
mathematics

Article

System of Multi-Valued Mixed Variational Inclusions
with XOR-Operation in Real Ordered Uniformly
Smooth Banach Spaces

Rais Ahmad 1, Imran Ali 1, Xiao-Bing Li 2, Mohd. Ishtyak 3 and Ching-Feng Wen 4,5,6,*
1 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India; pfrais123@gmail.com (R.A.);

imran97591@gmail.com (I.A.)
2 College of Sciences, Chongqing Jiaotong University, Chongqing 400074, China; xiaobinglicq@126.com
3 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India; ishtyakalig@gmail.com
4 Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
5 Research Center for Nonliear Analysis and Optimization, Kaohsiung Medical University,

Kaohsiung 80708, Taiwan
6 Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
* Correspondence: cfwen@kmu.edu.tw

Received: 14 July 2019; Accepted: 25 October 2019; Published: 1 November 2019
����������
�������

Abstract: In this paper, we consider and study a system of multi-valued mixed variational inclusions
with XOR-operation ⊕ in real ordered uniformly smooth Banach spaces. This system consists of
bimappings, multi-valued mappings and Cayley operators. An iterative algorithm is suggested to
find the solution to a system of multi-valued mixed variational inclusions with XOR-operation ⊕
and consequently an existence and convergence result is proved. In support of our main result, an
example is constructed.
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1. Introduction

In 1964, Stampacchia [1] investigated the theory of variational inequality which provides us a
lenient way for solving perplexities occurring in industry, finance, economics, operation research,
optimization, decision sciences and several other branches of pure and applied sciences, and so forth,
see, for example, [2–17]. Hassouni and Moudafi [18] studied a mixed type variational inequality which
involves a nonlinear term called variational inclusion. They used the resolvent operator technique
in order to find the solution to their problem as the projection method does not work due to the
nonlinear term.

A natural generalization of variational inequalities called the system of variational inequalities
(inclusions) were considered and studied by several authors. Cohen and Chaplais [19], Ansari and
Yao [20] and many more researchers considered various system of variational inequalities (inclusions),
see also [21–29]. It has been shown by Pang [30] that not only the Nash equilibrium problem but
also various equilibrium type problems, like the traffic equilibrium problem, spatial equilibrium
problem and the general equilibrium programming problems from operation research, game theory,
mathematical physics, and so forth, can be formulated as a variational inequality problem defined
over a product of sets, which is equivalent to a system of variational inequalities.

Agarwal et al. [31] studied a system of generalized nonlinear mixed quasi-variational inclusions
and demonstrated sensitivity analysis of their problem. Some ordered variational inclusions involving
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XOR-operation ⊕ are studied by Li et al. [32–35], Ahmad et al. [36–39] and Ali et al. [40] and so forth.
For some related work, see also [41].

In this paper, we consider and study a system of multi-valued mixed variational inclusions with
XOR-operation⊕ in real ordered uniformly smooth Banach spaces. We prove the existence of solutions
to a system of multi-valued mixed variational inclusions with XOR-operation ⊕ and we discuss the
convergence of the iterative sequences generated by the proposed algorithm. An example is provided.

2. Preliminaries

Let E be a real ordered uniformly smooth Banach space with norm ‖ · ‖ and E∗ be its topological
dual. We denote by d the metric induced by the norm ‖ · ‖ on E, by CB(E) (respectively, 2E) the family
of all nonempty closed and bounded subsets (respectively, the set of all nonempty subsets) of E and
by D(·, ·) the Hausdörff metric on CB(E). Let C ⊆ E be a cone. For arbitrary elements x, y ∈ E, x ≤ y
holds if and only if y− x ∈ C, then the relation ” ≤ ” in E is called partial order relation induced by
the cone C.

Let 〈·, ·〉 be the duality pairing between E and E∗, and J : E → 2E∗ be the normalized duality
mapping defined by

J(x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖‖ f ‖}, f or all x ∈ E.

We recall some well known concepts and results for the presentation of this paper.

The modulus of smoothness of a Banach space E is a function τE : [0, ∞)→ [0, ∞) defined by

τE(t) = sup
{
‖x + y‖ − ‖x− y‖

2
− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach space E is called uniformly smooth if

lim
t→0

τE(t)
t

= 0.

Definition 1 ([29]). A mapping g : E→ E is said to be

(i) accretive, if for any x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

〈g(x)− g(y), j(x− y)〉 ≥ 0,

(ii) strongly accretive, if for any x, y ∈ E, there exists j(x− y) ∈ J(x− y) and a constant δg > 0 such that

〈g(x)− g(y), j(x− y)〉 ≥ δg‖x− y‖2,

(iii) Lipschitz continuous, if for any x, y ∈ E, there exists a constant λg > 0 such that

‖g(x)− g(y)‖ ≤ λg‖x− y‖.

Proposition 1 ([42]). Let E be a uniformly smooth Banach space and J : E → 2E∗ be a normalized duality
mapping. Then, for any x, y ∈ E,

(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, for all j(x + y) ∈ J(x + y),

(ii) 〈x− y, j(x)− j(y)〉 ≤ 2C2τE (4‖x− y‖/C) where C =
√
(‖x‖2 + ‖y‖2)/2.

Definition 2. A multi-valued mapping G : E → CB(E) is said to be D-Lipschitz continuous, if for any
x, y ∈ E, there exists a constant λDG > 0 such that

D(G(x), G(y)) ≤ λDG‖x− y‖.
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Definition 3. A cone C is said to be normal if there exists a constant λN > 0 such that for 0 ≤ x ≤ y,
‖x‖ ≤ λN‖y‖, where λN is normal constant of C.

Definition 4. For arbitrary element x, y ∈ E, x ≤ y (or y ≤ x) holds, then x and y said to be comparable to
each other (denoted by x ∝ y).

Most of the following definitions can be found in [43].

Definition 5. For arbitrary elements x,y of E, lub{x, y} and glb{x, y} mean the least upper bound and the
greatest lower bound of the set {x, y}. Suppose lub{x, y} and glb{x, y} exist. Then some binary operations are
defined as follows:

(i) x ∨ y = lub{x, y},
(ii) x ∧ y = glb{x, y},
(iii) x⊕ y = (x− y) ∨ (y− x),
(iv) x� y = (x− y) ∧ (y− x).

The operations ∨,∧,⊕ and � are called OR, AND, XOR and XNOR operations, respectively.

Proposition 2. Let ⊕ be an XOR-operation and � be an XNOR -operation. Then the following relations hold:

(i) x� x = 0, x� y = y� x = −(x⊕ y) = −(y⊕ x),
(ii) if x ∝ 0, then −x⊕ 0 ≤ x ≤ x⊕ 0,
(iii) 0 ≤ x⊕ y, if x ∝ y,
(iv) if x ∝ y, then x⊕ y = 0, if and only if x = y.

Proposition 3 ([43]). Let C ⊆ E be a normal cone with normal constant λN . Then for each x,y of E, the
following relations hold:

(i) ‖0⊕ 0‖ = ‖0‖ = 0,
(ii) ‖x ∨ y‖ ≤ ‖x‖ ∨ ‖y‖ ≤ ‖x‖+ ‖y‖,
(iii) ‖x⊕ y| ≤ ‖x− y‖ ≤ λN‖x⊕ y‖,
(iv) if x ∝ y, then ‖x⊕ y‖ = ‖x− y‖.

Definition 6 ([33]). Let A : E→ E be a single-valued mapping. Then

(i) A is said to be a comparison mapping, if for all x, y ∈ E, x ∝ y then A(x) ∝ A(y), x ∝ A(x) and
y ∝ A(y),

(ii) A is said to be strongly comparison mapping, if A is a comparison mapping and A(x) ∝ A(y) if and only
if x ∝ y, for all x, y ∈ E,

(iii) A is said to be β′-ordered compression mapping, if A is a comparison mapping, and

A(x)⊕ A(y) ≤ β′(x⊕ y), for 0 < β′ < 1.

Definition 7 ([32,39]). Let M : E→ 2E be a multi-valued mapping. Then

(i) M is said to be a comparison mapping, if for any vx ∈ M(x), x ∝ vx and if x ∝ y, then for any vx ∈ M(x)
and any vy ∈ M(y), vx ∝ vy for all x, y ∈ E,

(ii) M is said to be αM-non-ordinary difference mapping, if for all x, y ∈ E, M is a comparison mapping and
vx ∈ M(x) and vy ∈ M(y) such that

(vx ⊕ vy)⊕ αM(x⊕ y) = 0,

(iii) M is said to λ-XOR-ordered strongly monotone mapping, if x ∝ y then there exists a constant λ > 0
such that

λ(vx ⊕ vy) ≥ x⊕ y, for all x, y ∈ E, vx ∈ M(x), vy ∈ M(y).
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Definition 8. Let A : E→ E be a strong comparison and β′-ordered compression mapping. Then, a comparison
multi-valued mapping M : E→ 2E is said to be (αM, λ)-XOR-NODSM , if M is αM-non-ordinary difference
mapping and λ-XOR-ordered strongly monotone mapping such that [A⊕ λM](E) = E, for all αM, β′, λ > 0.

Definition 9. Let A : E→ E be a strongly comparison and β′-ordered compression mapping and let M : E→
2E be a multi-valued, (αM, λ)-XOR-NODSM mapping. The resolvent operator RM

A,λ : E→ E associated with
A and M is defined by

RM
A,λ(x) = [A⊕ λM]−1(x), f or all x ∈ E, λ > 0. (1)

It is proved in [39] that the resolvent operator defined by (1) is a single-valued comparison as well

as θ-Lipschitz-type continuous, where θ =
1

αMλ⊕ β′
.

Definition 10. The Cayley operator CM
A,λ associated with M is defined as

CM
A,λ(x) =

[
2RM

A,λ(x)− I
]
(x), f or all x ∈ E, (2)

where RM
A,λ is defined by (1) and λ > 0.

One can easily prove that the Cayley operator defined by (2) is single-valued, a comparison as
well as (2θ + 1)-Lipschitz-type continuous, where θ is same as in Definition 9, for more details see [40].

3. A System of Multi-Valued Mixed Variational Inclusions with XOR-Operation ⊕ and an
Iterative Algorithm

Let E be a real ordered uniformly smooth Banach space. Let G, F : E→ CB(E) be multi-valued
mappings and A, P, q : E → E; S, T : E× E → E be single-valued mappings. Let M, N : E → 2E

be multi-valued mappings and CM
A,λ; CN

A,ρ : E → E be Cayley operators. We deal with the following
problem.

Find x, y ∈ E, u ∈ G(x), v ∈ F(y) such that

0 ∈ S(x− P(x), v) + CM
A,λ(x)⊕M(x),

0 ∈ T(u, y− q(y)) + CN
A,ρ(y)⊕ N(y),

(3)

where λ > 0 and ρ > 0 are constants. Problem (3) is called system of multi-valued mixed variational
inclusions with XOR-operation ⊕.

If P(x) = 0 = q(y), then we encounter with the following problem, that is, find x, y ∈ E, u ∈
G(x), v ∈ F(y) such that

0 ∈ S(x, v) + CM
A,λ(x)⊕M(x),

0 ∈ T(u, y) + CN
A,ρ(y)⊕ N(y).

(4)

Problem (4) appears to be the new one.
If CM

A,λ(x) = 0 = CN
A,ρ(y), and ⊕ is replaced by +, then problem (4) reduces to the problem of

finding x, y ∈ E, u ∈ G(x), v ∈ F(y) such that

0 ∈ S(x, v) + M(x),

0 ∈ T(u, y) + N(y).
(5)

Problem (5) is considered in [26] in the setting of Hilbert spaces.
It is easy to check that problem (3) includes many previously studied problems related to

variational inclusions.
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The following Lemma is a fixed point formulation of problem (3).

Lemma 1. x, y ∈ E, u ∈ G(x), v ∈ F(y) is a solution to a system of multi-valued mixed variational inclusions
with XOR-operation ⊕ (3), if and only if the following equations are satisfied:

x = RM
A,λ

[
A(x) + λS(x− P(x), v) + λCM

A,λ(x)
]

, (6)

y = RN
A,ρ

[
A(y) + ρT(u, y− q(y)) + ρCN

A,ρ(y)
]

, (7)

where, λ > 0 and ρ > 0 are constants.

Proof. The proof is easy and hence omitted.

Iterative Algorithm 1. For any given x0, y0 ∈ E, we choose u0 ∈ G(x0), v0 ∈ F(y0). From (6) and (7), for
0 ≤ α, β < 1 and λ, ρ > 0, let

x1 = (1− α)x0 + αRM
A,λ

[
A(x0) + λ(S(x0 − P(x0), v0)) + λCM

A,λ(x0)
]

,

and
y1 = (1− β)y0 + βRN

A,ρ

[
A(y0) + ρ(T(u0, y0 − q(y0))) + ρCN

A,ρ(y0)
]

.

Since u0 ∈ G(x0) and v0 ∈ F(y0), by Nadler’s theorem [44], there exist u1 ∈ G(x1) and v1 ∈ F(y1)

such that

‖u0 − u1‖ ≤ (1 + 1)D(G(x0), G(x1)),

‖v0 − v1‖ ≤ (1 + 1)D(F(y0), F(y1)),

where D is the Hausdörff metric on CB(E). Let

x2 = (1− α)x1 + αRM
A,λ

[
A(x1) + λ(S(x1 − P(x1), v1)) + λCM

A,λ(x1)
]

,

and
y2 = (1− β)y1 + βRN

A,ρ

[
A(y1) + ρ(T(u1, y1 − q(y1))) + ρCN

A,ρ(y1)
]

.

Again by Nadler’s theorem [44], there exist u2 ∈ G(x2) and v2 ∈ F(y2) such that

‖u1 − u2‖ ≤ (1 + 2−1])D(G(x1), G(x2)),

‖v1 − v2‖ ≤ (1 + 2−1)D(F(y1), F(y2)).

In a similar way, we can compute the sequences {xn}, {yn}, {un} and {vn} by the following scheme:

xn+1 = (1− α)xn + αRM
A,λ

[
A(xn) + λ(S(xn − P(xn), vn)) + λCM

A,λ(xn)
]

, (8)

and
yn+1 = (1− β)yn + βRN

A,ρ

[
A(yn) + ρ(T(un, yn − q(yn))) + ρCN

A,ρ(yn)
]

, (9)

for n = 0, 1, 2, · · · .
Choose un+1 ∈ G(xn+1), vn+1 ∈ F(yn+1) such that

‖un − un+1‖ ≤
(

1 + (n + 1)−1
)

D(G(xn+1), G(xn)), (10)

‖vn − vn+1‖ ≤
(

1 + (n + 1)−1
)

D(F(yn+1), G(yn)). (11)
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4. Existence of Solutions and Convergence of Iterative Sequences

We prove the following existence and convergence result for problem (3).

Theorem 1. Let E be a real ordered uniformly smooth Banach space with modulus of smoothness τE(t) ≤ Ct2

for some C > 0 and C ⊆ E be a normal cone with normal constant λN . Let A : E → E; S, T : E× E → E
be single-valued mappings such that A is strongly comparison and β′-ordered compression mapping; S is
Lipschitz continuous in both the arguments with constant λS1 and λS2 , respectively; T is Lipschitz continuous
in both the arguments with constant λT1 and λT2 , respectively. Let F, G : E → CB(E) be multi-valued
mappings such that F is λDF -D-Lipschitz continuous and G is λGD -D-Lipschitz continuous. Suppose that
P, q : E→ E be single-valued mappings such that P is δP-strongly accretive and λP-Lipschitz continuous; q is
δq-strongly accretive and λq-Lipschitz continuous. Let M : E→ 2E be (αM, λ)-XOR-NODSM mapping and
N : E→ 2E be (αN , ρ)-XOR-NODSM mapping. Suppose that the resolvent operators RM

A,λ, RN
A,ρ : E→ E are

θ-Lipschitz-type continuous and θ
′
-Lipschitz-type continuous, respectively, and the Cayley operators CM

A,λ, CM
A,ρ :

E→ E are (2θ + 1) and (2θ′ + 1)-Lipschitz-type continuous, respectively. Let xn+1 ∝ xn, yn+1 ∝ yn and for
some λ, ρ > 0 the following conditions are satisfied:

0 < λN
[
1− α(1− β′θ) + αθλλS1 B(P) + αθλ(2θ + 1) + βθ′ρλT1 λGD

]
< 1, (12)

0 < λN
[
1− β(1− β′θ′) + βθ′ρλT2 B(q) + βθ′ρ(2θ′ + 1) + αθλλS2 λDF

]
< 1, (13)

where

B(P) =

√
1− 2δP + 64CλP

2, (14)

B(q) =
√

1− 2δq + 64Cλq
2, (15)

θ =
1

αMλ⊕ β′
, (16)

θ′ =
1

αNρ⊕ β′
. (17)

Then, the system of multi-valued mixed variational inclusions with XOR-operation ⊕ (3) have a
solution(x, y, u, v), where x, y ∈ E, u ∈ G(x), v ∈ F(y) such that xn → x, yn → y, un → u and vn → v
strongly, where {xn}, {yn}, {un} and {vn} are the sequences generated by Algorithm 1.

Proof. As xn+1 ∝ xn, using (iii) of Proposition 2 and (8) of Algorithm 1, we have

0 ≤ xn+1 ⊕ xn =
[
(1− α)xn + αRM

A,λ

[
A(xn) + λS(xn − P(xn), vn) + λCM

A,λ(xn)
]]

⊕
[
(1− α)xn−1 + αRM

A,λ

[
A(xn−1) + λS(xn−1 − P(xn−1), vn−1) + λCM

A,λ(xn−1)
]]

= (1− α)(xn ⊕ xn−1) + αRM
A,λ

[
A(xn) + λS(xn − P(xn), vn) + λCM

A,λ(xn)
]

⊕αRM
A,λ

[
A(xn−1) + λS(xn−1 − P(xn−1), vn−1) + λCM

A,λ(xn−1)
]

. (18)
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Since the resolvent operator RM
A,λ is Lipschitz-type-continuous with constant θ and A is

β′-compression mapping, we evaluate

(1− α)(xn ⊕ xn−1) + αRM
A,λ

[
A(xn) + λS(xn − P(xn), vn) + λCM

A,λ(xn)
]

⊕αRM
A,λ

[
A(xn−1) + λS(xn−1 − P(xn−1), vn−1) + λCM

A,λ(xn−1)
]

≤ (1− α)(xn ⊕ xn−1) + αθ
{ [

A(xn) + λS(xn − P(xn), vn) + λCM
A,λ(xn)

]
⊕
[

A(xn−1) + λS(xn−1 − P(xn−1), vn−1) + λCM
A,λ(xn−1)

] }
= (1− α)(xn ⊕ xn−1) + αθ [A(xn)⊕ A(xn−1)] + αθλ [S(xn − P(xn), vn)⊕ S(xn−1 − P(xn−1), vn−1)]

+αθλ
[
CM

I,λ(xn)⊕ CM
A,λ(xn−1)

]
≤ (1− α)(xn ⊕ xn−1) + αθβ′ [xn ⊕ xn−1] + αθλ [S(xn − P(xn), vn)⊕ S(xn−1 − P(xn−1), vn−1)]

+αθλ
[
CM

A,λ(xn)⊕ CM
A,λ(xn−1)

]
. (19)

Combining (18) and (19), we have

0 ≤ xn+1 ⊕ xn ≤ (1− α)(xn ⊕ xn−1) + αθβ′[xn ⊕ xn−1]

+αθλ [S(xn − P(xn), vn)⊕ S(xn−1 − P(xn−1), vn−1)]

+αθλ
[
CM

A,λ(xn)⊕ CM
A,λ(xn−1)

]
. (20)

Using (iii) of Proposition 3 and (20), we have

‖xn+1 ⊕ xn‖ ≤ λN

∥∥∥[1− α(1− β′θ)](xn ⊕ xn−1)

+αθλ[S(xn − P(xn), vn)⊕ S(xn−1 − P(xn−1), vn−1)]

+αθλ[CM
A,λ(xn)⊕ CM

A,λ(xn−1)]
∥∥∥

≤ λN [1− α(1− β′θ)]‖xn ⊕ xn−1‖
+λNαθλ‖S(xn − P(xn), vn)⊕ S(xn−1 − P(xn−1), vn−1)‖

+λNαθλ
∥∥∥CM

A,λ(xn)⊕ CM
A,λ(xn−1)

∥∥∥ . (21)

Using the Lipschitz continuity of S in both the arguments with constants λs1 and λs2 , respectively,
and using (iii) of Proposition 3, we obtain

‖S(xn − P(xn), vn)⊕ S(xn−1 − P(xn−1), vn−1)‖
= ‖S(xn − P(xn), vn)⊕ S(xn − P(xn), vn−1)

⊕S(xn − P(xn), vn−1)⊕ S(xn−1 − P(xn−1), vn−1)‖
≤ ‖[S(xn − P(xn), vn)⊕ S(xn − P(xn), vn−1)]

−[S(xn − P(xn), vn−1)⊕ S(xn−1 − P(xn−1), vn−1)]‖
≤ ‖S(xn − P(xn), vn)⊕ S(xn − P(xn), vn−1)‖

+‖S(xn − P(xn), vn−1)⊕ S(xn−1 − P(xn−1), vn−1)‖
≤ ‖S(xn − P(xn), vn)− S(xn − P(xn), vn−1)‖

+‖S(xn − P(xn), vn−1)− S(xn−1 − P(xn−1), vn−1)‖
≤ λS2‖vn − vn−1‖+ λS1‖xn − xn−1 − (P(xn)− P(xn−1))‖. (22)
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Using D-Lipschitz continuity of F, we have

‖vn − vn−1‖ ≤
(

1 + n−1
)

D(F(yn), F(yn−1)) ≤
(

1 + n−1
)

λDF‖yn − yn−1‖. (23)

Since P is strongly accretive with constant δp and Lipschitz continuous with constant λp, using
the techniques of Alber and Yao [45] and Proposition 1, for j(xn − xn−1) ∈ J(xn − xn−1), we have

‖xn − xn−1 − (P(xn)− P(xn−1))‖2

≤ ‖xn − xn−1‖2 − 2〈P(xn)− P(xn−1), j(xn − xn−1 − (P(xn)− P(xn−1))〉,
= ‖xn − xn−1‖2 − 2〈P(xn)− P(xn−1), j(xn − xn−1)〉
−2〈P(xn)− P(xn−1), j(xn − xn−1 − (P(xn)− P(xn−1))− j(xn − xn−1)〉,

≤ ‖xn − xn−1‖2 − 2δp‖xn − xn−1‖2 + 4C2τE

[
4‖P(xn)− P(xn−1)‖

C

]
,

≤ ‖xn − xn−1‖2 − 2δp‖xn − xn−1‖2 + 64C‖P(xn)− P(xn−1‖2,

≤ (1− 2δP + 64CλP
2)‖xn − xn−1‖2,

= B2(P)‖xn − xn−1‖2, (24)

where B(p) =
√

1− 2δP + 64CλP
2.

Since the Cayley operator CM
A,λ is Lipschitz-type-continuous with constant (2θ + 1) and using (iii)

of Proposition 3, we obtain∥∥∥CM
A,λ(xn)⊕ CM

A,λ(xn−1)
∥∥∥ ≤ (2θ + 1)‖xn ⊕ xn−1‖ ≤ (2θ + 1)‖xn − xn−1‖, (25)

where θ =
1

αNλ⊕ β′
.

As xn+1 ∝ xn and combining (22) to (25) with (21), we obtain

‖xn+1 − xn‖ ≤ λN [1− α(1− β′θ)]‖xn − xn−1‖+ λNαθλ
{

λS2

(
1 + n−1

)
λDF‖yn − yn−1‖

+λS1 B(P)‖xn − xn−1‖
}
+ λNαθλ(2θ + 1)‖xn − xn−1‖

= λN [1− α(1− β′θ) + αθλλS1 B(P) + αθλ(2θ + 1)]‖xn − xn−1‖

+λNαθλλS2

(
1 + n−1

)
λDF‖yn − yn−1‖. (26)

As yn+1 ∝ yn, using (iii) of Proposition 2 and (9) of Algorithm 1, we have

0 ≤ yn+1 ⊕ yn =
[
(1− β)yn + βRN

A,ρ

[
A(yn) + ρT(un, yn − q(yn)) + ρCN

A,ρ(yn)
]]

⊕
[
(1− β)yn−1 + βRN

A,ρ

[
A(yn−1) + ρT(un−1, yn−1 − q(yn−1)) + ρCN

A,ρ(yn−1)
]]

= (1− β)(yn ⊕ yn−1) + βRN
A,ρ

[
A(yn) + ρT(un, yn − q(yn)) + ρCN

A,ρ(yn)
]

⊕βRN
A,ρ

[
A(yn−1) + ρT(un−1, yn−1 − q(yn−1)) + ρCN

A,ρ(yn−1)
]

. (27)
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Since the resolvent operator RM
A,ρ is Lipschitz-type-continuous with constant θ′ and A is

β′-compression mapping, we evaluate

(1− β)(yn ⊕ yn−1) + βRN
A,ρ

[
A(yn) + ρT(un, yn − q(yn)) + ρCN

A,ρ(yn)
]

⊕βRN
A,ρ

[
A(yn−1) + ρT(un−1, yn−1 − q(yn−1)) + ρCN

A,ρ(yn−1)
]

≤ (1− β)(yn ⊕ yn−1) + βθ′
{ [

A(yn) + ρT(un, yn − q(yn)) + ρCN
A,ρ(yn)

]
⊕A(yn−1) + ρT(un−1, yn−1 − q(yn−1)) + ρCN

A,ρ(yn−1)
}

= (1− β)(yn ⊕ yn−1) + βθ′[A(yn)⊕ A(yn−1)]

+βθ′ρ[T(un, yn − q(yn))⊕ T(un−1, yn−1 − q(yn−1))] + βθ′ρ
[
CN

A,ρ(yn)⊕ CN
A,ρ(yn−1)

]
≤ (1− β)(yn ⊕ yn−1) + βθ′β′[yn ⊕ yn−1]

+βθ′ρ[T(un, yn − q(yn))⊕ T(un−1, yn−1 − q(yn−1))] + βθ′ρ
[
CN

A,ρ(yn)⊕ CN
A,ρ(yn−1)

]
. (28)

Combining (27) and (28), we have

0 ≤ yn+1 ⊕ yn ≤ (1− β)(yn ⊕ yn−1) + βθ′β′[yn ⊕ yn−1]

+βθ′ρ[T(un, yn − q(yn))⊕ T(un−1, yn−1 − q(yn−1))]

+βθ′ρ
[
CN

A,ρ(yn)⊕ CN
A,ρ(yn−1)

]
. (29)

Using (iii) of Proposition 3 and (29), we have

‖yn+1 ⊕ yn‖ ≤ λN‖[1− β(1− β′θ′)](yn ⊕ yn−1)

+βθ′ρ[T(un, yn − q(yn))⊕ T(un−1, yn−1 − q(yn−1))]

+βθ′ρ
(

CN
A,ρ(yn)⊕ CN

A,ρ(yn−1)
)
‖

≤ λN‖[1− β(1− β′θ′)](yn ⊕ yn−1)‖
+λN βθ′ρ‖T(un, yn − q(yn))⊕ T(un−1, yn−1 − q(yn−1))‖

+λN βθ′ρ
∥∥∥CN

A,ρ(yn)⊕ CN
A,ρ(yn−1)

∥∥∥ . (30)

Using Lipschitz continuity of T in both the arguments with constant λT1 and λT2 , respectively
using (iii) of Proposition 3, we obtain

‖T(un, yn − q(yn))⊕ T(un−1, yn−1 − q(yn−1))‖
= ‖T(un, yn − q(yn))⊕ T(un−1, yn − q(yn))

⊕T(un−1, yn − q(yn))⊕ T(un−1, yn−1 − q(yn−1))‖
≤ ‖[T(un, yn − q(yn))⊕ T(un−1, yn − q(yn))]

−[T(un−1, yn − q(yn))⊕ T(un−1, yn−1 − q(yn−1))]‖
≤ ‖T(un, yn − q(yn))⊕ T(un−1, yn − q(yn))‖

+‖T(un−1, yn − q(yn))⊕ T(un−1, yn−1 − q(yn−1))‖,
≤ ‖T(un, yn − q(yn))− T(un−1, yn − q(yn))‖

+‖T(un−1, yn − q(yn))− T(un−1, yn−1 − q(yn−1))‖
≤ λT1‖un − un−1‖+ λT2‖yn − yn−1 − (q(yn)− q(yn−1))‖.

(31)
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Using D-Lipschitz continuity of G, we have

‖un − un−1‖ ≤
(

1 + n−1
)

D(G(xn), G(xn−1)) ≤
(

1 + n−1
)

λGD‖xn − xn−1‖. (32)

Since q is strongly accretive and Lipschitz continuous, using the same techniques as for (24), we
have

‖yn − yn−1 − (q(yn)− q(yn−1))‖2 ≤ (1− 2δq + 64Cλq
2)‖yn − yn−1‖2,

= B2(q)‖yn − yn−1‖2, (33)

where B(q) =
√

1− 2δq + 64Cλq
2.

Since the Cayley operator CN
A,ρ is Lipschitz-type-continuous with constant (2θ′ + 1), we obtain∥∥∥CN

A,ρ(yn)⊕ CN
A,ρ(yn−1)

∥∥∥ ≤ (2θ′ + 1)‖yn ⊕ yn−1‖ ≤ (2θ′ + 1)‖yn − yn−1‖, (34)

where θ′ =
1

αNρ⊕ β′
.

As yn+1 ∝ yn and combining (31) to (34) with (30), we have

‖yn+1 − yn‖ ≤ λN [1− β(1− β′θ′)]‖yn − yn−1‖+ λN βθ′ρ
{

λT1

(
1 + n−1

)
λGD‖xn − xn−1‖

+λT2 B(q)‖yn − yn−1‖
}
+ λN βθ′ρ(2θ′ + 1)‖yn − yn−1‖

= λN [[1− β(1− β′θ′)] + βθ′ρλT2 B(q) + βθ′ρ(2θ′ + 1)]‖yn − yn−1‖

+λN βθ′ρλT1

(
1 + n−1

)
λGD ]‖xn − xn−1‖. (35)

Combining (26) and (35), we have

‖xn+1 − xn‖+ ‖yn+1 − yn‖ ≤
{

λN [[1− α(1− β′θ)] + αθλλS1 B(P) + αθλ(2θ + 1)

+βθ′ρλT1

(
1 + n−1

)
λGD ]

}
‖xn − xn−1‖

+
{

λN [[1− β(1− β′θ′)] + βθ′ρλT2 B(q) + βθ′ρ(2θ′ + 1)

+αθλλS2

(
1 + n−1

)
λDF ]

}
‖yn − yn−1‖

≤ ξ(θn, θ′n){‖xn − xn−1‖+ ‖yn − yn−1‖}, (36)

where

ξ(θn, θ′n) = max
{
{λN [[1− α(1− β′θ)] + αθλλS1 B(P) + αθλ(2θ + 1) + βθ′ρλT1(1 + n−1)λGD ]},

{λN [[1− β(1− β′θ′)] + βθ′ρλT2 B(q) + βθ′ρ(2θ′ + 1) + αθλλS2(1 + n−1)λDF ]}
}

.

Let

ξ(θ, θ′) = max
{
{λN [[1− α(1− β′θ)] + αθλλS1 B(P) + αθλ(2θ + 1) + βθ′ρλT1 λGD ]},

{λN [[1− β(1− β′θ′)] + βθ′ρλT2 B(q) + βθ′ρ(2θ′ + 1) + αθλλS2 λDF ]}
}

.
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Conditions (12) and (13) imply that 0 < ξ(θ, θ′) < 1 and so 0 < ξ(θn, θ′n) < 1, when n is
sufficiently large. It follows from (36) that {xn} and {yn} are both Cauchy sequences. Thus, we can
assume that xn → x and yn → y, strongly.

It follows from (23) and (32), that {un} and {vn} are also Cauchy sequences, we can assume that
un → u and vn → v, strongly.

Now we shown that u ∈ G(x) as v ∈ F(y), since un ∈ G(xn), we have

d(u, G(x)) ≤ ‖u− un‖+ d(un, G(x))

≤ ‖u− un‖+
(

1 + n−1
)

D(G(xn), G(x))

≤ ‖u− un‖+
(

1 + n−1
)

λDG‖xn − x‖ → 0, as n→ ∞.

Hence d(u, G(x)) → 0, so u ∈ G(x) as G(x) ∈ CB(E). Similarly, we can show that v ∈ F(y). By
Lemma 1, we conclude that (x, y, u, v) is a solution to a system of multi-valued mixed variational
inclusions with XOR-operation ⊕ (3).

The following example shows that all the assumptions and conditions of Theorem 1 are satisfied.

Example 1. Let E = R2 with the usual inner product and C = [0, 1]× [0, 1] ⊂ R2 be a normal cone with
normal constant λN = 1. Suppose that A : R2 → R2, S, T, : R2×R2 → R2, P, q : R2 → R2 are single valued
mappings and RM

A,λ, RN
A,ρ, CM

A,λ, CN
A,ρ : R2 → R2 be resolvent operators and Cayley operators, respectively,

for some λ, ρ > 0.
Let F, G : R2 → CB(R2) and M, N : R2 → 2R

2
be multi-valued mappings. Then, we define all the

mappings mentioned above as:

A(x) =
( x1

5
,

x2

5

)
, f or all x = (x1, x2) ∈ R2,

S(x, y) =
( x1

2
+ y1,

x2

2
+ y2

)
, f or all x = (x1, x2), y = (y1, y2) ∈ R2,

T(x, y) =
(

x1 +
y1

3
, x2 +

y2

3

)
, f or all x = (x1, x2), y = (y1, y2) ∈ R2,

P(x) =
( x1

3
,

x2

3

)
, f or all x = (x1, x2) ∈ R2,

q(x) =
( x1

2
,

x2

2

)
, f or all x = (x1, x2) ∈ R2,

M(x) =
{
(2x1, 2x2)|(x1, x2) ∈ R2

}
,

N(x) =
{
(3x1, 3x2)|(x1, x2) ∈ R2

}
,

RM
A,λ(x) =

(
5x1

9
,

5x2

9

)
, f or all x = (x1, x2) ∈ R2,

CM
A,λ(x) =

( x1

9
,

x2

9

)
, f or all x = (x1, x2) ∈ R2,

RN
A,ρ(x) =

(
10x1

13
,

10x2

13

)
, f or all x = (x1, x2) ∈ R2,

CN
A,ρ(x) =

(
7x1

13
,

7x2

13

)
, f or all x = (x1, x2) ∈ R2,

F(x) =
{
(x1, 3)|x = (x1, x2) ∈ R2 such that 0 ≤ x1 ≤ 1

}
,

G(x) =
{
(2, x2)|x = (x1, x2) ∈ R2 such that 0 ≤ x2 ≤ 1

}
.
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(1) Clearly, A is strongly comparison mapping and

A(x)⊕ A(y) =
( x1

5
,

x2

5

)
⊕
(y1

5
,

y2

5

)
=

1
5
(x⊕ y)

≤ 2
5
(x⊕ y), f or all x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2.

That is, A is 2
5 -ordered compression mapping.

(2) It is easy to check that S is Lipschitz continuous in both the arguments with constants 3
2 and 1, respectively

and T is Lipschitz continuous in both the arguments with constants 1 and 1
3 , respectively.

(3) For j(x− y) ∈ J(x− y), we calculate

〈P(x)− P(y), j(x− y)〉 = 〈P(x)− P(y), x− y〉

=

〈(
x1 − y1

3
,

x2 − y2

3

)
, (x1 − y1, x2 − y2)

〉
=

1
3
‖x1 − x2‖2 +

1
3
‖x2 − y2‖2 =

1
3
‖x− y‖2

≥ 1
5
‖x− y‖2,

and ‖P(x)− P(y)‖ ≤ 2
3‖x− y‖. Thus, P is strongly accretive with constant 1

5 and Lipschitz continuous with
constant 2

3 .

Similarly, we can show that q is strongly accretive with constant 1
3 and Lipschitz continuous with constant 2

3 .

(4) One can easily show that the resolvent operators RM
A,λ is 5

12 -Lipschitz-type-continuous, RN
A,ρ is

10
19 -Lipschitz type continuous, the Cayley operators CM

A,λ is 11
6 -Lipschitz-type continuous and CN

A,ρ is
39
19 -Lipschitz-type-continuous.

Also, M is a comparison mapping and 2-non-ordinary difference mapping, N is a comparison mapping
and 3-non-ordinary difference mapping.

Let vx = (2x1, 2x2) ∈ M(x) and vy = (2y1, 2y2) ∈ M(y), then

(vx ⊕ vy)⊕ αM(x⊕ y) = 2[(x⊕ y)⊕ (x⊕ y)] = 0.

For λ = 1, [A ⊕ λM](R2) = R2 and for ρ = 1
2 , [A ⊕ ρN](R2) = R2. This shows that M is

(2, 1)-XOR-NODSM mapping and N is (3, 1
2 )-XOR-NODSM mapping.

(5) Clearly, F and G are D-Lipschitz continuous mappings with constants 2 and 3 respectively.

(6) In order to satisfy condition (12) and (13) of Theorem 1, we calculate

B(p) =
√

1− 2δP + 64Cλ2
P = ±1.04, f or C = 1

64

and
B(q) =

√
1− 2δq + 64Cλ2

q = ±1.60, f or C = 1
64

.

We choose B(p) = −1.04 and B(q) = −1.60 and we claim that the conditions (12) and (13) are satisfied.
That is,

0 < λN
[
1− α(1− β′θ) + αθλλS1 B(P) + αθλ(2θ + 1) + βθ′ρλT1 λGD

]
= 0.82 < 1

and
0 < λN

[
1− β(1− β′θ′) + βθ′ρλT2 B(q) + βθ′ρ(2θ′ + 1) + αθλλS2 λDF

]
= 0.97 < 1.
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Thus, all the assumptions and conditions of Theorem 1 are satisfied.
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