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Abstract: Simulation functions were introduced by Khojasteh et al. as a method to extend several
classes of fixed point theorems by a simple condition. After that, many researchers have amplified
the knowledge of such kind of contractions in several ways. R-functions, (R,S)-contractions and
(A,S)-contractions can be considered as approaches in this direction. A common characteristic of
the previous kind of contractive maps is the fact that they are defined by a strict inequality. In this
manuscript, we show the advantages of replacing such inequality with a weaker one, involving
a family of more general auxiliary functions. As a consequence of our study, we show that not only
the above-commented contractions are particular cases, but also another classes of contractive maps
correspond to this new point of view.

Keywords: R-function; simulation function; manageable function; fixed point; contractivity condition;
binary relation

1. Introduction

Fixed point theory is a branch of mathematics that has multiple applications in almost all scientific
fields of study. Mainly, it is used to prove the existence (and, in many cases, also uniqueness) of
solutions of great variety of equations arising in theoretical and practical disciplines: matrix equations,
differential equations, integral equations, etc. One of its best advantage is the fact that it permits
us to deal with linear and nonlinear problems, which makes this discipline into an essential part of
nonlinear analysis.

Although it was not the first result in this line of research, Banach contractive mapping principle
is widely considered the pioneering statement. Any new result in this area must generalize such
principle. There are many directions in which it has been extended and improved: by using weaker
contractivity conditions, more general families of auxiliary functions, by involving a partial order,
by considering abstract metric spaces, etc.

In recent times, Khojasteh et al. [1] introduced a new class of auxiliary functions, called
simulation functions, that let us consider a family of contractivity conditions that only involve two
arguments: the distance between two points (d(x, y)) and the distance between their corresponding
images (d(Tx, Ty)) under the considered operator. This work quickly attracted the attention
of several researchers because of its potential applications (see, for instance, the work of
Roldán López de Hierro et al. [2], who slightly modified the original definition, and those of Roldán
López de Hierro and Shahzad [3,4], who presented R-functions as extensions of simulation functions).

The above-mentioned classes of contractions have been included in a new family of contractive
mappings, called (A,S)-contractions, that extend and unify several results in fixed point theory (see [5]).
Theoretical notions introduced in such manuscript were later developed by other researchers (see [6])
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even with applications to fuzzy partial differential equations (see [7]) and optimal solutions and
applications to nonlinear matrix and integral equations (see [8]). However, in the original definition of
(A,S)-contractions, inspired by the previous contributions, the authors established a strict inequality
that must be verified for some pairs of points related under a binary relation. In this manuscript,
we improve such results in several ways: (1) the given family of auxiliary functions is more general;
(2) coherently, the presented contractivity condition is weaker; and (3) the set of points that have
to satisfy the contractivity condition is smaller. These improvements let us show that not only the
above-commented contractions are particular cases of our study, but also new families of contractive
maps correspond to this new approach (see [9–11]). The presented contractions are called ample
spectrum contractions because they are an attempt to generalize all known contractions that are defined
by contractivity conditions that involve only the terms d(x, y) and d(Tx, Ty).

2. Preliminaries

Basic notions and notations for a good understanding of this manuscript are given in [5].
Nevertheless, we recall here the essential facts. Throughout this manuscript, X always stands for
a nonempty set. A binary relation on X is a nonempty subset S of the product space X×X. If (x, y) ∈ S ,
we denote it by xSy. We write xS∗y when xSy and x 6= y. Notice that S∗, if it is nonempty, is another
binary relation on X. Two points x and y are S-comparable if xSy or ySx. A binary relation S is:

• transitive: If from xSy and ySz it follows xSz,
• reflexive: If xSx for each x ∈ R,
• antisymmetric: If from xSy and ySx it follows x = y.

Reflexive and transitive binary relations are called preorders (or quasiorders), and, if they are also
antisymmetric, then they are partial orders. The trivial partial order SX is defined by xSXy for each
x, y ∈ X.

From now on, N = {0, 1, 2, 3, . . .} stands for the set of all nonnegative integers and N∗ = N�{0}.
Henceforth, let T : X → X be a map from X into itself, let (X, d) be a metric space and let
A ⊆ R be a nonempty subset of the set of all real numbers. The range (or image) of d is
ran(d) = {d(x, y) : x, y ∈ X} ⊆ [0, ∞).

If Tx = x, then x is a fixed point of T. The maps {Tn : X → X}n∈N defined by T0 =identity, T1 = T
and Tn+1 = T ◦ Tn for all n ≥ 2 are known as the iterates of T. The Picard sequence of T based on x0 ∈ X
is the sequence {xn}n∈N given by xn+1 = Txn for all n ∈ N (hence, xn = Tnx0 for each n ∈ N). When
any Picard sequence of T converges to a fixed point of T, we say that T is a weakly Picard operator, and
if it has a unique fixed point, then T is known as Picard operator.

In [5], the authors used the following terminology. Let S be a binary relation on a metric
space (X, d), let Y ⊆ X be a nonempty subset, let {xn} be a sequence in X and let T : X → X be
a self-mapping. We say that:

• A sequence {xn} ⊆ X is asymptotically regular on (X, d) if {d (xn, xn+1)} → 0.
• T is S-nondecreasing if TxSTy for all x, y ∈ X such that xSy.
• {xn} is S-nondecreasing if xnSxm for all n, m ∈ N such that n < m.
• {xn} is S-strictly-increasing if xnS∗xm for all n, m ∈ N such that n < m.
• T is S-nondecreasing-continuous if {Txn} → Tz for all S-nondecreasing sequence {xn} ⊆ X such

that {xn} → z ∈ X.
• T is S-strictly-increasing-continuous if {Txn} → Tz for all S-strictly-increasing sequence {xn} ⊆ X

such that {xn} → z ∈ X.
• Y is (S , d)-strictly-increasing-complete if every S-strictly-increasing and d-Cauchy sequence {yn} ⊆

Y is d-convergent to a point of Y.
• Y is (S , d)-strictly-increasing-precomplete if there exists a set Z such that Y ⊆ Z ⊆ X and Z is

(S , d)-strictly-increasing-complete;
• (X, d) is S-strictly-increasing-regular if, for all S-strictly-increasing sequence {xn} ⊆ X such that
{xn} → z ∈ X, it follows that xnSz for all n ∈ N.
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We follow the notation given in [12,13]. Next, we list a collection of properties that can be satisfied
by a function φ : [0, ∞)→ [0, ∞).

(P1) φ is non-decreasing, that is, if 0 ≤ t ≤ s, then φ (t) ≤ φ (s).
(P10) The series ∑

n≥1
φn (t) converges for all t > 0.

(P11) lim
n→∞

φn (t) = 0 for all t > 0.
(P12) φ (t) < t for all t > 0.
(P13) lim

t→0+
φ (t) = 0.

(P ′) φ (0) = 0.

It is clear that (P10)⇒ (P11) and, on the other hand, (P12)⇒ (P13).

Proposition 1 ([12,13]). If (P1) holds, then (P10)⇒ (P11)⇒ (P12)⇒ (P13)⇒ (P ′).

Given a function α : X × X → [0, ∞), it is possible to redefine the previous notions in
terms of α (transitivity, α-admissibility, α-nondecreasing character, α-nondecreasing-continuity,
α-strictly-increasing-regularity, (α, d)-strictly-increasing-completeness, (α, d)-strictly-increasing-
precompleteness, etc.). For details, see [5]. Such properties can be translated to the previous setting by
using the binary relation Sα on X given, for x, y ∈ X, by

xSαy if α(x, y) ≥ 1. (1)

Lemma 1. Let (X, d) be a metric space, let T : X → X be a self-mapping and let α : X × X → [0, ∞) be
a function. Then, the following properties hold.

1. The binary relation Sα is transitive if, and only if, α is transitive.
2. T is α-admissible if, and only if, T is Sα-nondecreasing.
3. Given z0 ∈ X, the mapping T is (d,Sα)-nonincreasing-continuous at z0 if, and only if, it is

(d, α)-right-continuous at z0.
4. T is (d,Sα)-nonincreasing-continuous if, and only if, T is (d, α)-right-continuous.

In [5], Shahzad et al. introduced the following notions.

Definition 1. Let {an} and {bn} be two sequences of real numbers. We say that {(an, bn)} is a
(T,S)-sequence if there exist two sequences {xn}, {yn} ⊆ X such that

xnSyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

If S is the trivial binary relation SX , then {(an, bn)} is called a T-sequence.

Remark 1. Notice that {(an = d(Txn, Tyn), bn = d(xn, yn))} is a (T,S)-sequence if, and only if,

xnS∗yn and an > 0 for all n ∈ N.

Definition 2. We say that T : X → X is an (A,S)-contraction if there exists a function $ : A× A → R
such that T and $ satisfy the following four conditions:

(A1) ran(d) ⊆ A.
(A2) If {xn} ⊆ X is a Picard S-nondecreasing sequence of T such that

xn 6= xn+1 and $ (d (xn+1, xn+2) , d (xn, xn+1)) > 0 for all n ∈ N,

then {xn} is asymptotically regular on (X, d) (that is, {d (xn, xn+1)} → 0).
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(A3) If {(an, bn)} ⊆ A× A is a (T,S)-sequence such that {an} and {bn} converge to the same limit L ≥ 0
and verifying that L < an and $(an, bn) > 0 for all n ∈ N, then L = 0.

(A4) $ (d(Tx, Ty), d(x, y)) > 0 for all x, y ∈ X such that xS∗y and TxS∗Ty.

In such a case, we say that T is an (A,S)-contraction with respect to $. We denote the family of all
(A,S)-contractions from (X, d) into itself with respect to $ by AX,d,S ,$,A or, for simplicity, by A$ when no
confusion is possible.

If S is the trivial binary relation SX , then T is called an A-contraction (with respect to $).

Condition (A1) implies that A is a nonempty set. In some cases, we also consider the following
properties.

(A′2) If x1, x2 ∈ X are two points such that

Tnx1S∗Tnx2 and $(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) > 0 for all n ∈ N,

then {d (Tnx1, Tnx2)} → 0.
(A5) If {(an, bn)} is a (T,S)-sequence such that {bn} → 0 and $(an, bn) > 0 for all n ∈ N,

then {an} → 0.

3. Ample Spectrum Contractions

In this section, we slightly modify the axioms given in [5] in a subtle way in order to consider
a wider class of contractions. In what follows, let (X, d) be a metric space, let S be a binary relation on
X and let T : X → X be a self-mapping.

Definition 3. Let {an} and {bn} be two sequences of real numbers. We say that {(an, bn)} is a
(T,S∗)-sequence if there exist two sequences {xn}, {yn} ⊆ X such that

xnS∗yn, TxnS∗Tyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

Proposition 2. Every (T,S∗)-sequence is a (T,S)-sequence.

Definition 4. We say that T : X → X is a ample spectrum contraction if there exists a function $ :
A× A→ R such that T and $ satisfy the following four conditions:

(B1) A is nonempty and { d (x, y) ∈ [0, ∞) : x, y ∈ X, xS∗y } ⊆ A.
(B2) If {xn} ⊆ X is a Picard S-nondecreasing sequence of T such that

xn 6= xn+1 and $ (d (xn+1, xn+2) , d (xn, xn+1)) ≥ 0 for all n ∈ N,

then {d (xn, xn+1)} → 0.
(B3) If {(an, bn)} ⊆ A× A is a (T,S∗)-sequence such that {an} and {bn} converge to the same limit L ≥ 0

and verifying that L < an and $(an, bn) ≥ 0 for all n ∈ N, then L = 0.
(B4) $ (d(Tx, Ty), d(x, y)) ≥ 0 for all x, y ∈ X such that xS∗y and TxS∗Ty.

In such a case, we say that T is a ample spectrum contraction with respect to S and $. We denote the
family of all ample spectrum contractions from (X, d) into itself with respect to S and $ by BX,d,S ,$,A.

In some cases, we also consider the following properties:

(B′2) If x1, x2 ∈ X are two points such that

Tnx1S∗Tnx2 and $(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) ≥ 0 for all n ∈ N,

then {d (Tnx1, Tnx2)} → 0.
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(B5) If {(an, bn)} is a (T,S∗)-sequence such that {bn} → 0 and $(an, bn) ≥ 0 for all n ∈ N, then
{an} → 0.

Remark 2. The reader can observe the following facts about the previous assumptions:

1. Notice that conditions (B2), (B3), (B′2) and (B5) establish that, if there exists a sequence (or one point, or
two points) verifying some assumptions, then a thesis must hold. However, we point out that, if such kind
of sequences (or points) does not exist, then conditions (B2), (B3), (B′2) and (B5) hold.

2. Condition (B2) follows from (B′2) using x2 = Tx1.
3. None of the previous conditions establishes a constraint about the values { $(0, s) : s ∈ A } because the

first argument is always positive. In fact, it is possible that 0 /∈ A.
4. If xS∗y, then d(x, y) > 0. Hence, 0 /∈ { d (x, y) ∈ [0, ∞) : x, y ∈ X, xS∗y }. Nevertheless, 0 may

belong to A.
5. If S is the binary relation such that xSy if, and only if, x = y, then { d (x, y) ∈ [0, ∞) : x, y ∈ X, xS∗y }

is empty. This is the reason we must impose that A is nonempty.
6. Condition (B1) guarantees that the function $ can be applied in the other assumptions. For instance, in

(B2), it is clear that xnS∗xn+1 and xn+1S∗xn+2 because {xn} is S-nondecreasing and xn 6= xn+1 for all
n ∈ N.

7. As the reader can easily check in the proofs of the following results, we could also have supposed in Condition
(B3) that {xn} and {yn} are appropriate subsequences of the same Picard sequence {zn = Tnz0} ⊆ X
(in the sense that xn = zp(n) and yn = zq(n) being n ≤ p(n) < q(n) for all n ∈ N). In order not to
complicate the proofs, we do not include such assumption.

Proposition 3. If $ (t, s) ≤ s− t for all t, s ∈ A ∩ (0, ∞), then (B5) holds.

Proof. Assume that {an}, {bn} ⊂ (0, ∞) ∩ A are two sequences such that {bn} → 0 and $(an, bn) ≥ 0
for all n ∈ N. Since an, bn ∈ (0, ∞) ∩ A, then 0 < $(an, bn) ≤ bn − an for all n ∈ N. As a consequence,
0 < an ≤ bn for all n ∈ N, which means that {an} → 0.

The previous definition generalizes the notion of (A,S)-contraction, as we prove in the
following result:

Theorem 1. Every (A,S)-contraction is an ample spectrum contraction (with respect to the same function $).
Furthermore, if it satisfies (A′2) (respectively, (A5)), then it also verifies (B′2) (respectively, (B5)).

In particular, we prove the following implications:

(A1)⇒ (B1) ,

(A4)⇒ (B4) ,

(A2) + (A4)⇒ (B2) ,

(A3) + (A4)⇒ (B3) ,

(A4) + (A5)⇒ (B5) ,(
A′2
)
+ (A4)⇒

(
B′2
)

.

Proof. Let (X, d) be a metric space, let T : X → X be a mapping and let $ : A× A→ R be a function.
Clearly, (A1)⇒ (B1) and (A4)⇒ (B4). Next, we prove the rest of conditions.

[ (A′2) + (A4)⇒ (B′2) ] Let x1, x2 ∈ X be two points such that

Tnx1S∗Tnx2 and $(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) ≥ 0 for all n ∈ N.

Let us denote
x1

n = Tnx1 and x2
n = Tnx2 for all n ∈ N.
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Hence, by hypothesis, x1
n = Tnx1S∗Tnx2 = x2

n and Tx1
n = Tn+1x1S∗Tn+1x2 = Tx2

n. Applying
Condition (A4), for all n ∈ N,

$(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) = $(d

(
Tx1

n, Tx2
n

)
, d
(

x1
n, x2

n

)
) > 0.

Therefore, Condition (A′2) implies that {d(Tnx1, Tnx2)} → 0.
[ (A2) + (A4)⇒ (B2) ] It follows as in the previous implication by using x1 = x0 and x2 = Tx0.
[ (A3) + (A4)⇒ (B3) ] Let {(an, bn)} ⊆ A× A be a (T,S∗)-sequence such that {an} and {bn}

converge to the same limit L ≥ 0 and verifying that L < an and $(an, bn) ≥ 0 for all n ∈ N. By
definition, there are two sequences {xn}, {yn} ⊆ X such that

xnS∗yn, TxnS∗Tyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

As xnS∗yn and TxnS∗Tyn, then it follows from (A4) that

$(an, bn) = $(d(Txn, Tyn), d(xn, yn)) > 0 for all n ∈ N.

Therefore, applying (A3), we conclude that L = 0.
[ (A4) + (A5)⇒ (B5) ] Let {(an, bn)} be a (T,S∗)-sequence such that {bn} → 0 and $(an, bn) ≥ 0

for all n ∈ N. By definition, there exist two sequences {xn}, {yn} ⊆ X such that

xnS∗yn, TxnS∗Tyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

As xnS∗yn and TxnS∗Tyn, then it follows from (A4) that

$(an, bn) = $(d(Txn, Tyn), d(xn, yn)) > 0 for all n ∈ N.

Therefore, applying (A5), we conclude that {an} → 0.

The previous theorem provides us a large list of ample spectrum contractions because every
(A,S)-contraction is an ample spectrum contraction. In particular, as the authors proved in [3,5], the
following ones are examples of ample spectrum contractions:

• Banach contractions;
• Meir–Keeler contractions (see [14,15]);
• Z-contractions involving simulation functions (see [1,2]);
• manageable contractions (see [16]);
• Geraghty contractions (see [17]); and
• R-contractions (see [3,5]).

The converse of Theorem 1 is false, as we show in the following example:

Example 1. Let X = {0, 1, 3} be endowed with the Euclidean metric dE(x, y) = | x− y | and the usual order
≤. Hence, (X, dE) is a complete metric space. Let A = ran(dE) = {0, 1, 2, 3} and let T : X → X and
$ : A× A→ R be defined by

Tx =

{
0, if x ∈ {0, 1},
1, if x = 3;

$(t, s) = 0 for all t, s ∈ A.

Then, T is not an (A,≤)-contraction with respect to $ because, if x = 1 and y = 3, then x < y and
Tx < Ty, but $ (d(Tx, Ty), d(x, y)) = 0. Let us show that T is an ample spectrum contraction with respect to
$ and ≤. Condition (B4) is obvious. Properties (B2) and (B′2) follows from the fact that any Picard sequence
{xn} of T must verify xn = 0 for all n ≥ 3. Taking into account that any convergent sequence on A is almost
constant (because it is discrete), Axioms (B3) and (B5) are satisfied because such kind of sequences do not exist.
Hence, T is an ample spectrum contraction with respect to $ and ≤.
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The notion of (T,S∗)-sequence plays a key role in the definition of ample spectrum contraction.
In fact, if we had not changed the notion of (T,S)-sequence by the concept of (T,S∗)-sequence in
Definition 4, then there would have not been any relationship between (A,S)-contractions and ample
spectrum contractions. We illustrate this affirmation with the following example.

Example 2. Let X = [0, 2]∪C∪D, where C = { 10m ∈ N : m ∈ N∗ } and D = { 10m+ 4 ∈ N : m ∈ N∗ }.
Assume that X is endowed with the Euclidean metric dE(x, y) = | x− y | and the usual order≤. Hence, (X, dE)

is a complete metric space. The range of dE can be expressed as

ran(dE) = [0, 2] ∪ {4} ∪ B where B ⊂ [6, ∞) .

Let A = ran(dE) and let T : X → X and $ : A× A→ R be defined by

Tx =


x
4

, if x ∈ [0, 2] ,

1 +
1
m

, if x = 10m ∈ C (for some m ∈ N∗),
0, if x = 10m + 4 ∈ D (for some m ∈ N∗);

$(t, s) =

{
0, if t > 1 and s ≥ 1,
s
2
− t, otherwise.

Notice that T satisfies the following properties.

(p1) T(X) ⊂ [0, 2]. In particular, | Tx− Ty | ≤ 2 for all x, y ∈ X.
(p2) If x, y ∈ X are two different points such that x ∈ C ∪ D or y ∈ C ∪ D, then | x− y | ≥ 4. In particular,

if | x− y | < 4, then x, y ∈ [0, 2].
(p3) For all x0 ∈ X, the Picard sequence of T based on x0 verifies xn+1 = Tx0

4n for all n ∈ N. Thus, every
Picard sequence of T converges to zero.

Let us show that T is an ample spectrum contraction with respect to $ and ≤.
(B2) Let {xn} ⊆ X be a Picard S-nondecreasing sequence of T such that

xn 6= xn+1 and $ (dE (xn+1, xn+2) , dE (xn, xn+1)) ≥ 0 for all n ∈ N.

Since {xn} → 0, {dE (xn, xn+1)} → 0.
(B3) Let {(an, bn)} ⊆ A× A be a (T,<)-sequence such that {an} and {bn} converge to the same limit

L ≥ 0 and verifying that L < an and $(an, bn) ≥ 0 for all n ∈ N. By definition, there are two sequences
{xn}, {yn} ⊆ X such that

xn < yn, Txn < Tyn, an = dE(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

As an = dE(Txn, Tyn) ∈ [0, 2], then L ≤ 2. Since {bn = dE(xn, yn)} → L ≤ 2, there exists n0 ∈ N
such that dE(xn, yn) < 4 for all n ≥ n0. By (p2), we have that xn, yn ∈ [0, 2] for all n ≥ n0. Therefore, for all
n ≥ n0,

an = dE(Txn, Tyn) =
∣∣∣ xn

4
− yn

4

∣∣∣ = | xn − yn |
4

=
bn

4
.

Letting n→ ∞, we deduce that L = L/4, so L = 0.
(B4) Let x, y ∈ X be two points such that x < y and Tx < Ty. To prove that $ (d(Tx, Ty), d(x, y)) ≥ 0,

we observe three cases.

I If $ (d(Tx, Ty), d(x, y)) = 0, then (B4) holds. Hence, in what follows, we can assume that

$ (d(Tx, Ty), d(x, y)) =
| x− y |

2
− | Tx− Ty | = y− x

2
− (Ty− Tx) ,

which corresponds to the case in which | Tx− Ty | ≤ 1 or | x− y | < 1.
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I If | x− y | ≥ 4, then, by (p1),

$ (d(Tx, Ty), d(x, y)) =
| x− y |

2
− | Tx− Ty | ≥ 4

2
− 2 = 0.

I On the contrary case, if | x− y | < 4, then x or y cannot belong to C ∪ D. Then, necessarily, x, y ∈ [0, 2],
thus

$ (d(Tx, Ty), d(x, y)) =
| x− y |

2
− | Tx− Ty | = | x− y |

2
−
∣∣∣ x

4
− y

4

∣∣∣ = | x− y |
4

> 0,

which means that (B4) holds.

In any case,(B4) holds.

The following result is useful in order to study when an ample spectrum contraction can have
multiple fixed points.

Proposition 4. Let (X, d) be a metric space endowed with a binary relation S and let T : X → X and
$ : A× A→ R be two maps such that (B1), (B′2) and (B4) holds. If ω, ω′ ∈ X are two S-comparable fixed
points of T, then ω = ω′.

Proof. Reasoning by contradiction, assume that ω and ω′ are two distinct fixed points of T. As ω and
ω′ are S-comparable, we can suppose, without loss of generality, that ωSω′. Hence, ωS∗ω′ and also
TωS∗Tω′. Let an = d (ω, ω′) > 0 for all n ∈ N. By using (B4), for all n ∈ N,

$ (an+1, an) = $
(
d
(
ω, ω′

)
, d
(
ω, ω′

))
= $

(
d
(
Tω, Tω′

)
, d
(
ω, ω′

))
≥ 0.

Therefore, it follows from (B′2) that {an = d (ω, ω′)} → 0, which is a contradiction. Thus,
ω = ω′.

4. Fixed Point Theorems Involving Ample Spectrum Contractions

Once we have changed the notions of (T,S)-sequence and (A,S)-contraction by the concepts of
(T,S∗)-sequence and ample spectrum contraction, we are ready to introduce the main results of the
manuscript, which is the aim of the current section. Concretely, as we show below, the following one is
the most general theorem of this manuscript.

Theorem 2. Let (X, d) be a metric space endowed with a transitive binary relation S and let T : X → X
be an S-nondecreasing ample spectrum contraction with respect to $ : A× A → R. Suppose that T(X) is
(S , d)-strictly-increasing-precomplete and there exists a point x0 ∈ X such that x0STx0. Assume that at least
one of the following conditions is fulfilled:

(a) T is S-strictly-increasing-continuous.
(b) (X, d) is S-strictly-increasing-regular and Condition (B5) holds.
(c) (X, d) is S-strictly-increasing-regular and $ (t, s) ≤ s− t for all t, s ∈ A ∩ (0, ∞).

Then, the Picard sequence of T based on x0 converges to a fixed point of T. In particular, T has at least
a fixed point.

Notice that the metric space (X, d) needs not to be complete.

Proof. Let x0 ∈ X be a point such that x0STx0 and let {xn+1 = Txn}n≥0 be the Picard sequence
of T based on x0. If there exists some n0 ∈ N such that xn0+1 = xn0 , then xn0 is a fixed point of T,
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and {xn} converges to such point. On the contrary case, assume that xn 6= xn+1 for all n ∈ N. As T is
S-nondecreasing and x0STx0 = x1, then xnSxn+1 for all n ∈ N, and, as S is transitive,

xnSxm for all n, m ∈ N such that n < m. (2)

In fact, as xn 6= xn+1 for all n ∈ N, then

xnS∗xn+1 and TxnS∗Txn+1 for all n ∈ N. (3)

Let consider the sequence {d(xn, xn+1)} ⊆ A. Taking into account Equation (3) and the fact that
T is an ample spectrum contraction, Condition (B4) implies that, for all n ∈ N,

$(d
(

Tn+1x0, Tn+2x0

)
, d
(

Tnx0, Tn+1x0

)
) = $ (d(Txn, Txn+1), d(xn, xn+1)) ≥ 0.

Applying (B2) ,we deduce that {xn = Tnx0} is an asymptotically regular sequence on (X, d),
that is, {d(xn, xn+1)} → 0.

Let us show that {xn} is an S-strictly-increasing sequence. Indeed, in view of Equation (2),
assume that there exists n0, m0 ∈ N such that n0 < m0 and xn0 = xm0 . If p0 = m0 − n0 ∈ N�{0},
then xn0 = xn0+k p0 for all k ∈ N. In particular, the sequence {d(xn, xn+1)} contains the constant
subsequence {

d(xn0+k p0 , xn0+k p0+1) = d(xn0 , xn0+1) > 0
}

k∈N
,

which contradicts the fact that {d(xn, xn+1)} → 0. This contradiction guarantees that xn 6= xm for all
n 6= m, thus xnS∗xm for all n, m ∈ N such that n < m, that is, {xn} is an S-strictly-increasing sequence.

Next, we show that {xn} is a Cauchy sequence reasoning by contradiction. If {xn} is not a Cauchy
sequence, then there exist ε0 > 0 and two subsequences {xn(k)} and {xm(k)} of {xn} such that

k ≤ n(k) < m(k), d(xn(k), xm(k)−1) ≤ ε0 < d(xn(k), xm(k)) for all k ∈ N,

lim
k→∞

d(xn(k), xm(k)) = lim
k→∞

d(xn(k)−1, xm(k)−1) = ε0.

Let L = ε0 > 0, {ak = d(xn(k), xm(k))} → L and {bk = d(xn(k)−1, xm(k)−1)} → L. As
n(k) < m(k) (and n(k) − 1 < m(k) − 1), then xn(k)S∗xm(k) and xn(k)−1S∗xm(k)−1. Thus, {(ak, bk)}
is a (T,S∗)-sequence. Since L = ε0 < d(xn(k), xm(k)) = ak and

$ (ak, bk) = $
(

d(xn(k), xm(k)), d(xn(k)−1, xm(k)−1)
)

= $
(

d(Txn(k)−1, Txm(k)−1), d(xn(k)−1, xm(k)−1)
)
≥ 0

for all k ∈ N, Condition (B3) guarantees that ε0 = L = 0, which is a contradiction. As a consequence,
{xn} is a Cauchy sequence. Since {xn}n≥1 ⊆ T(X) and T(X) is (S , d)-strictly-increasing-precomplete,
there is a subset Z ⊆ X such that T(X) ⊆ Z ⊆ X and Z is (S , d)-strictly-increasing-complete.
In particular, as {xn} is an S-strictly-increasing and Cauchy sequence, there exists z ∈ Z ⊆ X such
that {xn} → z. Let us show that z is a fixed point of T considering three cases.

Case 1. Assume that T is S-strictly-increasing-continuous. In this case, {xn+1 = Txn} → Tz,
so Tz = z.

Case 2. Assume that (X, d) is S-strictly-increasing-regular and condition (B5) holds. In this case,
as {xn} is an S-strictly-increasing sequence such that {xn} → z, it follows that

xnSz for all n ∈ N. (4)
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Since T is S-nondecreasing,
TxnSTz for all n ∈ N. (5)

Let an = d(xn+1, Tz) = d(Txn, Tz) and bn = d(xn, z) for all n ∈ N. Clearly, {bn} → 0. Notice that

bn = 0 ⇒ an = 0 (6)

because
bn = 0 ⇔ xn = z ⇒ xn+1 = Txn = Tz ⇔ an = 0.

Let consider the set

Ω = {n ∈ N : an = 0} = {n ∈ N : d(xn+1, Tz) = 0} .

Subcase 2.1. Assume that Ω is finite. In this case, there exists n0 ∈ N such that d(xn+1, Tz) = an > 0
for all n ≥ n0. By (6), d(xn, z) = bn > 0 for all n ≥ n0. In this case, {(an, bn)}n≥n0 is a (T,S)-sequence
(because an = d(Txn, Tz) > 0 and bn = d(xn, z) > 0 for all n ≥ n0). In particular, xn 6= z and Txn 6= Tz
for all n ≥ n0. By Equations (4) and (5), we deduce that xnS∗z and TxnS∗Tz for all n ≥ n0. It follows
from (B4) that

$(an, bn) = $ (d(Txn, Tz), d(xn, z)) ≥ 0 for all n ≥ n0.

As a consequence, as (B5) holds, we conclude that {an = d(xn+1, Tz)} → 0, that is, {xn+1} → Tz,
which guarantees that Tz = z.

Subcase 2.2. Assume that Ω is not finite. In this case, there exists a subsequence {xn(k)} of {xn}
such that

d(xn(k)+1, Tz) = 0 for all k ∈ N.

Hence, xn(k)+1 = Tz for all k ∈ N. Since {xn} → z and
{

xn(k)+1

}
→ Tz, Tz = z.

Case 3. Assume that (X, d) is S-strictly-increasing-regular and $ (t, s) ≤ s− t for all t, s ∈ A ∩ (0, ∞).
Proposition 3 guarantees that Item (b) is applicable.

In any case, we conclude that z is a fixed point of T.

In the following result, we describe sufficient conditions in order to guarantee uniqueness of the
fixed point.

Theorem 3. Under the hypotheses of Theorem 2, assume that the following properties are fulfilled:

I Condition (B′2) holds; and
I for all x, y ∈ Fix(T), there exists z ∈ X such that z is, at the same time, S-comparable to x and S-comparable

to y.

Then, T has a unique fixed point.

Proof. Let x, y ∈ Fix(T) be two fixed points of T. By hypothesis, there exists z0 ∈ X such that z0 is, at
the same time, S-comparable to x and S-comparable to y. Let {zn} be the Picard sequence of T based
on z0, that is, zn+1 = Tzn for all n ∈ N. We prove that x = y by showing that {zn} → x and {zn} → y.
We first use x, but the same argument is valid for y.

Since z0 is S-comparable to x, assume that z0Sx (the case xSz0 is similar). As T is S-nondecreasing,
znSx for all n ∈ N. If there exists n0 ∈ N such that zn0 = x, then zn = x for all n ≥ n0. In particular,
{zn} → x and the proof is finished. On the contrary case, assume that zn 6= x for all n ∈ N. Therefore
znS∗x and TznS∗Tx for all n ∈ N. Using the contractivity Condition (B4), for all n ∈ N,

0 ≤ $(d(Tzn, Tx), d(zn, x)) = $(d(Tn+1z0, Tn+1x), d(Tnz0, Tnx)).

It follows from (B′2) that {d(Tnz0, Tnx)} → 0, that is, {zn} → x.
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5. Consequences

In this section, we illustrate how many well known theorems in fixed point theory (that involve
only d(x, y) and d(Tx, Ty) in their contractivity conditions) can be deduced from our main results.

5.1. Meir–Keeler Contractions

Meir and Keeler generalized the Banach theorem in a way that have attracted much attention in
the last 40 years.

Definition 5 (Meir and Keeler [15]). A Meir–Keeler contraction is a mapping T : X → X from a metric
space (X, d) into itself such that for all ε > 0, there exists δ > 0 verifying that if x, y ∈ X and ε ≤ d(x, y) <
ε + δ, then d(Tx, Ty) < ε.

Lim characterized this kind of mappings in terms of a contractivity condition using the following
class of auxiliary functions.

Definition 6 (Lim [14]). A function φ : [0, ∞)→ [0, ∞) is called an L-function if

(a) φ(0) = 0;
(b) φ(t) > 0 for all t > 0; and
(c) for all ε > 0, there exists δ > 0 such that phi(t) ≤ ε for all t ∈ [ε, ε + δ].

Each L-function must satisfy:

φ(t) ≤ t for all t ∈ [0, ∞) . (7)

Theorem 4 (Lim [14], Theorem 1). Let (X, d) be a metric space and let T : X → X be a self-mapping. Then,
T is a Meir–Keeler mapping if, and only if, there exists an (non-decreasing, right-continuous) L-map φ such that

d(Tx, Ty) < φ(d(x, y)) for all x, y ∈ X verifying d(x, y) > 0. (8)

Meir and Keeler [15] demonstrated the following fixed point theorem by using a result of Chu
and Diaz [18].

Theorem 5 (Meir and Keeler [15]). Every Meir–Keeler contraction from a complete metric space into itself
has a unique fixed point.

We prove that this result can be immediately deduced from our main statements.

Theorem 6. Every Meir–Keeler contraction is an ample spectrum contraction that also verifies (B′2) and (B5).

Proof. Let (X, d) be a metric space and let T : X → X be a Meir–Keeler contraction. By Theorem
4, there exists an L-map φ : [0, ∞) → [0, ∞) verifying Equation (8). Let A = ran(d) and let define
$φ : A × A → R by $φ(t, s) = φ (s) − t for all t, s ∈ A. Let us show that T is an ample spectrum
contraction with respect to $φ.

(B′2) Let x1, x2 ∈ X be two points such that

Tnx1 6= Tnx2 and $φ(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) ≥ 0 for all n ∈ N.

As d (Tnx1, Tnx2) > 0, it follows from Equations (7) and (8) that, for all n ∈ N,

d
(

Tn+1x1, Tn+1x2

)
= d (TTnx1, TTnx2) < φ(d (Tnx1, Tnx2)) ≤ d(Tnx1, Tnx2).
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As {d(Tnx1, Tnx2)} is a bounded-below decreasing sequence of real numbers, it is convergent.
Let L ≥ 0 be its limit. To prove that L = 0, we reason by contradiction. Assume that L > 0. Hence,

0 < L ≤ d(Tn+1x1, Tn+1x2) < φ(d(Tnx1, Tnx2)) ≤ d(Tnx1, Tnx2) for all n ∈ N.

Letting ε = L > 0 in Condition (c) of Definition 6, there exists δ > 0 such that φ(t) ≤ ε = L for all
t ∈ [ε, ε + δ]. As {d(Tnx1, Tnx2)} ↘ L+, there exists n0 ∈ N such that L < d(Tn0 x1, Tn0 x2) < L + δ for
all n ≥ n0. Therefore,

φ(d(Tn0 x1, Tn0 x2)) ≤ ε = L < φ(d(Tn0 x1, Tn0 x2)),

which is a contradiction. Thus, L = 0 and {d (Tnx1, Tnx2)} → 0.
(B2) It follows from (B′2).
(B3) Let {(an, bn)} ⊆ A× A be a T-sequence such that {an} and {bn} converge to the same limit

L ≥ 0 and verifying that L < an and $φ(an, bn) ≥ 0 for all n ∈ N. By definition, there exist two
sequences {xn}, {yn} ⊆ X such that

an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

Notice that, from Equation (8), for all n ∈ N,

L < an = d(Txn, Tyn) < φ(d(xn, yn)) = φ (bn) ≤ bn.

To prove that L = 0, assume that L > 0. Letting ε = L > 0 in Condition (c) of Definition 6, there
exists δ > 0 such that

φ(t) ≤ ε = L for all t ∈ [ε, ε + δ] .

As {d (xn, yn)} ↘ L+, there exists n0 ∈ N such that L < d (xn, yn) < L + δ for all n ≥ n0.
Therefore,

φ(d (xn0 , yn0)) ≤ ε = L < φ(d (xn0 , yn0)),

which is a contradiction. Thus, L = 0.
(B4) It is clear that, for all x, y ∈ X such that d(x, y) > 0 and d(Tx, Ty) > 0, Theorem 4

guarantees that
$φ (d(Tx, Ty), d(x, y)) = φ (d(x, y))− d(Tx, Ty) > 0.

(B5) Let {(an, bn)} be a T-sequence such that {bn} → 0 and $φ(an, bn) ≥ 0 for all n ∈ N. Then,
for all n ∈ N,

0 ≤ $φ(an, bn) = φ (bn)− an,

which means that 0 ≤ an ≤ φ (bn) ≤ bn. Therefore, {bn} → 0 implies {an} → 0.

Theorem 7. Theorem 5 follows from Theorems 2 and 3.

Proof. From Theorem 6, every Meir–Keeler contraction is an ample spectrum contraction that also
verifies (B′2) and (B5), thus Theorems 2 and 3 are applicable in order to conclude that every Meir–Keeler
contraction has a unique fixed point.

5.2. Samet et al.’s Contractions

In [9], Samet et al. introduced the following kind of contractions and proved the following results.
Let us denote by Ψ the family of nondecreasing functions ψ : [0, ∞)→ [0, ∞) such that Σn∈Nψn(t) < ∞
for each t > 0, where ψn is the nth iterate of ψ.
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Definition 7. Let (X, d) be a metric space and T : X → X be a given mapping. We say that T is
an α - ψ - contractive mapping if there exist two functions α : X× X → [0, ∞) and ψ ∈ Ψ such that

α(x, y) d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X. (9)

The main results in [9] can be summarized as follows.

Theorem 8 (Samet, Vetro and Vetro [9], Theorems 2.1, 2.2 and 2.3). Let (X, d) be a complete metric space
and T : X → X be an α - ψ - contractive mapping satisfying the following conditions:

(i) T is α - admissible (that is, if α(x, y) ≥ 1, then α(Tx, Ty) ≥ 1);
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1; and
(iii) at least, one of the following conditions holds:

(iii.1) T is continuous; or
(iii.2) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and {xn} → x ∈ X as n → ∞,

then α(xn, x) ≥ 1 for all n.

Then, T has a fixed point, that is, there exists x∗ ∈ X such that Tx∗ = x∗.
Furthermore, adding the condition:

(H) for all x, y ∈ X, there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1,

we obtain uniqueness of the fixed point of T .

To show that the previous theorem can be seen as a consequence of our main results, we present
the following statement in which we use a more general class of auxiliary functions.

Theorem 9. Let (X, d) be a metric space and T : X → X be a given mapping. Assume that there exist two
functions α : X× X → [0, ∞) and ψ : [0, ∞)→ [0, ∞) such that ψ is nondecreasing, limn→∞ ψn (t) = 0 for
all t > 0, and also

α(x, y) d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X. (10)

Then, T is an ample spectrum contraction with respect to Sα that also verifies (B′2) and (B5).

Proof. Let Sα be the binary relation on X given in (1). Let A = ran(d) and let define γ : A→ R and
$γ : A× A→ R by, for all t, s ∈ A,

γ (s) = inf ({ α(x, y) : d (x, y) = s }) ,

$γ (t, s) = ψ (s)− t γ (s) .

Notice that γ is well defined because if s ∈ A = ran(d), then there exist xs, ys ∈ X such
that d(xs, ys) = s, and we can take infimum in a nonempty, subset of non-negative real numbers.
Furthermore, as γ (d(x, y)) ≤ α(x, y) for all x, y ∈ X, then, by (10),

$γ (d(Tx, Ty), d(x, y)) = ψ (d(x, y))− d(Tx, Ty) γ (d(x, y))

≥ ψ (d(x, y))− d(Tx, Ty) α (x, y) ≥ 0.

Hence, (B4) holds. Let us prove the rest of properties.
(B′2) Let x1, x2 ∈ X be two points such that

Tnx1S∗α Tnx2 and $φ(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) ≥ 0 for all n ∈ N.
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Since Tnx1S∗α Tnx1, then α(Tnx1, Tnx2) ≥ 1 and Tnx1 6= Tnx2 for all n ∈ N. By using Equation
(10) and Proposition 1, for all n ∈ N,

d(Tn+1x1, Tn+1x2) ≤ α(Tnx1, Tnx2) d(TTnx1, TTnx2)

≤ ψ (d(Tnx1, Tnx2)) ≤ d(Tnx1, Tnx2).

As {d(Tnx1, Tnx2)} is a bounded-below non-increasing sequence of real numbers, it is convergent. Let
L ≥ 0 be its limit. Hence,

0 ≤ L ≤ d(Tn+1x1, Tn+1x2) ≤ ψ(d(Tnx1, Tnx2)) ≤ d(Tnx1, Tnx2) for all n ∈ N.

As ψ is nondecreasing, for all n ∈ N,

d(Tnx1, Tnx2) ≤ ψ(d(Tn−1x1, Tn−1x2)) ≤ ψ2(d(Tn−2x1, Tn−2x2)) ≤ . . . ≤ ψn(d (x1, x2)).

Taking into account that d (x1, x2) > 0, then limn→∞ ψn (d (x1, x2)) = 0, and letting n→ ∞ in

0 ≤ L ≤ d(Tnx1, Tnx2) ≤ ψn(d (x1, x2)),

we conclude that L = limn→∞ d(Tnx1, Tnx2) = 0.
(B2) It follows from (B′2).
(B3) Let {(an, bn)} ⊆ A× A be a (T,Sα)-sequence such that {an} and {bn} converge to the same

limit L ≥ 0 and verifying that L < an and $γ(an, bn) ≥ 0 for all n ∈ N. By definition, there are two
sequences {xn}, {yn} ⊆ X such that

xnSαyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

Hence, α (xn, yn) ≥ 1 for all n ∈ N. To prove that L = 0, we reason by contradiction. Assume that
L > 0. By Property (P12) of Proposition 1, ψ(L) < L. It follows from Equation (10) that

ψ(L) < L < an = d(Txn, Tyn) ≤ α (xn, yn) d(Txn, Tyn) ≤ ψ (d (xn, yn)) ≤ d (xn, yn) = bn. (11)

Since {bn} → L, then limn→∞ ψ (d (xn, yn)) = L. As ψ is nondecreasing, the following limit exists
and takes the value

lim
s→L+

ψ (s) = lim
n→∞

ψ (d (xn, yn)) = L.

As ψ is nondecreasing, ψ(L) ≤ ψ(s) ≤ ψ(t) for all L ≤ s ≤ t, so

ψ(L) < L = lim
s→L+

ψ (s) ≤ ψ (t) for all t ∈ (L, ∞) .

Taking in mind that L ≤ ψ (t) for all t ∈ (L, ∞), next, we distinguish two cases.
(Case 1) Assume that ψ(t) > L for all t ∈ (L, ∞). In this case, let t0 ∈ (L, ∞) be arbitrary. Then,

ψ(t0) > L. Therefore, ψ2(t0) = ψ(ψ(t0)) > L. Repeating this argument, ψ3(t0) = ψ(ψ2(t0)) > L.
Similarly, by induction, ψn(t0) > L for all n ∈ N, which contradicts the fact that limn→∞ ψn (t0) = 0.

(Case 2) Assume that there exists L′ > L such that ψ(L′) = L. In this case, as ψ is nondecreasing,
for all t ∈ (L, L′], we have that L ≤ ψ (t) ≤ ψ(L′) = L, so ψ(t) = L for all t ∈ (L, L′]. Since
{bn = d (xn, yn)} ↘ L+, there exists n0 ∈ N such that d (xn0 , yn0) ∈ (L, L′]. Hence, ψ (d (xn0 , yn0)) = L,
which contradicts the strict inequality in Equation (11) because

L < an0 ≤ ψ (d (xn0 , yn0)) .

In any case, we get a contradiction, so L = 0.
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(B5) Let {(an, bn)} be a (T,Sα)-sequence such that {bn} → 0 and $γ(an, bn) ≥ 0 for all n ∈ N. By
definition, there exist two sequences {xn}, {yn} ⊆ X such that

xnSαyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

In particular, α (xn, yn) ≥ 1 for all n ∈ N. It follows from Equation (10) that

0 < an = d(Txn, Tyn) ≤ α (xn, yn) d(Txn, Tyn) ≤ ψ (d (xn, yn)) ≤ d (xn, yn) = bn.

Since {bn} → 0, then {an} → 0.

Corollary 1. Every Samet et al.’s α - ψ - contraction (in the sense of Definition 7) is an ample spectrum
contraction with respect to Sα that also verifies (B′2) and (B5).

Proof. It follows from the fact that, if ψ ∈ Ψ, then Theorem 9 is applicable because ψ is nondecreasing
and limn→∞ ψn (t) = 0 for all t > 0 (recall Proposition 1).

Theorem 10. Theorem 8 immediately follows from Theorems 2 and 3.

Proof. By Corollary 1, every Samet et al.’s α - ψ - contraction is an ample spectrum contraction with
respect to Sα that also verifies (B′2) and (B5), thus Theorems 2 and 3 are applicable.

5.3. Some Meditations about a Nonsymmetric Condition

In [1], Khojasteh et al. introduced the notion of simulation function as a mapping ζ : [0, ∞)×
[0, ∞)→ R satisfying the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0; and
(ζ3) if {tn}, {sn} are sequences in (0, ∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0.

Shortly after, Roldán López de Hierro et al. [2] pointed out that Condition (ζ3) is symmetric in
both arguments of ζ, which is not necessary. Hence, these authors introduced the following variation
in Axiom (ζ3):

(ζ3) if {tn}, {sn} are sequences in (0, ∞) such that lim
n→∞

tn = lim
n→∞

sn > 0 and tn < sn for all n ∈ N, then

lim sup
n→∞

ζ(tn, sn) < 0.

In this way, they removed the symmetry of a key function involved in the contractivity condition.
After that, Roldán López de Hierro and Shahzad [3] presented the concept of R-contraction, which
is intimately associated to an R-function $ : A× A → R. Such kind of functions must satisfy the
following conditions (see [3], Definition 12):

($1) If {an} ⊂ (0, ∞) ∩ A is a sequence such that $(an+1, an) > 0 for all n ∈ N, then {an} → 0.
($2) If {an}, {bn} ⊂ (0, ∞) ∩ A are two sequences converging to the same limit L ≥ 0 and verifying

that L < an and $(an, bn) > 0 for all n ∈ N, then L = 0.

Questions immediately arise: Why did the authors impose

L < an for all n ∈ N (12)
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in Assumption ($2)? Why did they not consider

L < bn for all n ∈ N (13)

rather than Equation (12)? A first response we can give is that both assumptions are interesting in order
to remove the symmetry in the variables of $ in Assumption ($2) because the role of the sequence {an}
is different from the role of {bn}. However, are Equations (12) and (13) equivalent? The response is no:
we do believe that the condition in Equation (12) is better than the one in Equation (13). We justify it
by the following fact: using the hypothesis in Equation (12), it is easy to check that every Meir–Keeler
condition is an R-condition (see Theorem 25 in [3]). However, if we have only assumed that Equation
(13) holds, then some Meir–Keeler contractions would not have been R-contractions. To illustrate it,
we modify Example 2 in the following way.

Example 3. Let X = [0, 1] ∪ C ∪ D, where C = { 10m ∈ N : m ∈ N∗ } and D = { 10m + 1 + 1
m ∈ N :

m ∈ N∗ }. If X is furnished with the Euclidean metric dE(x, y) = | x− y | for all x, y ∈ X, then (X, dE) is
a complete metric space. Let T : X → X be the self-mapping defined by

Tx =


x
4

, if x ∈ [0, 1] ,

0, if x = 10m ∈ C (for some m ∈ N∗),

1− 1
2m

, if x = 10m + 1 + 1
m ∈ D (for some m ∈ N∗);

Notice that Tx ∈ [0, 1) for all x ∈ X. Therefore,

dE(Tx, Ty) < 1 for all x, y ∈ X. (14)

Let us show that T is a Meir–Keeler contraction in (X, dE). Indeed, let φ : [0, ∞)→ [0, ∞) be the function
given by

φ (t) =

{ t
2

, if t ∈ [0, 1] ,

1, if t > 1.

Clearly, φ is an L-function, and we claim that Equation (8) holds. Let x, y ∈ X be such that d (x, y) > 0.
Suppose, without loss of generality, that x < y.

• If x, y ∈ [0, 1], then dE(x, y) ≤ 1 and

dE(Tx, Ty) = dE

( x
4

,
y
4

)
=
∣∣∣ x

4
− y

4

∣∣∣ = | x− y |
4

<
| x− y |

2
= φ(dE(x, y)).

• If x ∈ [0, 1] and y ∈ C ∪ D, then dE(x, y) > 1, and it follows from Equation (14) that

dE(Tx, Ty) < 1 = φ(dE(x, y)).

• If x, y ∈ C ∪ D, then dE(x, y) > 1 and, similarly, dE(Tx, Ty) < 1 = φ(dE(x, y)).

In any case, Equation (8) holds and Theorem 4 ensures us that T is a Meir–Keeler contraction in (X, dE).
In fact, Theorem 21 in [3] guarantees that the function $φ : [0, ∞)× [0, ∞)→ R given by

$φ(t, s) = φ(s)− t for all t, s ∈ [0, ∞) ,

is an R-function on [0, ∞) verifying ($3). In particular, it satisfies Axiom ($2). Let us show that $φ would
not satisfy ($2) if we replace Equation (12) with Equation (13). Indeed, let {xn}n∈N∗ and {yn}n∈N∗ be the
sequences in X given by

xn = 10n and yn = 10n + 1 +
1
n

for all n ∈ N.
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Therefore, for all n ∈ N,

an = dE(Txn, Tyn) = dE

(
0, 1− 1

2n

)
= 1− 1

2n
> 0 and

bn = dE(xn, yn) = dE

(
10n, 10n + 1 +

1
n

)
= 1 +

1
n
> 1.

Hence, for all n ∈ N,

$φ(an, bn) = $φ

(
1− 1

2n
, 1 +

1
n

)
= φ

(
1 +

1
n

)
−
(

1− 1
2n

)
= 1−

(
1− 1

2n

)
=

1
2n

> 0

However, L = 1 is not zero. Therefore, $φ does not satisfy ($2) if we replace Equation (12) with Equation
(13). Thus, in this case, there would be Meir–Keeler contractions that are not R-contractions.

As it can be easily checked, Property ($2) that R-functions must satisfy leads to Condition (A3)

for (A,S)-contractions and Condition (B3) for ample spectrum contractions.

(B3) If {(an, bn)} ⊆ A× A is a (T,S∗)-sequence such that {an} and {bn} converge to the same limit
L ≥ 0 and verifying that L < an and $(an, bn) ≥ 0 for all n ∈ N, then L = 0.

If we have assumed the condition in Equation (13) rather than the condition in Equation (12) in
(B3), then the same arguments given in Example 3 prove that there would be Meir–Keeler contractions
that are not ample spectrum contractions. As a consequence, we conclude that the assumption in
Equation (12) is more appropriate than the one in Equation (13) in the context of fixed point theory.

Nevertheless, in the next subsection, we are going to show that, under some very recent
contractivity conditions, they would be equivalent.

5.4. Shahzad et al.’s Contractions

In [10], Shahzad et al. presented some coincidence point results for a new class of contractive
mappings that they called (α, ψ, φ)-contractions. They used the following kind of auxiliary functions.

Definition 8 (Roldán López de Hierro [10], Definition 3.5). Let FA be the family of all pairs (ψ, φ) where
ψ, φ : [0, ∞)→ [0, ∞) are two functions verifying the following two conditions:(
F 1
A
)

If {an} ⊂ (0, ∞) is a sequence such that ψ (an+1) ≤ φ(an) for all n ∈ N, then {an} → 0.(
F 2
A
)

If {an}, {bn} ⊂ [0, ∞) are two sequences converging to the same limit L and such that L < an and
ψ (bn) ≤ φ(an) for all n ∈ N, then L = 0.

As a consequence of their main coincidence results, they presented the following statement (see
the necessary preliminaries in [10]).

Theorem 11 (Shahzad, Karapınar and Roldán López de Hierro [10], Theorem 6.1). Let (X, d) be a metric
space, let α : X× X → [0, ∞) be a function and let T : X → X be a mapping such that the following conditions
are fulfilled:

1. there exists a subset A ⊆ X such that T(X) ⊆ A and (A, d) is complete;
2. α is transitive and T is α-admissible;
3. there exists (ψ, φ) ∈ FA such that

α(x, y) ψ (d(Tx, Ty)) ≤ φ (d(x, y)) for all x, y ∈ X; (15)

and
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4. at least one of the following conditions holds:

(a) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and T is (d, α)-right-continuous; or
(b) there exists x0 ∈ X such that α(Tx0, x0) ≥ 1 and T is (d, α)-left-continuous.

Then, T has, at least, a fixed point.
Additionally, assume that φ(0) = 0, ψ−1({0}) = {0}, and the following property holds:

(U) for all fixed points x and y of T, there exists z ∈ X such that z is, at the same time, α-comparable to x and
to y.

Then, T has a unique fixed point.

In the following definition, we modify the second condition.

Definition 9. Let GA be the family of all pairs (ψ, φ) where ψ, φ : [0, ∞)→ [0, ∞) are two functions verifying
the following two conditions:(
F 1
A
)

If {an} ⊂ (0, ∞) is a sequence such that ψ (an+1) ≤ φ(an) for all n ∈ N, then {an} → 0.(
G2
A
)

If {an}, {bn} ⊂ [0, ∞) are two sequences converging to the same limit L and such that L < bn and
ψ (bn) ≤ φ(an) for all n ∈ N, then L = 0.

The same theorem can be proved in this case.

Theorem 12. Let (X, d) be a metric space, let α : X × X → [0, ∞) be a function and let T : X → X be a
mapping such that the following conditions are fulfilled:

1. There exists a subset A ⊆ X such that T(X) ⊆ A and (A, d) is complete.
2. α is transitive and T is α-admissible.
3. There exists (ψ, φ) ∈ GA such that

α(x, y) ψ (d(Tx, Ty)) ≤ φ (d(x, y)) for all x, y ∈ X. (16)

4. At least one of the following conditions holds:

(a) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and T is (d, α)-right-continuous; or
(b) there exists x0 ∈ X such that α(Tx0, x0) ≥ 1 and T is (d, α)-left-continuous.

Then, T has, at least, a fixed point.
Additionally, assume that φ(0) = 0, ψ−1({0}) = {0}, and the following property holds:

(U) For all fixed points x and y of T, there exists z ∈ X such that z is, at the same time, α-comparable to x and
to y.

Then, T has a unique fixed point.

Let us show how this last result can be deduced from Theorems 2 and 3. The key is the
following result.

Lemma 2. Let (X, d) be a metric space, let α : X× X → [0, ∞) be a function and let T : X → X be a mapping
such that the following conditions are fulfilled:

1. There exists (ψ, φ) ∈ GA such that

α(x, y) ψ (d(Tx, Ty)) ≤ φ (d(x, y)) for all x, y ∈ X. (17)
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2. There exist two distinct points x0, x1 ∈ X such that α (x0, x1) ≥ 1.

Then, T is an ample spectrum contraction with respect to a function $ and Sα that also verifies (B′2).

Proof. Let us consider

A = { d (x, y) ∈ [0, ∞) : x, y ∈ X, xS∗α y }
= { d (x, y) ∈ [0, ∞) : x, y ∈ X, x 6= y, α (x, y) ≥ 1 } .

As d (x0, x1) ∈ A, then A is nonempty. Let us define the function γ : A→ R, for all t ∈ A, by

γ (t) = inf ({ α(x, y) : x, y ∈ X, xS∗α y and d(x, y) = t }) .

To prove that γ is well defined, let t ∈ A be arbitrary and let

Ωt = { α(x, y) : x, y ∈ X, xS∗α y and d(x, y) = t } .

By definition, as t ∈ A, there exist xt, yt ∈ X such that xtS∗α yt and t = d (xt, yt). Therefore,
α (xt, yt) ∈ Ωt, so this set is nonempty. Moreover, let x, y ∈ X be arbitrary points such that xS∗α y and
d(x, y) = t. Hence, α(x, y) ≥ 1. This proves that α(x, y) ≥ 1 for all number α(x, y) ∈ Ωt. Taking into
account that Ωt is nonempty and bounded below by 1, we can take infimum, which means that γ(t) is
well defined. In particular, we have proved the following facts:

γ(t) = inf Ωt ≥ 1 for all t ∈ A; (18)

γ (d (x, y)) ≤ α(x, y) for all x, y ∈ X such that xS∗α y. (19)

Considering the pair (ψ, φ) ∈ GA, let $ : A× A→ R be defined, for all t, s ∈ A, by

$ (t, s) = φ (s)− γ (s) ψ (t) for all t, s ∈ A.

We claim that T is an ample spectrum contraction with respect to $ and Sα that also verifies (B′2).
We demonstrate each condition. (B1) is obvious.

(B4) Let x, y ∈ X be arbitrary points such that xS∗α y and TxS∗α Ty, that is, α (x, y) ≥ 1, α (Tx, Ty) ≥
1, x 6= y and Tx 6= Ty. Therefore, applying Equation (17),

α(x, y) ψ (d(Tx, Ty)) ≤ φ (d(x, y)) . (20)

In particular, it follows from Equations (19) and (20) that

$ (d(Tx, Ty), d(x, y)) = φ (d(x, y))− γ (d(x, y)) ψ (d(Tx, Ty))

≥ φ (d(x, y))− α(x, y)ψ (d(Tx, Ty)) ≥ 0,

so (B4) holds.
(B′2) Let x1, x2 ∈ X be two points such that

Tnx1S∗α Tnx2 and $(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) ≥ 0 for all n ∈ N.

Notice that Tnx1S∗α Tnx2 and Tn+1x1S∗α Tn+1x2 imply that d (Tnx1, Tnx2) and d
(
Tn+1x1, Tn+1x2

)
belong to A. Let

an = d (Tnx1, Tnx2) > 0 for all n ∈ N.
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In particular, as γ ≥ 1, then

0 ≤ $(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) = $ (an+1, an)

= φ (an)− γ (an) ψ (an+1) ≤ φ (an)− ψ (an+1) ,

that is, ψ (an+1) ≤ φ (an), for all n ∈ N. Since (φ, ψ) ∈ GA, Condition
(
F 1
A
)

implies that {an} → 0,
that is, {d (Tnx1, Tnx2)} → 0, which means that (B′2) holds.

(B2) It immediately follows from (B2).
(B3) Let {(a′n, b′n)} ⊆ A× A be a (T,S∗α )-sequence such that {a′n} and {b′n} converge to the same

limit L ≥ 0 and verifying that L < a′n and $(a′n, b′n) ≥ 0 for all n ∈ N. By definition, there exist two
sequences {xn}, {yn} ⊆ X such that

xnS∗yn, TxnS∗Tyn, a′n = d(Txn, Tyn) > 0 and b′n = d(xn, yn) > 0 for all n ∈ N.

As γ ≥ 1, then

0 ≤ $(a′n, b′n) = φ
(
b′n
)
− γ

(
b′n
)

ψ
(
a′n
)
≤ φ

(
b′n
)
− ψ

(
a′n
)

,

that is, ψ (a′n) ≤ φ (b′n), for all n ∈ N. Since (φ, ψ) ∈ GA, Condition
(
G2
A
)

(applied to {an} = {b′n} and
{bn} = {a′n}) implies that L = 0, which means that (B3) holds.

As a consequence, we conclude that T is an ample spectrum contraction with respect to $ and Sα

that also verifies (B′2).

Lemma 2 permits us to show that Theorem 12 is a particular case of the above-presented main
statements.

Theorem 13. Theorem 12 follows from Theorems 2 and 3.

Proof. Assume that all the hypotheses of Theorem 12 hold. For instance, assume that there exists
x0 ∈ X such that α(x0, Tx0) ≥ 1 and T is (d, α)-right-continuous (notice that Condition (4.b) requires
a version of Theorems 2 and 3 in which T is non-increasing). Let {xn+1 = Txn}n≥0 be the Picard
sequence of T based on x0. If there exists some n0 ∈ N such that xn0+1 = xn0 , then xn0 is a fixed point
of T, and {xn} converges to such point. In this case, the part about existence of a fixed point of T is
finished. On the contrary case, assume that xn 6= xn+1 for all n ∈ N. Let Sα be the binary relation on X
given, for x, y ∈ X, by

xSαy if α(x, y) ≥ 1. (21)

By Lemma 1:

• As α is transitive, Sα is transitive.
• As T is α-admissible, T is Sα-nondecreasing.
• As T is (d, α)-right-continuous, T is Sα-nonincreasing-continuous, thus T is
Sα-strictly-increasing-continuous (T satisfies Item (a) of Theorem 2).

By Hypothesis 1 of Theorem 12, there exists a subset A ⊆ X such that T(X) ⊆ A and (A, d) is
complete. In particular, T(X) is (Sα, d)-strictly-increasing-precomplete. Finally, Lemma 2 guarantees
that T is a an ample spectrum contraction with respect to $ and Sα that also verifies (B′2). As all
hypotheses of Theorem 2 are satisfied, T has at least a fixed point.

Following the statement of Theorem 12, additionally, assume that φ(0) = 0, ψ−1({0}) = {0}, and
the following property holds:

(U) For all fixed points x and y of T, there exists z ∈ X such that z is, at the same time, α-comparable
to x and to y.
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Then, Theorem 3 is applicable, thus T has a unique fixed point.

Remark 3. Notice that, in fact, we have proved that every Shahzad et al.’s contraction in the sense of Theorem 11
is an ample spectrum contraction with respect to an appropriate function $.

5.5. Wardowski’s F-Contractions

Definition 10 (Wardowski [11], Definition 2.1). Given a function F : (0, ∞)→ R , let consider the following
properties:

(F1) F is strictly increasing, that is, F(t) < F(s) for all t, s ∈ (0, ∞) such that t < s.
(F2) For each sequence {tn}n∈N of positive real numbers we have that {tn} → 0 if, and only if, {F(tn)} →

−∞.
(F3) There exists λ ∈ (0, 1) such that lim

t→0+
tλF (t) = 0.

If (X, d) is a metric space, a mapping T : X → X is an F-contraction if there exist a positive number
τ > 0 and a function F : (0, ∞)→ R satisfying properties (F1)-(F3) such that

τ + F (d (Tx, Ty)) ≤ F (d (x, y)) for all x, y ∈ X such that d (Tx, Ty) > 0.

Theorem 14 (Wardowski [11], Theorem 2.1). Let (X, d) be a complete metric space and let T : X → X be
an F-contraction. Then, T has a unique fixed point x∗ ∈ X, and for every x0 ∈ X a sequence {Tnx0}n∈N is
convergent to x∗.

Lemma 3. Every F-contraction is an ample spectrum contraction.

Notice that in the following proof we do not use Property (F3).

Proof. Let (X, d) be a metric space and let T : X → X be an F-contraction with respect to a constant
τ > 0 and a function F : (0, ∞) → R. Let λ = e−τ ∈ (0, 1), let A = [0, ∞) and let φ : (0, ∞) → (0, ∞)

and $ : A× A→ R be the functions:

φ (t) =
{

eF(t), if t > 0,
0, if t = 0;

$ (t, s) = λ φ (s)− φ (t) for all t, s ∈ [0, ∞)

Property (F1) implies that φ is strictly increasing on (0, ∞) and Property (F2) guarantees that for
each sequence {tn}n∈N of positive real numbers we have that

{tn} → 0 if, and only if, {φ(tn)} → 0. (22)

We claim that T is an ample spectrum contraction with respect to $ and the trivial preorder SX.
Property (B1) is obvious.

(B2) Let {xn} ⊆ X be a Picard sequence of T such that

xn 6= xn+1 and $ (d (xn+1, xn+2) , d (xn, xn+1)) ≥ 0 for all n ∈ N.

Therefore, for all n ∈ N, d (xn, xn+1) > 0 and

0 ≤ $ (d (xn+1, xn+2) , d (xn, xn+1)) = λ φ (d (xn, xn+1))− φ (d (xn+1, xn+2)) ,

so
0 ≤ φ (d (xn+1, xn+2)) ≤ λ φ (d (xn, xn+1)) .
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In particular, {φ (d (xn, xn+1))} → 0, and the property in Equation (22) guarantees that
{d (xn, xn+1)} → 0.

(B3) Let {(an, bn)} ⊆ A× A be a (T,S∗X)-sequence such that {an} and {bn} converge to the same
limit L ≥ 0 and verifying that L < an and $(an, bn) ≥ 0 for all n ∈ N. By Definition 3, an > 0 and
bn > 0 for all n ∈ N. To prove that L = 0, assume, by contradiction, that L > 0. Notice that for all
n ∈ N,

0 ≤ $(an, bn) = λ φ (bn)− φ (an) .

As φ is strictly increasing,

0 < φ (L) < φ (an) ≤ λ φ (bn) < φ (bn) .

This means that L < an < bn. Since φ is strictly increasing, the following limit exists:

L′ = lim
s→L+

φ (s) .

Furthermore, 0 < φ (L) ≤ L′. As {an} → L, {bn} → L and L < an < bn for all n ∈ N, then

L′ = lim
s→L+

φ (s) = lim
n→∞

φ (an) = lim
n→∞

φ (bn) .

Taking limit as n→ ∞ in φ (an) ≤ λ φ (bn), we deduce that L′ ≤ λ L′, which contradicts the fact
that L′ > 0. Therefore, L = 0.

(B4) Let x, y ∈ X be two points such that Tx 6= Ty. In particular, d (Tx, Ty) > 0. Hence,

τ + F (d (Tx, Ty)) ≤ F (d (x, y)) ⇔ eτ+F(d(Tx,Ty)) ≤ eF(d(x,y))

⇔ eF(d(Tx,Ty)) ≤ e−τ eF(d(x,y)) ⇔ φ (d (Tx, Ty)) ≤ λ φ (d (x, y))

⇔ λ φ (d (x, y))− φ (d (Tx, Ty)) ≥ 0 ⇔ $ (d (Tx, Ty) , d (x, y)) ≥ 0.

Therefore, T is an ample spectrum contraction with respect to $ and SX .

As a consequence, Theorem 14 is a simple consequence of Theorems 2 and 3.
Finally, we point out that the present techniques can be easily generalized to guarantee existence

and uniqueness of multidimensional coincidence/fixed points following the techniques described
in [19–25].
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