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Abstract: In this paper we deal with the problems of existence, boundedness and global stability of
integral manifolds for impulsive Lasota–Wazewska equations of fractional order with time-varying
delays and variable impulsive perturbations. The main results are obtained by employing the
fractional Lyapunov method and comparison principle for impulsive fractional differential equations.
With this research we generalize and improve some existing results on fractional-order models of cell
production systems. These models and applied technique can be used in the investigation of integral
manifolds in a wide range of biological and chemical processes.
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1. Introduction

The intensive investigation of blood cell dynamics in numerous articles in the past 50 years
leads to a huge forward movement in the growth of mathematical methods and models, numerical
results, schemes to estimate parameters and prognosticate optimal treatments to particular diseases.
The paper [1] offers a very completed overview of the main mathematical models related to blood
formation, disorders and treatments.

A turning point in the establishment of new models and methods was the publication of the paper
authored by Wazewska–Czyzewska and Lasota in 1976 [2]. In order to describe the survival of red blood
cells in animals, Wazewska–Czyzewska and Lasota proposed in [2] the following delayed equation

ẋ(t) = −γx(t) + βe−αx(t−τ), (1)

where x(t) represents the number of red blood cells at time t, γ > 0 is the death probability for a red
blood cell, α and β are positive constants related to the production of red blood cells per unit time
and τ is the time delay between the production of immature red blood cells and their maturation for
release in circulating blood stream.

The well known Lasota–Wazewska model seen in Equation (1) was extended and generalized
by many authors, see, for example, refs. [3–8], including some recent publications on the topic [9–13].
This model can be also considered as one of the motivations to the development of the theory of delay
differential equations, since delays are often considered in the hematopoiesis processes.

One of the directions in which the Lasota–Wazewska models have been extended and generalized
is related to considering impulsive effects in the cells dynamic. Indeed, momentary (impulsive)
changes at certain instants exists and can often affect the behavior of a real-world process. That is
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why the impulsive mathematical models has attracted a large amount of research interest and has
become an emerging trend [14–20]. For some excellent results on impulsive Lasota–Wazewska models,
we refer the reader to [21–25]. However, in all of the existing results, the authors considered fixed
moments of impulsive effects. The aim of our research is to study some qualitative properties of
a generalized impulsive Lasota–Wazewska model with variable impulsive perturbations. Indeed,
considering impulsive effects at variable times is more general and close to reality [26–28].

On the other hand, fractional-order models are found to provide more advantages in describing
memory effects and chaos [29,30]. The last two decades witnessed the rise of the development of
the theory of fractional-order models and equations involved in fractional-order modeling. See, for
example some recent publications [31–35] and the references therein. Some researchers used classical
fractional-order models while new fractional differential systems, including impulsive fractional
models started to be explored [36–40].

In addition, in relation to mathematical simulations in biology, chemistry and medicine, fractional
calculus has been incorporated into some population dynamics models [41–43]. Since the survival of
red blood cells is a deeply composite process, different methods have been developed throughout the
years to get the most appropriate answers to some particular practice problems. To better reflect the
dependence of Lasota–Wazewska-type models on their past history, an impulsive Lasota–Wazewska
model of fractional order with time-varying delays has been introduced in [44] and some results related
to existence and stability of almost periodic solutions of the model have been established. To the best
of our knowledge no work on fractional Lasota–Wazewska systems was developed besides the one
found in [44]. However, the paper [44] considered only fixed moments of impulsive perturbations.

Our aim in this paper is to extend the results in [44], and to consider variable impulsive
perturbations. Furthermore, we will investigate the global stability behavior of an integral manifold
related to the model. Indeed, the concept of integral manifolds is more general and includes, as
particular cases, the global stability of zero solutions, equilibrium states, almost periodic solutions
and etc. [45–48]. Despite the high importance of the concept of global stability of integral manifolds,
the theory is not yet developed for fractional-order biological systems and this is another aim of the
proposed research.

In the present paper, motivated by the above considerations, we focus on an impulsive
Lasota–Wazewska model of fractional order with time-varying delays and variable impulsive
perturbations. The remainder of this paper is organized as follows. In Section 2, we introduce
the fractional Lasota–Wazewska model under consideration. Some notations and preliminaries are also
given. In Section 3 first existence and boundedness results are proposed. Also, we obtain conditions
for an integral manifold to be a global attractor of the survival model of red blood cells proposed by
Wazewska and Lasota. The conditions are used in our global asymptotic stability analysis. In addition,
the notion of global Mittag–Lerffler stability is defined and criteria for global Mittag–Leffler stability of
integral manifolds with respect to the model are also proved. An example is presented in Section 4,
to show the validity and efficiency of the obtained results. Finally, some ending remarks are stressed
in Section 5.

2. Preliminaries

Let R = (−∞, ∞), R+ = [0, ∞), t0 ∈ R+ and let h = const > 0. Here and in what follows we
will use the Caputo fractional derivative of order q, 0 < q < 1 with the lower limit t0 for a function
l ∈ C1[[t0, b],R], b > t0,

C
t0

D
q
t l(t) =

1
Γ(1− q)

∫ t

t0

l′(σ)
(t− σ)q dσ,

where Γ as usually means the Gamma function.
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Using the above fractional derivative, to consider long range memory in the survival of red
blood cells, we introduce the following impulsive fractional-order Lasota–Wazewska model with
time-varying delays and variable impulsive perturbations

C
t0

Dq
t
x(t) = −γ(t)x(t) +

m

∑
j=1

β j(t)e
−αj(t)x(t−sj(t)), t 6= τk(x(t)),

∆x(t) = αkx(t) + νk, t = τk(x(t)), k = 1, 2, . . . ,
(2)

where:
(i) the model’s parameters αj(t), β j(t), γ(t), sj(t) ∈ C[R+,R+], 0 ≤ sj(t) ≤ h, j =

1, 2, . . . , m, h = const > 0, τk : R+ → (t0, ∞), k = 1, 2, . . . ;
(ii) ∆x(t) = x(t+)− x(t), αk, νk ∈ R, k = 1, 2, . . .
The second equation of the impulsive system in Equation (2) is considered as a control or jump

condition. The parameters αk and νk, determine the controlled outputs x(t+). In an impulsive control
system of type seen in Equation (2), the functions ∆x(t) are considered as control forces at the variable
times for t = τk(x(t)), k = 1, 2, . . . For the basic concepts and theorems of such systems, we refer the
reader to [14,20–25].

The model in Equation (2) is a generalization of many existing integer-order Lasota–Wazewska
models with time-varying delays and impulsive perturbations. The consideration of time-varying
delays sj(t) is motivated by the fact that “a long time delay will increase the length of time a population
will spend in the neighborhood of an unstable steady state . . . ” examined in [49]. The studies
in [13,23,25] and some of the references therein also support the viewpoint that equations with
time-varying delays provide a more realistic description for blood flow models.

Also, the fractional-order approach will better model the long-term memory phenomena and
provides with a conceptually straightforward mathematical representation of rather complex processes.
Indeed, a large number of empirical studies have investigated the long-term dependence of red blood
cells and cell production systems in general. We refer the reader to [50–52] for some studies on
long-range feedback effects in such systems. The very comprehensive analysis made in [44] shows
that the population size of the red blood cells in an erythropoietic system has a very long memory.
Therefore, the formulated fractional-order model in [44] of blood flow phenomenon is more realistic
and takes into account the long-range hereditary properties of red blood cells populations. In addition,
we consider variable impulsive perturbations in our research which are more useful and applicable
in biological systems. Thus, our results will improve and generalize some known results obtained
in [2,3,5,20–25,44]. For equations with non-fixed moments of impulsive perturbations, a number of
difficulties related to the phenomena of ‘beating’ of the solutions, bifurcation, loss of the property of
autonomy, etc. appeared. But the wide application of this type of equation requires their study.

The solutions x(t) of impulsive models with variable impulsive perturbations of the type in
Equation (2) are piecewise continuous functions [14,20,26,28] that have first kind points of discontinuity
at which they are continuous from the left, i.e., at the moments tlk when the integral curve of a solution
x(t) meets the hypersurfaces

σk =
{
(t, x) ∈ [t0, ∞)×Ω : t = τk(x)

}
,

where it is continuous from the left, the following relations are satisfied:

x(t−lk ) = x(tlk ), x(t+lk ) = x(tlk ) + Ilk (x(tlk )).

The points tl1 , tl2 , . . . (t0 < tl1 < tl2 < . . . ) are the impulsive control instants. Let us note that, in
general, k 6= lk.

Let J ⊂ R+ be an interval. Define the following classes of piecewise continuous functions:
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PC[J,Rn] = {σ : J → Rn : σ(t) is continuous everywhere except at some points tlk ∈ J at which
σ(t−lk ) and σ(t+lk ) exist and σ(t−lk ) = σ(tlk )};

PC = PC[[−h, 0],R+];
PCB[J,R+] = {σ ∈ PC[J,R+] : σ(t) is bounded on J}.
Let ϕ0 ∈ PCB[[−h, 0],R+]. Denote by x(t) = x(t; t0, ϕ0), x ∈ R+ the solution of the system in

Equation (2) that satisfies the initial conditions:{
x(t; t0, ϕ0) = ϕ0(t− t0), t0 − h ≤ t ≤ t0,
x(t+0 ; t0, ϕ0) = ϕ0(0).

(3)

In this paper, we will investigate such trajectories of solutions x(t) the motion along with which
must be ensured by an appropriate choice of impulsive forces. To guarantee the existence, uniqueness
and continuability of the solution x(t) = x(t; t0, ϕ0) of the initial value problem (IVP) in Equation (2),
Equation (3) on the interval [t0, ∞) for ϕ0 ∈ PCB[[−h, 0],R+] and t0 ∈ R+, as well as, the absence of
the phenomenon ’beating’, we assume that:

1. τ0(x) ≡ t0 for x ∈ R+, the functions τk(x) are continuous and the following relations hold

t0 < τ1(x) < τ2(x) < . . . , τk(x)→ ∞ as k→ ∞

uniformly on x ∈ R+.
2. The functions α(t), β j(t), γj(t), sj(t) and τk are continuous on R+.
For ϕ ∈ PC, we define |.|h as |ϕ|h = sup−h≤ξ≤0 |ϕ(ξ)|. In the case h = ∞ we have |ϕ|h = |ϕ|∞ =

supξ∈(−∞,0] |ϕ(ξ)|.
We shall use the following definition for integral manifolds connected with Equation (2) [20,48].

Definition 1. An arbitrary manifold M in the extended phase space [t0 − h, ∞) × R+ of (3) is called an
integral manifold, if for any solution x(t) = x(t; t0, ϕ0), (t, ϕ0(t − t0)) ∈ M, t ∈ [t0 − h, t0] implies
(t, x(t)) ∈ M, t ≥ t0.

For a manifold M ⊂ [t0 − h, ∞)×R+ we introduce the following sets and distances:
M(t) is the set of all x ∈ R+ such that (t, x) ∈ M for t ∈ [t0, ∞);
M0(t) is the set of all x ∈ R+ such that (t, x) ∈ M for t ∈ [t0 − h, t0];
d(x, M(t)) = inf

y∈M(t)
|x− y| is the distance between x ∈ R+ and M(t);

M(t, ε) = {x ∈ R+ : d(x, M(t)) < ε} (ε > 0) is an ε-neighborhood of M(t);
d0(ϕ, M0(t)) = supt∈[t0−h,t0]

d(ϕ(t − t0), M0(t)) is the distance between a function ϕ ∈
PC[[−h, 0],R+] and M0(t);

M0(t, ε) = {ϕ ∈ PC[[−h, 0],R+] : d0(ϕ, M0(t)) < ε} is an ε-neighborhood of M0(t);
Sa(PC0) = {ϕ ∈ PC : |ϕ|h ≤ a, a = const > 0}.
In order to realize our investigations we will need the following assumptions:
A1. The set M(t) is nonempty for t ∈ [t0, ∞).
A2. The set M0(t) is nonempty for t ∈ [t0 − h, t0].
A3. The distance d(x, M(t)) is Lipschitz with respect to t on any compact subset F of [t0, ∞)×R+.
We also will use the following definitions.

Definition 2. The integral manifold M of system in Equation (2) is said to be:
(a) equi-bounded, if for any initial point t0 ∈ R+ and any positive constants η > 0 and a > 0 there exists

a positive number b = b(t0, η, a) > 0 such that for any initial function ϕ ∈ Sa(PC0) ∩M0(t, η) the solution
x(t; t0, ϕ) ∈ M(t, b) for all t ≥ t0;

(b) t (or a)- uniformly bounded, if the number b from (a) is independent of t0 (or o f a);
(c) uniformly bounded, if the number b from (a) depends only on η.
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Definition 3. The integral manifold M is said to be:
(a) stable with respect to the system in Equation (2), if for any initial point t0 ∈ R+ and any positive

constants a > 0 and ε > 0 there exists a positive δ = δ(t0, a, ε) > 0 such that for any initial function such that
ϕ ∈ Sa(PC0) ∩M0(t, δ) the solution x(t; t0, ϕ) ∈ M(t, ε) for all t ≥ t0;

(b) uniformly stable with respect to the system in Equation (2) if the number δ from (a) depends only on ε;
(c) uniformly globally attractive with respect to the system in Equation (2), if for any η > 0 and ε > 0

there exists a positive number T = T(η, ε) > 0 such that for any initial point t0 ∈ R+, any constant a > 0 and
any initial function such that ϕ ∈ Sa(PC0) ∩M0(t, η) the solution x(t; t0, ϕ) ∈ M(t, ε) for all t ≥ t0 + T;

(d) uniformly globally asymptotically stable with respect to the system in Equation (2) if M is a uniformly
stable, uniformly globally attractive and uniformly bounded with respect to the system in Equation (2).

Remark 1. Point (d) of Definition 3 can be reduced to the following specific stability notions:
1. Lyapunov uniform global asymptotic stability of the zero solution of Equation (2), if

M = [t0 − h, ∞)× {x ≡ 0}.

2. Lyapunov uniform global asymptotic stability of a non-zero equilibrium state x∗ = x∗(t) of
Equation (2), if

M = [t0 − h, ∞)× {x ∈ R+ : x ≡ x∗}.

3. Uniform global asymptotic stability of conditionally integral manifold B with respect to a integral
manifold A, where A ⊂ B ⊂ R+, if M(t) = B for t ≥ t0 and M0(t) = A for t ∈ [t0 − h, t0].

Next, motivated by [38,53], for an integral manifold M with respect to Equation (2) we will define
a generalization of the global exponential stability notion to the fractional-order case, called global
Mittag–Leffler stability. To this end we will need the Mittag–Leffler function [29,30] defined as

Eq(z) =
∞

∑
κ=0

zκ

Γ(qκ + 1)
, q > 0.

Definition 4. The integral manifold M is said to be globally Mittag–Leffler stable with respect to Equation (2),
if there exist constants µ > 0 and d̃ > 0 such that

x(t; t0, ϕ0) ∈ M
(
t, {m[ϕ0]Eq(−µ(t− t0)

q)}d̃), t ≥ t0,

where Eq is the corresponding Mittag–Leffler function, ϕ0 ∈ PCB[[−h, 0],R+], m(0) = 0, m(ϕ) ≥ 0 and
m(ϕ) is Lipschitz with respect to ϕ ∈ PCB[[−h, 0],R+].

Let τ0(x) = t0, x ∈ R+. Next, we need the following sets

Gk =
{
(t, x) ∈ [t0, ∞)×R+ : τk−1(x) < t < τk(x)

}
, k = 1, 2, . . . , G =

∞⋃
k=1

Gk

and in the future considerations, we will adopt the Lyapunov–Razumikhin approach. That is why
in the proofs of our main results we will use the class of piecewise continuous auxiliary functions
given as:

VM =
{

V : [t0, ∞)×R+ → R+ : V ∈ C[G,R+], t ∈ [t0, ∞),

V is locally Lipschitz with respect to its second argument on each of the sets Gk; V(t, x) = 0 for
(t, x) ∈ M, t ≥ t0, V(t, x) > 0 for (t, x) ∈ [t0, ∞)×R+ \M, for (t∗0 , x∗0) ∈ σk, V(t∗−0 , x∗0) and V(t∗+0 , x∗0)
exist and V(t∗−0 , x∗0) = V(t∗0 , x∗0)

}
.
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Lets, for simplicity, denote

X(t, x) = −γ(t)x(t) +
m

∑
j=1

β j(t)e
−αj(t)x(t−sj(t)), t 6= τk(x), x ∈ R+.

Using the above notation, for a function V ∈ VM we define the following
fractional-order derivative.

Definition 5. Let t ∈ (τk−1(x), τk(x)), k = 1, 2, . . . , x ∈ R+ and ϕ ∈ PC. For V ∈ VM the upper
right-hand derivative of V in Caputo’s sense of order q, 0 < q < 1 with respect to the system in
Equation (2) is defined by

CDq
+V(t, ϕ(0)) = lim

χ→0+
sup

1
χq
[
V(t, ϕ(0))−V(t− χ, ϕ(0)− χqX(t, ϕ))

]
.

The following class of weight functions will also be useful in the proofs of our main theorems:
K = {w ∈ C[R+,R+] : w(r) is strictly increasing and w(0) = 0, w(r)→ ∞, r → ∞}.
Let t1, t2 , . . . (t0 < t1 < t2 < . . . ) be the impulsive control instants at which the integral curve

(t, x(t; t0, ϕ0)) of the IVP Equation (2), Equation (3) meets the hypersurfaces σk, k = 1, 2, . . . , i.e., each
of the points tk is a solution of some of the equations t = τk(x(t)), k = 1, 2, . . .

In the next section we shall use the following Lemma from [38]. Similar comparison results can
be found in [44] and the references therein.

Lemma 1. Assume that the function V ∈ VM is such that for t ∈ [t0, ∞), ϕ ∈ PC,

V(t+, ϕ(0) + ∆ϕ) ≤ V(t, ϕ(0)), t = tk,

and for a continuous function λ : [t0, ∞)→ R the inequality

CDq
+V(t, ϕ(0)) ≤ λ(t)V(t, ϕ(0)), t 6= tk, k = 1, 2, . . .

is valid whenever V(t + ξ, ϕ(ξ)) ≤ V(t, ϕ(0)) for −h ≤ ξ ≤ 0.
Then sup−h≤ξ≤0V(t0 + ξ, ϕ0(ξ)) ≤ V(t, ϕ(0)) implies

V(t, x(t; t0, ϕ0)) ≤ sup−h≤ξ≤0V(t+0 , ϕ0(ξ))Eq(λ(t)(t− t0)
q), t ∈ [t0, ∞).

In the case when λ(t) = 0 for t ∈ [t0, ∞) the following corollary follows directly from Lemma 1.

Corollary 1. Assume that the function V ∈ VM is such that for t ∈ [t0, ∞), ϕ ∈ PC,

V(t+, ϕ(0) + ∆ϕ) ≤ V(t, ϕ(0)), t = tk,

and the inequality
CDq

+V(t, ϕ(0)) ≤ 0, t 6= tk, k = 1, 2, . . .

is valid whenever V(t + ξ, ϕ(ξ)) ≤ V(t, ϕ(0)) for −h ≤ ξ ≤ 0.
Then

V(t, x(t; t0, ϕ0)) ≤ sup−h≤ξ≤0V(t+0 , ϕ0(ξ)), t ∈ [t0, ∞).

3. Main Results

In this section, for a bounded continuous function f defined on R+, we set

f = sup
t∈R+

f (t), f = inf
t∈R+

f (t).
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3.1. Existence and Boundedness Results

Theorem 1. Assume that:
1. Assumptions A1–A3 are satisfied.
2. M is a manifold in the extended phase space of the system in Equation (2).
3. The functions αj(t), β j(t), γ(t), sj(t) are bounded on R+, sj(t) < min{t, h}, j = 1, 2, . . . , m,

t ∈ [t0, ∞).
4. The sequences of constants {αk} are such that

−1 < αk ≤ 0, k = 1, 2, . . . .

5. The model’s parameters are such that for t 6= τk(x), k = 1, 2, . . . , x ∈ R+

∑m
j=1 β jαj

γ
< 1.

Then M is an integral manifold of Equation (2).

Proof. Let t0 ∈ R+, ϕ0 ∈ PC. Let x(t; t0, ϕ0) be the solution of the IVP Equation (2), Equation (3)
and (t, ϕ0(t− t0)) ∈ M for t ∈ [t0 − h, t0]. We will prove that M is an integral manifold of Equation
(2). If we suppose that this is not true, then there exists a t′, t′ > t0 such that (t, x(t; t0, ϕ0)) ∈ M for
t0 < t ≤ t′ and (t, x(t; t0, ϕ0)) /∈ M for t > t′.

Consider the Lyapunov function V ∈ VM defined as

V(t, x) = d(x, M(t)), (4)

where t ∈ [t0 − h, ∞).
It is easy to see that there exists t′′, t′′ > t′ such that (t′′, x(t′′; t0, ϕ0)) 6∈ M and

V(t′′, x(t′′; t0, ϕ0)) > 0.
In the case when t = τk(x), x ∈ R+, by condition 4, we get

V(t+, ϕ(0) + ∆ϕ) = d(ϕ(0) + ∆ϕ, M(t+))

inf
ϕ1(0)∈M(t)

|ϕ(0) + ∆ϕ− ϕ1(0)− ∆ϕ1(0)| = inf
ϕ1(0)∈M(t)

|ϕ(0) + αk ϕ(0)− ϕ1(0)− αk ϕ1(0)|

≤ (1 + αk) inf
ϕ1(0)∈M(t)

|ϕ(0)− ϕ1(0)| ≤ V(t, ϕ(0)). (5)

Let t ≥ t0, t 6= τk(x), x ∈ R+. We can see that

C
t0

D
q
t |x(t)− x∗(t)| = sign(x(t)− x∗(t))C

t0
D

q
t (x(t)− x∗(t)).

Then for t ≥ t0 and t ∈ (τk−1(x), τk(x)) and for the derivative CDq
+V(t, ϕ(0)) along the solutions

of the system in Equation (2) we have

CDq
+V(t, ϕ(0)) ≤ −γ(t)|ϕ(0)− ϕ1(0)|+

m

∑
j=1

β j(t)
∣∣∣e−αj(t)ϕ(−sj(0)) − e−αj(t)ϕ1(−sj(0))

∣∣∣
≤ −γ(t)|ϕ(0)− ϕ1(0)|+

m

∑
j=1

β j(t)αj(t)|ϕ(−sj(0))− ϕ1(−sj(0))|, ϕ1(0) ∈ M(t).
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From the above estimate, we have

CDq
+V(t, ϕ(0)) ≤ −γV(t, ϕ(0)) +

m

∑
j=1

β jαj sup
−h≤ξ≤0

V(t + ξ, ϕ(ξ))

and for any solution x(t) that satisfies the Razumikhin condition

V(t + ξ, ϕ(ξ)) ≤ V(t, ϕ(0)),−h ≤ ξ ≤ 0

by virtue of condition 5 of Theorem 1, it follows that

CDq
+V(t, ϕ(0)) ≤ 0, t 6= τk(x), t > t0. (6)

Then using Equations (5) and (6) and Corollary 1, we get

V(t, x(t)) ≤ sup
−h≤ξ≤0

V(t+0 , ϕ0(ξ)), t ∈ [t0, ∞). (7)

From the last inequality we get V(t′′, x(t′′; t0, ϕ0)) ≤ sup−h≤ξ≤0 V(t+0 , ϕ0(ξ)) = 0, t ∈ [t0, ∞)

which contradicts the fact that V(t′′, x(t′′; t0, ϕ0)) > 0 and therefore, it shows that M is an integral
manifold of Equation (2).

The proof of Theorem 1 is complete.

Now, we will proof some boundedness results.

Theorem 2. Let conditions of Theorem 1 are satisfied. Then the integral manifold M of Equation (2) is
uniformly bounded.

Proof. Let a > 0, η > 0 and t0 ∈ R+. Consider again the Lyapunov function seen in Equation (4).
It follows from the choice of the function V that there exist functions w1, w2 ∈ K that satisfy

w1(d(x, M(t))) ≤ V(t, x) ≤ w2(d(x, M(t))), (t, x) ∈ [t0, ∞)×R+. (8)

Now, we suppose that x(t) = x(t; t0, ϕ0) is a solution of problem Equations (2) and (3). From the
definition of the weight functions w1, w2 ∈ K, it follows that we can choose the number b = b(η) > 0
so that w2(η) < w1(b).

Let ϕ0 ∈ Sa(PC0) ∩ M0(t, η). Since all conditions of Theorem 1 are satisfied, we get
Equations (5) and (7). Then by Equations (5), (7) and (8), we have

w1(d(x(t), M(t))) ≤ V(t, x(t)) ≤ sup−h≤ξ≤0V(t+0 , ϕ0(ξ))

≤ w2(d0(ϕ0, M0(t))) ≤ w2(η) < w1(b), t ≥ t0.

Therefore, x(t; t0, ϕ0) ∈ M(t, b) for t ∈ [t0, ∞) and the theorem is proved.

The proofs of the next two theorems is analogous to the proof of Theorem 2. They present
sufficient conditions for t (respectively for a)-uniform boundedness of the integral manifold M with
respect to Equation (2).

Theorem 3. Let the conditions of Theorem 2 hold and for the Lyapunov function in Equation (4) there exists
w2(., s) ∈ K such that for each fixed s ≥ 0

V(t, x) ≤ w2(d(x, M(t)), x) f or (t, x) ∈ [t0, ∞)×R+.

Then the integral manifold M of Equation (2) is t-uniformly bounded.
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Theorem 4. Let the conditions of Theorem 2 hold and for the Lyapunov function in Equation (4) there exists
w2(t, .) ∈ K such that for each t ∈ [t0, ∞)

V(t, x) ≤ w2(t, d(x, M(t))) f or (t, x) ∈ [t0, ∞)×R+.

Then the integral manifold M of Equation (2) is α- uniformly bounded.

Remark 2. Theorems 1–4 offer efficient criteria for existence and boundedness of integral manifolds related to
the fractional-order Lasota–Wazewska model in Equation (2). It is well known that boundedness is an important
property that plays a significant role in the existence of permanent, periodic and almost-periodic solutions of
different systems [20,38,54–57]. Since integral manifolds are sets of solutions of the system (see, [45–48]),
our results generalize and complement the existing qualitative results for separate solutions of Equation (2),
biological models [4,10–12,19–25,38,44].

3.2. Global Asymptotic Stability

In this section, we shall use the measurable function λ : [t0, ∞)→ R+. It is integrally positive if∫
Ĵ

λ(t)dt = ∞

whenever Ĵ =
∞⋃

k=1

[ak, bk], ak < bk < ak+1 and bk − ak ≥ θ > 0, k = 1, 2, . . .

Theorem 5. Assume that:
1. Conditions 1–4 of Theorem 1 are satisfied.
2. There exists an integrally positive function λ = λ(t) : R+ → R+ such that for t 6= τk(x), k = 1, 2, . . . ,

x ∈ R+

γ−
m

∑
j=1

β jαj > λ(t) > 0.

3.
η

Γ(q)

∫ ∞

0
(t− s)q−1λ(s)ds = ∞ for sufficiently small values of η > 0.

Then the integral manifold M is uniformly globally asymptotically stable with respect to Equation (2).

Proof. Let t0 ∈ R+. The fact that M is a uniformly bounded integral manifold of Equation (2) follows
from Theorem 2.

Consider the Lyapunov function V ∈ VM defined by Equation (4).
We will first prove the uniform stability of the integral manifold M with respect to Equation (2).

Let ε > 0 and take δ = δ(ε) > 0 so that δ < ε.
Let a > 0 be arbitrary, ϕ0 ∈ Sa(PC0) ∩ M0(t, δ) and x(t) = x(t; t0, ϕ0) be the solution of

Equation (2) through (t0, ϕ0).
By condition 2 of Theorem 5, using similar arguments as in the proof of Theorem 1, for the case

t ≥ t0, t 6= τk(x), x ∈ R+, we have

CDq
+V(t, ϕ(0)) ≤ −λ(t)V(t, ϕ(0)), t 6= τk(x), t > t0. (9)

From Equations (5) and (9) and Corollary 1, we get

d(x(t; t0, ϕ0), M(t)) = V(t, x(t)) ≤ sup−h≤ξ≤0V(t+0 , ϕ0(ξ))

= sup−h≤ξ≤0d(ϕ0(ξ), M0(t+0 )) ≤ d0(ϕ0, M0(t)) < δ < ε, t ≥ t0,

hence the integral manifold M is uniformly stable with respect to Equation (2).
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Next, for the given ε > 0 and η < ε, in view of condition 3 of Theorem 5, we can choose the
number T = T(η, ε) > 0 so that

ε

Γ(q)

∫ t0+T

t0

(t0 + T − s)q−1λ(s)ds > η. (10)

Let a > 0 be arbitrary, ϕ0 ∈ Sa(PC0) ∩ M0(t, η) and if we assume that for any t ∈ [t0, t0 + T]
we have

d(x(t; t0, ϕ0), M(t)) ≥ ε (11)

then by Equations (5), (9) and (11) it follows that

V(t, x(t; t0, ϕ0)) ≤ V(t+0 , ϕ0)

− 1
Γ(q)

∫ t0+T

t0

(t0 + T − s)q−1λ(s)d(x(s; t0, ϕ0), M(s))ds

≤ V(t+0 , ϕ0)−
ε

Γ(q)

∫ t0+T

t0

(t0 + T − s)q−1λ(s)ds, t ∈ [t0, t0 + µ].

From the above estimate, Equations (5) and (10) for t = t0 + T we obtain

V(t0 + T, x(t0 + T; t0, ϕ0)) ≤ η − ε

Γ(q)

∫ t0+T

t0

(t0 + T − s)q−1λ(s)ds < 0,

which contradicts the fact that V ∈ VM. Hence, there exists a t∗ ∈ [t0, t0 + T], such that

d(x(t∗; t0, ϕ0), M(t∗)) < ε.

From the lack of increase of the function V along the solution x(t) = x(t; t0, ϕ) it follows that for
t ≥ t∗ (hence for any t ≥ t0 + T as well) we have

d(x(t; t0, ϕ0), M(t))) = V(t, x(t; t0, ϕ0)) ≤ supt∗−h≤t≤t∗V(t∗
+

, x(t− t∗))

= supt∗−h≤t≤t∗d(x(t− t∗), M(t− t∗)) < η < ε.

Therefore, x(t) ∈ M(t, ε) for t ≥ t0 + T. Hence, the integral manifold M is uniformly globally
attractive with respect to Equation (2).

The proof is complete.

The proof of the next theorem is similar to the proof of Theorem 5 and we will omit it here.

Theorem 6. Let the conditions 1 and 2 of Theorem 5 hold and for the Lyapunov function in Equation (4) there
exists a function w ∈ K and integrally positive functions ζ, λ : [t0, ∞)→ R+ such that

ζ(t)w(d(x(t), M(t)))λ−1(t) ≤ V(t, x), t 6= τk(x), k = 1, 2, . . .

for t ∈ [t0, ∞).
Then the integral manifold M is uniformly globally asymptotically stable with respect to Equation (2).

Remark 3. Theorems 5 and 6 offer new sufficient conditions on the model’s parameters of the impulsive
fractional Lasota–Wazewska Equation (2) that yield the global asymptotic stability of an integral manifold
of states. Also, the obtained results extend the existing global attractivity and stability results for impulsive
Lasota–Wazewska models [21–25] to the fractional-order case which better reflects the multiple history dependent
phenomena in the red blood cells dynamics. In fact, stability properties are the most investigated qualitative
properties of biological systems concerned with the study of their behavior over a finite or infinite interval of time.
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Stability is also a very essential and crucial issue in control systems (such as impulsive control systems [20]).
Hence, formulating rigorous stability results is a research problem of theoretical and practical significance.

Remark 4. With this research we generalize the results in [44], considering variable impulsive perturbations
and integral manifolds. For example, if M = [t0 − h, ∞)× {x ∈ R+ : x ≡ x∗}, then two solutions x(t)
and x∗(t) ∈ M(t) may have different impulsive moments tk and t∗k which is more general than the case of
fixed moments of impulsive perturbations, considered in [44]. Since taking into account variable impulsive
perturbations in impulsive control systems is more natural and realistic, our results have great opportunities for
applications. If the impulses are realized at fixed times, and the integral manifold M = [t0 − h, ∞)× {x ∈ R+ :
x ≡ w}, where w is the unique almost periodic solution of the Lasota–Wazewska model, then the results in [44]
follow as corollaries of our results.

3.3. Global Mittag–Leffler Stability

In this Section we will present our Mittag–Leffler stability results for the integral manifold M.

Theorem 7. Assume that conditions 1 and 2 of Theorem 5 are met.
Then the integral manifold M is globally Mittag–Leffler stable with respect to Equation (2).

Proof. Let t0 ∈ R+ and ϕ0 ∈ PCB[[−h, 0],R+] and x(t) = x(t; t0, ϕ0) be the solution of the IVP
Equations (2) and (3). From conditions 1 and 2 of Theorem 5 we get Equations (5) and (9).

Consider again the Lyapunov function Equation (4). For it there exists a constant ν > 0 such that

V(t, x) < ν|x|, t ∈ [t0, ∞), x ∈ R+.

Then from the above estimate, Equations (5) and (9), using Lemma 1, we obtain

d(x(t; t0, ϕ0), M(t)) = V(t, x(t)) ≤ sup
−h≤ξ≤0

V(t+0 , ϕ0(ξ))Eq(−λ(t)(t− t0)
q)

< ν|ϕ0|hEq(−λ(t)(t− t0)
q), t ≥ t0.

Let m[ϕ0] = ν|ϕ0|h. Then

d(x(t; t0, ϕ0), M(t)) < m[ϕ0]Eq(−λ(t)(t− t0)
q), t ≥ t0.

Since in the above estimate m ≥ 0 and m = 0 is true only if ϕ0 = 0, this proves that the integral
manifold M is globally Mittag–Leffler stable with respect to Equation (2).

Remark 5. If in Theorem 7 we consider q = 1, then we will have

d(x(t; t0, ϕ0), M(t)) ≤ ν|ϕ0|h exp(−λ(t)(t− t0)), t ≥ t0,

which implies the global exponential stability of the integral manifold M with respect to Equation (2). This shows
that the notion of Mittag–Leffler stability for fractional-order differential equations is an extension of the notion
of exponential stability for integer-order systems [20,53]. Therefore, with this research we generalize and improve
the existing global exponential stability results for survival of red blood cells models [3,5,8,10,13,20,21,25] to
the fractional-order case. It is also well known that the exponential stability guarantees the fast convergence rate
which is preferable and desirable for mathematical models in biology, chemistry and medicine [20,24].

4. An Example

In this section, we present an example to illustrate the obtained results.
Consider the following impulsive Lasota–Wazewska fractional-order model with time-varying

delays and variable impulsive perturbations:
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
C
0 Dq

t x(t) = −(11 + sin t)x(t)
+(3.5 + 0.4 sin t)e−(0.6+0.4 cos t)x(t−2−cos t)

+(3.1 + 0.2 cos t)e−(0.3+0.2 sin t)x(t−2−sin t), t 6= τk(x),

x(t+) =
1
k

x(t) + νk, t = τk(x), k = 1, 2, . . . ,

(12)

where m = 2, t ≥ 0, 0 < q < 1, γ(t) = 11 + sin t, β1(t) = 3.5 + 0.4 sin t, β2(t) = 3.1 + 0.2 cos t,
α1(t) = 0.6+ 0.4 cos t, α2(t) = 0.3+ 0.2 sin t, s1(t) = 2+ cos t, s2(t) = 2+ sin t, νk ∈ R, τk(x) = |x|+ k,
k = 1, 2, . . .

First, we have that the functions τk(x) are continuous on R+ and satisfy

τ1(x) < τ2(x) < . . . , τk(x)→ ∞ as k→ ∞.

Consider the manifold

M = [−3, ∞)× {x ∈ R+ : M ≤ x ≤ M}, (13)

where M, M ∈ R+ are two constant solutions of Equation (12).
It is easy to check that for the manifold Equation (13) assumptions A1–A3 are satisfied.
Now, we have that α1 = 1, α2 = 0.5, β1 = 3.9,β2 = 3.3, γ = 10, and

∑m
j=1 β jαj

γ
=

5.55
10

< 1.

i.e., condition 5 of Theorem 1 is satisfied.
Moreover,

−1 < αk =
1− k

k
≤ 0,

for k = 1, 2, . . .
Therefore, according to Theorem 1, M is an integral manifold for Equation (12), and according to

Theorem 2, M is uniformly bounded.
Also, if there exists an integrally positive function λ = λ(t) : R+ → R+ such that for t 6= τk(x),

k = 1, 2, . . . , x ∈ R+

γ−
m

∑
j=1

β jαj = 4.45 > λ(t) > 0,

then according to Theorem 7 the integral manifold M is globally Mittag–Leffler stable with respect to
Equation (12).

In addition, if the function λ is such that
η

Γ(q)

∫ ∞

0
(t − s)q−1λ(s)ds = ∞ for each sufficiently

small value of η > 0, the according to Theorem 5 the integral manifold M is uniformly globally
asymptotically stable with respect to Equation (12).

Remark 6. With our example we illustrated the established theoretical results. Since the notion of stability of
manifolds includes as particular cases stability of zero solutions, equilibrium states, almost periodic solutions,
etc., our results have universal applicability and can be easily expanded in the study of many other fractional
biochemical reactions processes.

5. Conclusions

A large number of empirical studies have investigated the long-term dependence of red blood
cells and cell production systems in general. To better model the long-term memory phenomena in the
survival of red blood cells models, in this paper we extend the existing impulsive Lasota–Wazewska
models with time-varying delays to the fractional-order case. In addition, we consider variable
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impulsive perturbations and integral manifolds in our analysis. Existence, boundedness, uniform
global asymptotic stability and global Mittag–Leffler stability results are established. Since the notion
of stability of integral manifolds is much more general than that of trivial solutions, equilibrium points,
periodic and almost-periodic solutions, etc., our results generalized many existing boundedness and
stability criteria. The generalized concept and the results obtained can be applied to study other types
of impulsive control fractional biochemical systems.
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