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1. Introduction

Multivalued mappings have many applications in pure and applied mathematics. Topology,
theory of functions of a real variable, nonlinear functional analysis, the theory of games, and
mathematical economics are some examples for those mentioned areas.

We picture the basics of the theory of multivalued mappings. We describe two topologies and
linked open balls in the generalized modular metric spaces (GMMS). After that we compare some
other topologies in modular spaces, modular metric spaces, and JS(Jleli-Samet)-metric spaces defined
by Jleli and Samet in [1]. For this purpose, we give some useful definitions and clarify why we need
them. Then, we add the definition of generalized Hausdorff modular distance.

We investigate a new type of definitions in GMMS, such as multivalued Lipschitzian mapping
and D-multivalued contraction. In addition, we focus connection between those definitions. We give a
generalization of the Banach principle of contraction mappings and we explain how we find a fixed
point if we have a multivalued contraction mapping of a GMMS XD into the nonempty D-closed and
bounded subsets of XD.

Nadler initiated the fixed point theory of set-valued contractions. After that it is developed by
many authors in different directions. Some fixed point theorems for multivalued contraction mapping
are proved, as well as a theorem on the behaviour of fixed points as the mappings vary. We choose
two of them: Caristi and Feng-Liu type approaches for the existence of a fixed point in GMMS.

Finally, we give an application for a non-homogeneous linear parabolic partial differential
equation and an initial value problem in GMMS to make our results clear.

Definition 1. Let X be an abstract set. A function D : (0, ∞)× X × X → [0, ∞] is said to be a generalized
modular metric(GMM) on X, if it satisfies the following three axioms:

(GMM1) if Dλ(x, y) = 0, for all λ > 0, then x = y, for all x, y ∈ X;
(GMM2) Dλ(x, y) = Dλ(y, x), for all λ > 0 and x, y ∈ X;
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(GMM3) there exists C > 0 such that, if (x, y) ∈ X× X, {xn} ⊂ X with lim
n→∞

Dλ(xn, x) = 0, for some
λ > 0, then

Dλ(x, y) ≤ C lim sup
n→∞

Dλ(xn, y).

The pair (X, D) is said to be a generalized modular metric space(GMMS).

Example 1. Let X = {1, 2, 3} and define D : (0, ∞) × X × X → [0, ∞] as Dλ(1, 1) = Dλ(2, 2) =

Dλ(3, 3) = 0, Dλ(1, 2) = Dλ(2, 1) = 2, Dλ(1, 3) = Dλ(3, 1) = 6, Dλ(2, 3) = Dλ(3, 2) = 2 for
λ > 0. Then, GMM1 and GMM2 are obvious. Dλ+µ(1, 3) ≤ Dλ(1, 2) + Dµ(2, 3) gives us 6 ≤ 4, is not
true, so (X, D) is not a modular metric space. For GMM3, we have lim

n→∞
Dλ(xn, x) = 0, while we have

lim
n→∞

xn = x. It is clear that if we take x = y then GMM3 is satisfied, if we choose x 6= y it is easy to show that

Dλ(x, y) ≤ C lim supn→∞ Dλ(xn, y) is true.

It is easy to check that if there exist x, y ∈ X and {xn} ⊂ X with lim
n→∞

Dλ(xn, x) = 0, for some

λ > 0, while Dλ(x, y) < ∞, then we must have C ≥ 1. In fact, throughout this work, we assume C ≥ 1.
Let D be a GMM on X. Fix x0 ∈ X. The set

XD = XD(x0) = {x ∈ X : Dλ(x, x0)→ 0 as λ→ ∞}

is called generalized modular set.

Definition 2. Let (XD, D) be a GMMS.

(1) The sequence {xn}n∈N in XD is said to be D-convergent to x ∈ XD if and only if Dλ(xn, x) → 0,
as n→ ∞, for some λ > 0.

(2) The sequence {xn}n∈N in XD is said to be D-Cauchy if Dλ(xm, xn)→ 0, as m, n→ ∞, for some λ > 0.
(3) A subset A of XD is said to be D-closed if for any {xn} from A which D-converges to x, where x ∈ A.

The set C(XD) is defined as all the nonemty D-closed subsets of XD.
(4) A subset A of XD is said to be D-complete if for any {xn} D-Cauchy sequence in A such that

lim
n,m→∞

Dλ(xn, xm) = 0 for some λ, there exists a point x ∈ A such that lim
n→∞

Dλ(xn, x) = 0.

Now, we give a definition of multivalued mappings and show some results related to fixed points
in GMMS.

2. Results

2.1. Multivalued Mappings in GMMS

Two fixed point theorems for multivalued contraction mapping are proved in [2] by Nadler.
The first, a generalization of the contraction mapping principle of Banach, states as a multivalued
contraction mapping of a complete metric space into the nonempty closed and bounded subsets of
same metric space has a fixed point. The second, a generalization of a result of Edelstein, is a fixed
point theorem for compact set-valued local contractions. Nadler’s study is applied through other
metric spaces, such as in [3–19].

Feng and Liu [20] gave one of the most important generalization of Nadler’s result without using
Pompei-Hausdorff distance. Then many studies focused on those results and applied them in different
metric spaces; for example in [21]. We consider Feng-Liu theorem in GMMS.

Let (XD, D) be a GMMS and B ⊂ XD D−sequentially open subset of XD, while each sequence
of XD has lim

n→∞
Dλ(xn, x) = 0 for some λ, and there exists a point x ∈ B such that most part of the

sequence included in B.
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Let τXD be a family of all sequentially open subsets of XD. Any convergent sequence in XD is
convergent in a topological space (XD, τXD ). When we take C(XD) as a family of all nonempty closed
subsets of (XD, τXD ) and N a family of all nonempty subsets A of XD, we have the following property.
Then we threat these two subsets as they are equal. If Dλ(x, A) = 0, then x ∈ A for all x ∈ XD, while
Dλ(x, A) = inf{Dλ(x, y) : y ∈ A}. If the property is satisfied for any B ⊂ C(XD) and x ∈ XD, then
there exists a sequence in B such that lim

n→∞
Dλ(xn, x) = 0. In a topological space (XD, τXD ), we have

x ∈ B such that most part of the sequence included in B, which means B ∩ A 6= ∅, so x ∈ A = Ā. As a
result C(XD) ⊂ N . If we have A ⊂ N , x ∈ XD − A and a sequence in XD such that lim

n→∞
Dλ(xn, x) = 0,

then no subsequence in A satisfy Dλ(x, A) = 0 for any x ∈ A. So XD − A ∈ τXD is found. We have
A ∈ C(XD). The result gives us C(XD) = N . In addition, the definition of an open subset is given by
using open balls in GMMS as the following. If A is a subset of XD for any x ∈ XD, there exists ε > 0
such that B(x, ε) := {y ∈ XD : Dλ(x, y) < ε} ⊆ A.

In our related paper [22], τXD meets properties of usual topology. For example, if we take modular
vector spaces as in [23], the ρ-ball Bρ(x, r), where x ∈ Xρ and r ≥ 0, is defined by Bρ(x, r) = {y ∈
Xρ; ρ(x − y) < r}. Bρ is an open ball and a subset of A in vector space Xρ. In the example of the
topology (τρ) for all ρ-open subsets of Xρ is similar for open subsets of τXρ in a modular space Xρ.

Chistyakov [24] defined modular open balls and gave their topological structure as: A nonempty
set in X is said to ω-open if for every x ∈ A and λ > 0 there exists µ > 0 such that B(x)λ,µ ⊂ A by
using ω as a modular metric . Denoted by τ(ω) for all ω-open subsets of Xω we have a ω-topology
(modular topology) on Xω, which is similar to τXD in a modular metric space.

When we take a JS-metric space and the topology on JS-metric space, as in [21], we find the usual
topology on JS-metric space is, again, equal to τXD .

Now we can begin with the definition of generalized Hausdorff modular. Next, we interpret some
material and produce their relation in the following section.

Let (XD, D) be a GMMS. For all nonempty A, B ⊂ XD, the generalized Hausdorff modular is
defined by:

HD(λ, A, B) = max{sup
a∈A

Dλ(a, B), sup
b∈B

Dλ(b, A)}

on C(XD)—D-strongly complete version of XD is defined in the next section—where
Dλ(a, B) = inf

b∈B
Dλ(a, b).

If λ = 1, we have:

HD(A, B) = max{sup
a∈A

D1(a, B), sup
b∈B

D1(b, A)}

on C(XD), where D1(a, B) = inf
b∈B

D1(a, b).

Example 2. If we use the GMMS which is given in the first example, for A = {1, 2}, B = {3} ⊂ X, we have

HD(λ, {1, 2}, {3}) = max{ sup
a∈{1,2}

Dλ(a, {3}), sup
b∈{3}

Dλ(b, {1, 2})},

where Dλ(a, {3}) = inf
b∈{3}

Dλ(a, b) and Dλ({1, 2}, b) = inf
a∈{1,2}

Dλ(a, b). All possible results can be

calculated easily.

2.1.1. Fixed Point Results for Multivalued Mappings

Abdou and Khamsi searched the existence of fixed point for contractive-type multivalued map in
the setting of modular metric spaces in their study, and they investigated the existence of fixed point
of multivalued modular contractive mappings in modular metric spaces in [25]. They claimed that
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their results generalize or improve the fixed point result of Nadler in [2] and Edelstein. Their study
inspired us to work on similar ideas and generalize their results for GMMS.

In a primary sense, we define Lipschitzian mapping, fixed point and D-multivalued contraction
in GMMS for more generalized form of Lipschitzian maps we take λ = 1 such as in [25]. Then we
give some essential definitions, such as D-strongly Cauchy sequence in GMMS. Afterwards, we show
relations between these definitions and generalized Hausdorff modular metric. At the end of this
section, we give A linked fixed point theorem for D-multivalued contraction mapping in GMMS.

Definition 3. Let (XD, D) be a GMMS. A mapping f : XD → C(XD) is called a multivalued Lipschitzian
mapping, if there exists a constant k ≥ 0 such that for any x, y ∈ XD, for every a ∈ f (x) there exists b ∈ f (y),
such that

D1(a, b) ≤ k D1(x, y).

A point x ∈ XD is called a fixed point of f whenever x ∈ f (x). The set of fixed points of f will be denoted
by Fix( f ).

The mapping f is called as D-multivalued contraction, if the constant k < 1.

Example 3. If we take the same example as before, a mapping f : X → C(X) such that f (1) = f (2) =

1 and f (3) = 2 for every a ∈ f (x) there exists b ∈ f (y) the inequality D1(a, b) ≤ k D1(x, y) is verified in X.

Definition 4. Let XD be a GMMS and {xn}n∈N be a sequence of XD.

(1) The sequence {xn}n∈N in XD is said to be D-strongly Cauchy if
∞

∑
n=1

Dλ(xn, xn+1) < ∞, for some λ > 0.

(2) A subset M of XD is said to be D-strongly complete if for any {xn} D-strongly Cauchy sequence in M

such that
∞

∑
n=1

Dλ(xn, xn+1) < ∞ for some λ, there exists a point x ∈ M such that lim
n→∞

Dλ(xn, x) = 0.

(3) D is said to satisfy 1-Fatou property if for any convergent sequence {xn}n∈N ⊂ XD and x ∈ XD, such
that lim

n→∞
D1(xn, x) = 0, we have

D1(x, y) ≤ lim inf
n→∞

D1(xn, y),

for any y ∈ XD.

Let (XD, D) be a GMMS. Let f : XD → C(XD) be a multivalued map and x, y ∈ XD. Assume that
HD( f (x), f (y)) ≤ k D1(x, y) with 0 < D1(x, y) < ∞ for some constant k ≥ 0 and for every a ∈ f (x)
there exists b ∈ f (y), such that

D1(a, b) ≤ HD( f (x), f (y)) + ε

≤ k D1(x, y) + ε

= k D1(x, y) + 1−k
2 D1(x, y)

= 1+k
2 D1(x, y),

where ε = 1−k
2 D1(x, y) > 0. If we say 1+k

2 = k′ then D1(a, b) ≤ k′ D1(x, y).
At this point, we explain that D-multivalued contraction mapping f has a fixed point in particular

space XD.

Theorem 1. Let (XD, D) be a GMMS. Assume that XD is D-strongly complete and D satisfy 1-Fatou
property. Let f : XD → C(XD) be a D-multivalued contraction mapping. Assume that D1(x0, x) is finite for
some x0 ∈ XD and x ∈ f (x0). Then f has a fixed point.
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Proof. Fix x0 ∈ XD such that D1(x0, f (x)) < ∞ for some x1 ∈ f (x0) then there exists x2 ∈ f (x1)

such that

D1(x1, x2) ≤ k D1(x0, x1),

where D1(x1, x2) < ∞.
D1(x2, x3) ≤ k2 D1(x0, x1),

where D1(x2, x3) < ∞. By induction, we build a sequence {xn} there is x1 ∈ f (xn+1), for every
x0 ∈ f (xn), then there exists xn+1 ∈ f (xn), since f is a D-multivalued contraction:

D1(xn, xn+1) ≤ kn D1(x0, x1),

where D1(xn, xn+1) < ∞, for every n ≥ 0. Since k < 1,
∞

∑
n=1

D1(xn, xn+1) is convergent, i.e., {xn}

is D-strongly Cauchy. Since XD is D-strogly complete, there exists a point x ∈ XD such that
lim

n→∞
D1(xn, x) = 0. Since there is x0 ∈ f (x), for every x1 ∈ f (xn),

D1(x0, x1) ≤ k D1(xn, x),

and D1 has 1-Fatou property,

D1(x0, x1) ≤ k D1(x, x) ≤ k lim inf
n→∞

D1(xn, x),

we conclude that lim
n→∞

D1(x0, x1) = 0, then x is fixed point of f .

2.1.2. From Caristi-Type to Feng-Liu-Type Fixed Point Results for Multivalued Mappings

Caristi proved a general fixed point theorem and applied it to derive a generalization of the
Contraction Mapping Principle in a complete metric space, then gave an application together with the
characterization of weakly inward mappings to obtain some fixed point theorems in Banach spaces [26].
Following that, many authors expanded his approach through different metric spaces; for example
in [27]. In addition, there exist an application of Caristi-type mappings in [28]. We examine Caristi-type
mappings and state Feng-Liu-type results in GMMS in this section.

Theorem 2. Let XD be a D-complete GMMS and f : XD → CB(XD) be a nonexpansive mapping such that
for each x ∈ XD and y ∈ f (x) we have

D1(x, y) ≤ ΘD(x, y)−ΘD(y, z)

for z ∈ f (y), while CB(XD) is D-closed and bounded subsets of XD and the function ΘD : XD ×XD → [0, ∞]

is lower semicontinuous with its first variable. Then D1(xn, xn+1) < ∞, so f has a fixed point.

Proof. Let x0 ∈ XD and x1 ∈ f (x0). If x1 = x0, then proof is completed. Let x0 6= x1. Using the above
inequality of the theorem, then

D1(x0, x1) ≤ ΘD(x0, x1)−ΘD(x1, x2),

for x2 ∈ f (x1). When we continue the process, we have xn ∈ f (xn) while xn 6= xn+1, then we have

0 < D1(xn−1, xn) ≤ ΘD(xn−1, xn)−ΘD(xn, xn+1),
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for xn+1 ∈ f (xn). We have ΘD(xn−1, xn)n∈N nonincreasing sequence and converges to ω > 0. If we
take limit for the above inequality, we have

lim
n→∞

D1(xn−1, xn) ≤ lim
n→∞
{ΘD(xn−1, xn)−ΘD(xn, xn+1)},

lim
n→∞

D1(xn−1, xn) ≤ lim
n→∞

ΘD(xn−1, xn)− lim
n→∞

ΘD(xn, xn+1),

lim
n→∞

D1(xn−1, xn) ≤ ω−ω = 0

for n ∈ N. It is the same way to show {xn}n∈N is D-Cauchy sequence. Then we assume ω is a fixed
point of f :

D1(ω, f (ω)) ≤ D 1
2
(ω, xn+1)− D 1

2
( f (ω), xn+1),

≤ D 1
2
(ω, xn+1)− HD( f (ω), f (xn+1)),

≤ D 1
2
(ω, xn+1)− D 1

2
(ω, xn),

for the last equality we pass the limit, and then we have

lim
n→∞

D1(ω, f (ω)) ≤ lim
n→∞

D 1
2
(ω, xn+1)− lim

n→∞
D 1

2
(ω, xn),

lim
n→∞

D1(ω, f (ω)) ≤ D 1
2
(ω, ω)− D 1

2
(ω, ω) = 0.

Then ω is a fixed point of f .

Next, it is available to generalize even more as below.

Theorem 3. Let XD be a D-complete GMMS and f : XD → CB(XD) be a multivalued mapping

HD( f (x), f (y)) ≤ υ(D1(x, y))

for all x, y ∈ XD and υ : [0, ∞]→ [0, ∞] is a lower semicontunious map defined as υ(t) < t for t ∈ [0, ∞] and
satisfied that υ(t)

t is nondecreasing. Then D1(xn, xn+1) < ∞, so f has a fixed point.

Feng and Liu [20] gave the following theorem without using Hausdorff distance. To state their
result, we use the following notation for a multivalued mapping f on XD, let and we define

Ix
D,β( f ) = {a ∈ f (x); β Dλ(x, a) ≤ Dλ(x, f (x))}.

The function f is called D-lower semicontinuous, and for any sequence {xn} ∈ XD is convergent
to x ∈ XD, if D1(x, f (x)) ≤ lim inf

n→∞
D1(xn, f (xn)).

Example 4. If we take the same example as before, a mapping f : X → C(X) such that f (x) = 3,
β = 1

2 , x ∈ X, we can show for any calculation of β D1(x, a) ≤ D1(x, f (x)), where a ∈ f (x), it is
satisfied. Then f is called D-lower semicontinuous for any sequence {xn} ∈ X is convergent to x ∈ X, if
D1(x, f (x)) ≤ lim inf

n→∞
D1(xn, f (xn)).

Theorem 4. Let (XD, D) be a complete GMMS and f be D-multivalued mapping on XD. Suppose there exists
a constant K > 0 such that K

β < 1 for any x ∈ XD there is y ∈ Ix
D,β( f ) satisfying

D1(y, f (y)) ≤ K D1(x, y).

If there exists x0 ∈ XD such that D1(x0, f (x0)) < ∞. Assume there exists a sequence {xn} in XD such
that β D1(xn+1, xn+2) ≤ K D1(xn, xn+1) and β D1(xn+1, f (xn+1)) ≤ K D1(xn, f (xn)) ; while xn+1 ∈
f (xn) and D1(xn, xn+1) < ∞ for any n ∈ N.
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The sequence is D-strongly Cauchy, and if we assume D1(x, f (x)) is D-lower semicontinuous, then f has
a fixed point.

Proof. Since f (x) ∈ XD for all x ∈ XD, then Ix
D,b( f ) is nonempty. Let us start choosing x0 ∈ XD such

that D1(x0, f (x0)) < ∞. From D1(y, f (y)) ≤ K D1(x, y), there exists x1 ∈ Ix0
D,β( f ) such that,

D1(x1, f (x1)) ≤ K D1(x0, x1).

Since x1 ∈ Ix0
D,β( f ), then x1 ∈ f (x0) and

β D1(x0, x1) ≤ D1(x0, f (x0)) < ∞.

Choosing x1 ∈ XD such that D1(x1, f (x1)) < ∞. From D1(y, f (y)) ≤ K D1(x, y), there exists
x2 ∈ Ix1

D,β( f ) such that,
D1(x2, f (x2)) ≤ K D1(x1, x2).

Since x2 ∈ Ix1
D,β( f ), then x2 ∈ f (x1) and

b D1(x1, x2) ≤ D1(x1, f (x1)) < ∞.

By choosing xn+1 ∈ M such that D1(xn+1, f (xn+1)) < ∞. From D1(y, f (y)) ≤ K D1(x, y),
there exists xn+1 ∈ Ixn

D,β( f ) such that,

D1(xn, f (xn)) ≤ K D1(xn, xn+1).

Since xn+1 ∈ Ixn
D,β( f ), then xn+1 ∈ f (xn) and

β D1(xn, xn+1) ≤ D1(xn, f (xn)) < ∞.

Then, we have,

β D1(xn+1, xn+2) ≤ D1(xn, f (xn+1)) ≤ K D1(xn, xn+1),

which give us, while xn+1 ∈ f (xn),

β D1(xn+1, f (xn+1)) ≤ D1(xn, f (xn+1)) ≤ K D1(xn, f (xn)).

Then, we have

D1(xn+1, f (xn+1)) ≤
K
β

D1(xn, f (xn))

for K
β < 1 for any x ∈ XD,

D1(xn+1, f (xn+1)) ≤
(

K
β

)n

D1(x0, x1),

while
∞

∑
n=1

D1(xn, xn+1) < ∞ and {xn} is D-strongly Cauchy and XD is D-strongly complete; then

0 = lim
n→∞

D1(xn, xn+1) = lim
n→∞

D1(xn, f (xn)).

D1(x, f (x)) is D-lower semicontinuous,

0 ≤ D1(z, f (z)) ≤ lim inf
n→∞

D1(xn, f (xn));

since f (z) ∈ XD, then we have z ∈ f (z).
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2.1.3. An Application

When we mention applications of multivalued mappings, one of them is given by Khamsi et al.
in [23] for modular vector spaces. They pointed out a fixed point theorem for uniformly Lipschitzian
mappings in modular vector spaces which has the uniform normal structure property in the modular
sense. They expanded their results in the variable exponent space. Another application of them is
given by Borisut et al. in [29]. They proved some fixed point theorems in generalized metric spaces by
using the generalized contraction and they applied the fixed point theorems to show the existence and
uniqueness of solution to the ordinary difference equation (ODE), partial difference equation (PDEs)
and fractional boundary value problem.

For a non-homogeneous linear parabolic partial differential equation, initial value problem is
given in [6], such as

ft(x, t) = fxx(x, t) + S(x, t, f (x, t), fx(x, t)),−∞ < x < ∞, 0 < t ≤ T,
f (x, 0) = φ(x) ≥ 0

for same valued x ∈ XD, where S is continuous and φ assumed to be continuously differentiable
such that φ and φ′ are bounded. By a solution of this problem, a function f = f (x, t) defined on
R× I = [0, T], where I satisfying the following conditions:

(i) f , ft, fx, fxx ∈ C(R× I) while it denotes the space of all continuous real valued functions,
(ii) f , fx are bounded ∈ R× I,
(iii) ft(x, t) = fxx(x, t) + S(x, t, f (x, t), fx(x, t)), (x, t) ∈ R× I,
(iv) f (x, 0) = φ(x) ≥ 0 for all x ∈ R,

The differential equation problem below, is equivalent to the following integral equation problem:

f (x, t) =
∫ ∞

−∞
K(x− δ, t)φ(δ)dδ +

∫ t

0

∫ ∞

−∞
K(x− δ, t− u)S(δ, u, f (δ, u), fx(δ, u))dδdu

for all x ∈ R and 0 < t ≤ T where

K(x, t) =
1√
4πt

e
−x2

4t .

This problem admits a solution if and only if the corresponding problem just below has a solution. Let

B := { f (x, t) : f , fx ∈ C(R× I), || f || < ∞}

where
|| f || := sup

x∈R,t∈I
| f (x, t)|+ sup

x∈R,t∈I
| fx(x, t)|.

Now, we take a function D1 as

D1(x, y) :=
1
λ

ω1(x, y) =
1

λ2 |x− y|

is a GMM on B. Obviously, the GMMS Bω is a D−complete and independent of generators.
While D1 is a GMMS, lower semicontinous it is easy to proof for Feng-Liu-type.

Theorem 5. Let the problem

ft(x, t) = fxx(x, t) + S(x, t, f (x, t), fx(x, t)),−∞ < x < ∞, 0 < t ≤ T,
f (x, 0) = φ(x) ≥ 0.

and assume the following:
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(i) For c > 0 with |s| < c and |p| < c the function S(x, t, s, p) is uniformly Hölder continuous in x and t for
each compact subset of R× I,

(ii) There exists a constant cS ≤ T + 2π−
1
2 T

1
2 ≤ q, where q ∈ (0, 1) such that

0 ≤ 1
λ S[(x, t, s2, p2)− S(x, t, s1, p1)]

cS ≤ [ s2−s1+p2−p1
λ ]

for all (s1, p1), (s2, p2) ∈ R×R with s1 ≤ s2 and p1 ≤ p2,
(iii) S is bounded for bounded s and p;

Then the problem has a solution.

Proof. Let choose x ∈ Bω is a solution of the problem below, if and only if x ∈ Bω is a solution
integral equivalent.

When we take the graph G with V(G) = Bω and E(G) = {(z, v) ∈ Bω × Bω : z(x, t) ≤
v(x, t) and zx(x, t) ≤ vx(x, t) for each (x, t) ∈ R× I}.E(G) is partially ordered and (Bω, E(G)) satisfy
property (A).

The mapping Ω : Bω → Bω defined as

f (u(x, t)) :=
∫ ∞

−∞
K(x− δ, t)φ(δ)dδ +

∫ t

0

∫ ∞

−∞
K(x− δ, t− u)S(δ, u, f (δ, u), fx(δ, u))dδdu

for all x ∈ R and when we solve the problem, the solution gives us the existence of fixed point of f .
Since (z, v), (zx, vx), ( f (z), f (v)), ( f (zx), f (vx)) ∈ E(G) and from the definition of f and (ii)

1
λ | f (v(x, t))− f (z(x, t))| ≤ cSD1(z, v).

Then, we have

1
λ | fx(v(x, t))− fx(z(x, t))| ≤ cSD1(z, v)

∫ ∞
−∞ K(x− δ, t)φ(δ)dδ

≤ 2π−
1
2 T

1
2 cSD1(z, v).

When we take the solutions together:

D1( f (z), f (v)) ≤ (T + 2π−
1
2 T

1
2 ) cS D1(z, v)

D1( f (z), f (v)) ≤ c D1(z, v), c ∈ (0, 1)
| f (z)− f (v)| ≤ λ2 |z− v|, λ ∈ (0, 1).

From Feng-Liu’s perspective, we have

λ2|v− f (v)| ≤ λ2Hd( f (z), f (v)) ≤ λ2 |z− v|
d(v, f (v)) ≤ Hd( f (z), f (v)) ≤ d(z, v)
D1(v, f (v)) ≤ HD( f (z), f (v)) ≤ D1(z, v)

since we have b D1(z, v) ≤ D1(z, f (z)), while b ∈ (0, 1). Then, there exists a z? ∈ Bω such that
z? = f (z?), which is the solution of the problem.

Author Contributions: D.T. and N.M. conceived of the study, participated in its design and coordination, drafted
the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Acknowledgments: The authors would like to thank M.A. Khamsi for his helpful and constructive comments
that greatly contributed to improving the final version of this paper. This work was supported by the TUBITAK
(The Scientific and Technological Research Council of Turkey). The authors gratefully thank to the anonymous
reviewers for their careful reading of our manuscript and for the constructive comments and recommendations
which definitely help to improve the readability and quality of the paper.

Conflicts of Interest: The authors declare that they have no competing interests.



Mathematics 2019, 7, 1031 10 of 11

References

1. Jleli, M.; Samet, B. A generalized metric space and related fixed point theorems. Fixed Point Theory Appl.
2015, 61. [CrossRef]

2. Nadler, S.B., Jr. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [CrossRef]
3. Abdoua, A.A.N.; Khamsi, M.A. Fixed point theorems in modular vector spaces. J. Nonlinear Sci. Appl. 2017,

10, 4046–4057 [CrossRef]
4. Berinde, M.; Berinde, V. On a general class of multi-valued weakly Picard mappings. J. Math. Anal. Appl.

2007, 326, 772–782. [CrossRef]
5. Dehaish, B.A.B.; Latif, A. Fixed point results for multivalued contractive maps. Fixed Point Theory Appl. 2012,

2012, 61. [CrossRef]
6. Borisut, P.; Khammahawong, K.; Kumam, P. Fixed Point Theory Approach to Existence of Solutions with

Differential Equations; IntechOpen: London, UK, 2018. [CrossRef]
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8. Ćirić, L.B. Multi-valued nonlinear contraction mappings. Nonlinear Anal. 2009, 71, 2716–2723. [CrossRef]
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