proof. Put M4 = diy, and Mp = 9dip, in Theorem 1. Using the same method in Theorem 1, we have
the desired conclusion. O

5. Numerical

The purpose of this section is to give a numerical example to support some of our. The following
example given for supporting Theorem 1 and example show that Theorem 1 is not true if condition (iv)
fails, but conditions (i), (ii), (iii), (v) and (vi) are satisfied.

Since Theorem 1 can solve hierarchical fixed point problem for a nonexpansive mapping and
SCVIP which our problems can modify for concrete problem in signal processing, image reconstruction,
intensity-modulated radiationtherapy treatment planning and sensor networks in computerized
tomography. So, we give a numerical example as follows:

Example 5. Let Hy = Hy = R, the set of all real numbers, with the inner product defined by (x,y) = xy,
forall x,y € R and induced usual norm | - |. For everyi =1,2,..,N, let the mapping A; : R — R define by
Aix = £ forall x € Hy and B; : R — R define by Byy = ¥- for all y € H,, respectively, let M, Mp : R — 2%
be defined by My (x) = {2x}, forall x € R and Mp(y) = {2y}, forally € R Let the mapping A : R — R be
defined by A(x) = —2x, forall x € Rand let v € (0, 1), so we choose y = {5. Let the mapping T : R — R be
defined by Tx = max {0, —x}, for all x € R and let the mapping S : R — R be defined by Sx = min {0, 7},
forall x € R. Setting {un}= {2}, {¢n}= {7{‘;;11} {6,}= {815n Iy {ocn}: {1} and {c,}= {ﬁ}, Vn € N.
Foreveryi =1,2,...,N, suppose that a; = —|— and b; = —|— Then {x, } converges strongly to a
point x* =0 € F.

N4N N3N

Proof of Solution. It is easy to check that a; and b; satisfies all the conditions of Theorem 1 and A; is
%—inverse strongly monotone and B; is Bf—inverse strongly monotone for alli = 1,2, ..., N. We choose
Ag = ﬁ, Ag = SLN Since a; = 3 + N,we obtain

3 1 X
Zan Z<41+N4N> o

Then 0 € VI(Hl,ZiIil a;A;, My). Since b; = 2 + we have

N3N’

N N 2 1 y
ZzzlblBZy = 1221 (31 + ]\]3N> E

Then 0 € VI(Hy, YN, b;B;, Mp). Thus {0} = Q

It is easy to observe that T, S are nonexpansive mappings with Fix(T) = {0}, Fix(S) = {0}.
Hence ® = {0}. Therefore F = ®N Q) = {0}.

Forevery n € N, {in}= {&}, {gn}= {25}, {0}= {852, {n}= {1} and {ou}= {51z}, then
the sequence {y,}, {¢n}, {0n}, {an} and {0, } satisfy all the conditions of Theorem 1. We rewrite (20)
as follows:

n = Jo A (I = g TR 4 A7) (xn — yA*(I = T3 (I = 55 TN b;B;)) Axa),
Yn = (1_g)xn‘k%(ﬁsxn‘k(l_;ﬁ)'rxn)/ (51)

_ 1, 74l 8n—4
Xnt1 = 5l T 5 Yn + 55

Choose u = —1,x; =1, N = 100 and n = 100. The numerical for the sequence {x, } are shown
Table 1 and Figure 1. [
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Table 1. The values of {x, } with N = 100, = 100.

n Xy
1 1.0000
2 —0.0767
3 —0.1178
4  —01125
5 —0.1027
50  —0.0139
96  —0.0073
97 —0.0072
98 —0.0071
99 —0.0070
100 —0.0070
1.2 T T T T T T T T T
xl‘l
1_ .......................................................................................
Tl e, B — _________ m— ________ —— ________ L —-—
1z T ........ e T ........ ........ e ]
s s st ________ s Je e L _________
0_2_ ......................................................................................
D_ ..............................................................................
P I N T T .
0 10 20 30 40 a0 B0 70 g0 a0 100

Figure 1. The sequence {x, } converges strongly to 0 with initial values x; = 1, N = 100 and n = 100.

Example 6. Let Hy = Hp = R, the set of all real numbers, with the inner product defined by (x,y) = xy,
forall x,y € R and induced usual norm | - |. For everyi =1,2,..,N, let the mapping A; : R — R define by
Aix = £ forall x € Hy and B; : R — R define by Biy = ¥ forall y € Hy, respectively, let My, Mp : R — 2R
be defined by M4 (x) = {2x}, forall x € R and Mp(y) = {2y}, forall y € R. Let the mapping A : R — R be
defined by A(x) = —2x, forall x € Rand let v € (0, 1), so we choose y = 5. Let the mapping T : R — R be
defined by Tx = max {0, —x}, for all x € R and let the mapping S : R — R be defined by Sx = min {0, 3},
forall x € R. Setting {pn}= {2}, {@n}={ZL}, {0u}= {82}, {an}= {1} and {0y }={n}, Vn € N.

Foreveryi=1,2,...,N, suppose that a; = % + and b; = % + ﬁ Then {x, } is divegence.

N4N

Proof of Solution. Note that the sequence {u,}, {¢n}, {6n}, {an}, a; and b; satisfies the conditions (i),
(i), (iii), (v) and (vi) from Theorem 1, while assumption (iv) does not converge to 0 since

im n = oo.
n—oo

Choose u = —1, x; =1, N = 100 and n = 25. The numerical for the sequence {xn} are shown in
Table 2 and Figure 2. Therefore, {x, } does not converge to 0. [
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Table 2. The values of {x,} with N = 100,n = 25.

n Xn
1 1.0000
2 —0.0767
3 —-0.1717
4 —0.3525
5 —0.4736
17 -12.0108
21 —41.7292
22 —57.2056
23 —78.5297
24 —107.9388
25  —148.5342
2 ; ! ; !
: : : z X,
0
20
40
60
T s
-100
-120
-140
0 5 10 15 20 %

Figure 2. The sequence {x, } is divergence with initial values x; = 1, N = 100 and n = 25.

Next, we give example to support out some result in a two dimensional space of real numbers.

Example 7. Let Hy = H, = R?, with the inner product defined by (x,y) = xy = x1-y1 + X2 - ¥,
forall x = (x1,x2),y = (y1,y2) € R? and induced usual norm || - || defined by ||x|| = \/x2 + x2 for all
x = (x1,x2) € R Foreveryi = 1,2,.., N, let the mapping A; : R*> — RZ define by A;x = % for all
x = (x1,x2) € Hy and B; : R* — R? define by Biy = i for ally = (y1,y2) € Hy, respectively, let
My, Mg : R? — 2B pe defined by My (x) = {x}, forall x = (x1,x) € R? and Mg(y) = {3y}, for all
vy = (y1,y2) € R2. Let the mapping A : R — R? be defined by A(x) = 3x, for all x = (x1,xp) € R?
and let v € (0, %), so we choose y = % Let the mapping T : R* — R? be defined by Tx = %, for all
x = (x1,x2) € R?and let the mapping S : R? — R? be defined by Sx = min {0, £}, for all x = (x1,x7) € R?.
Setting {ny= (2}, {pn}= {751}, 6)= {54}, {@n}= {1} and {ou)= {54}, ¥n € N. For cvery
i= 1,(2, ), N, suppose that a; = = + N110N and b; = % + NéN' Then {x,} converges strongly to a point
x*=1(0,0) € F.

9
10/

Proof of Solution. It is easy to check that a; and b; satisfies all the conditions of Theorem 1 and A; is

%—inverse strongly monotone and B; is %—inverse strongly monotone for alli = 1,2, ..., N. We choose

Aa = =k, Ap = »k. Thus {(0,0)} = Q.
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For definition of T and S, then T and S are nonexpansive mapping with Fix(T) = {(0,0)}. Hence
® = {(0,0)}. Therefore F = ®NQ = {(0,0)}.

Forevery n € N, {in}= {2}, {gn}= {25}, {0}= {352, {n}= {1} and {ou}= {5z}, then
the sequence {un}, {@n}, {6n}, {an} and {0}, } satisfy all the conditions of Theorem 1.

From Theorem 1, we can conclude that the sequence {x, } converges to (0,0). O

6. Conclusions

(i) Table 1 and Figure 1 show that the sequence {x, } converges to 0, where {0} = ® N Q.
(ii) Table 2 and Figure 2 show that the sequence {x, } diverge, where condition (iv) is violated since

limy, 00 0, # 0.
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