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Abstract: In this paper, we present a new generalization of the Perov fixed point theorem on
vector-valued metric space. Moreover, to show the significance of our result, we present both a
nontrivial comparative example and an application to a kind of semilinear operator system about the
existence of its solution.
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1. Introduction and Preliminaries

The well-known Banach contraction mapping principle plays a crucial role in the functional
analysis and ensures the existence and uniqueness of a fixed point on a complete metric space. Many
generalizations of this principle have been given either by taking into account more general contractive
inequality or by changing the structure of space. In this context Perov [1] has presented this principle
in vector-valued metric spaces. Many contributions in this aspect have been obtained (see, for example,
Abbas et al. [2], Altun and Olgun [3], Cvetković and Rakočević [4,5], Flip and Petruşel [6], Ilić et al.
[7] and Vetro and Radenović [8]). As we can see in [1,9], the results in this aspect can be used to
guarantee the existence of solutions of some Cauchy problems. In order to talk about the contribution
of Perov, we need to remember the following notations: Let Rm be the set of m× 1 real matrices, X be
a nonempty set and d : X× X → Rm be a function. Then d is said to be a vector-valued metric and in
this case (X, d) is said to be vector-valued metric space, if the following properties are satisfied: For all
x, y, z ∈ X

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) � d(x, z) + d(z, y),

where 0 is the zero m × 1 matrix and � is the coordinate-wise ordering on Rm, that is, for α =

(αi)
m
i=1, β = (βi)

m
i=1 ∈ Rm

α � β⇔ αi ≤ βi for each i ∈ {1, 2, . . . , m}.

For the rest of this paper α � β and β � α will be the same and α ≺ β will be αi < βi for each
i ∈ {1, 2, . . . , m}. Moreover, we denote by R+ the set of non-negative real numbers, by Rm

+ the set
of m× 1 real matrices with non-negative elements, byMm

m(R+) the set of all m× m matrices with
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non-negative elements, by θ the zero m×m matrix, by I the identity m×m matrix. If M ∈Mm
m(R+),

then the symbol MT stands for the transpose matrix of M. For the sake of simplicity, we will make an
identification between row and column vectors in Rm.

Notice that the convergence and Cauchyness of a sequence and completeness of the space in
a vector-valued metric space are defined in a similar manner as in the usual metric space. Let
M ∈ Mm

m(R+), then M is said to be convergent to zero if and only if Mn → θ as n→ ∞ (See [10]).

Theorem 1 ([10]). Let M ∈ Mm
m(R+). Then the following conditions are equivalent:

1. M is convergent to zero,
2. the eigenvalues of M are in the open unit disc, that is, |λ| < 1 for every λ ∈ C with det(M− λI) = 0,
3. the matrix I −M is nonsingular and

(I −M)−1 = I + M + · · ·+ Mn + . . . .

We can find some examples of matrices convergent to zero in the literature.

Example 1. Any matrix inM2
2(R+) of the form

M =

(
a a
b b

)
or M =

(
a b
a b

)

with a + b < 1, converges to zero.

Example 2. If max{a, c} < 1, then the matrix

M =

(
a b
0 c

)

inM2
2(R+) also converges to zero.

Example 3. If max{γi : i ∈ {1, 2, . . . , m}} < 1, then the matrix

M =


γ1 0 . . . 0
0 γ2 . . . 0
...

...
. . .

...
0 0 . . . γm


m×m

inMm
m(R+) converges to zero.

Example 4. If a + b ≥ 1 and c + d ≥ 1, then the matrix

M =

(
a b
c d

)

inM2
2(R+) does not converges to zero.

Now we can state the contribution of Perov [1].

Theorem 2 ([1]). Let (X, d) be a vector-valued metric space and T : X → X be a Perov contraction, that is, a
mapping with the property that there exists a matrix M ∈ Mm

m(R+) which converges to zero such that

d(Tx, Ty) � Md(x, y).
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Then
1. T has a unique fixed point in X, say z,
2. for all x0 ∈ X, the sequence of successive approximations {xn} defined by xn = Tnx0 is convergent to z,
3. one has the following estimation:

d(xn, z) � Mn(I −M)−1d(x0, Tx0).

Example 5. Consider the vector-valued metric space (X, d) where X =
{

xn = 1
n2 : n ∈ {1, 2, . . . }

}
∪ {0}

and d : X× X → R2 is given by
d(x, y) = (|x− y| , |x− y|).

Define a mapping T : X → X by

Tx =


0 , x = 0

xn+1 , x = xn

.

Now we claim that T is not a Perov contraction. Assume the contrary. Then there exists a matrix
M ∈ M2

2(R+) such that M is convergent to zero and

d(Tx, Ty) � Md(x, y) (1)

holds for all x, y ∈ X. Let M =

(
a b
c d

)
, then from Equation (1), for x = xn and y = 0, we get

(xn+1, xn+1) = d(Txn, T0)

� Md(xn, 0)

=

(
a b
c d

)(
xn

xn

)
= ((a + b)xn, (c + d)xn).

Therefore, since limn→∞
xn+1

xn
= 1, this last inequality implies that a + b ≥ 1 and c + d ≥ 1. On the other

hand one of the eigenvalues of M is

λ =
1
2

(
a + d +

√
(a− d)2 + 4bc

)
and the by routine calculation we can see that λ ≥ 1. Therefore, since one of the eigenvalues of M does not lie in
the open unit disc, then from Theorem 1, M does not converge to zero. This is a contradiction. Hence T is not a
Perov contraction.

In this paper, by considering the recent technique of Jleli and Samet [11], we present a new
generalization of the Perov fixed point theorem. This technique is known as θ-contraction in the
literature and there are many studies using this technique (See for example [12–14]). Let Θ : Rm

+0 →
Rm
+1 be a function, where Rm

+j is the set of m× 1 real matrices with every element being greater than j.
For the sake of completeness, we will consider the following conditions:

(Θ1) Θ is nondecreasing in each variable, i.e., for all α = (αi)
m
i=1, β = (βi)

m
i=1 ∈ Rm

+0 such that
α � β, then Θ(α) � Θ(β),

(Θ2) For each sequence {αn} = (α
(1)
n , α

(2)
n , . . . , α

(m)
n ) of Rm

+0

lim
n→∞

α
(i)
n = 0+ if and only if lim

n→∞
β
(i)
n = 1

for each i ∈ {1, 2, . . . , m}, where
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Θ((α
(1)
n , α

(2)
n , . . . , α

(m)
n )) = (β

(1)
n , β

(2)
n , . . . , β

(m)
n ).

(Θ3) There exist r ∈ (0, 1) and l ∈ (0, ∞] such that limαi→0+
βi−1

αr
i

= l for each i ∈ {1, 2, . . . , m}, where

Θ((α1, α2, . . . , αm)) = (β1, β2, . . . , βm).

We denote by Ξm the set of all functions Θ satisfying (Θ1)–(Θ3).

Example 6. Define Θ : Rm
+0 → Rm

+1 by

Θ((α1, α2, . . . , αm)) = (exp
√

α1, exp
√

α2, . . . , exp
√

αm),

then Θ ∈ Ξm.

Example 7. Define Θ : R2
+0 → R2

+1 by

Θ((α1, α2)) = (exp
√

α1, exp
√

α2 exp α2),

then Θ ∈ Ξ2.

By considering the class Ξm, we introduce the concept of Perov type Θ-contraction as follows:
Here we use the notation Λ[k] := (Λki

i )
m
i=1 for Λ = (Λi)

m
i=1 ∈ Rm

+ and k = (ki)
m
i=1 ∈ Rm

+.

Definition 1. Let (X, d) be a vector-valued metric space and T : X → X be a map. If there exist Θ ∈ Ξm and
k = (ki)

m
i=1 ∈ Rm

+ with ki < 1 for all i ∈ {1, 2, . . . , m} such that

Θ(d(Tx, Ty)) � [Θ(d(x, y))][k] , (2)

for all x, y ∈ X with d(Tx, Ty) � 0, then T is called a Perov type Θ-contraction.

If we consider Θ : Rm
+0 → Rm

+1 by

Θ((α1, α2, . . . , αm)) = (exp
√

α1, exp
√

α2, . . . , exp
√

αm),

then Equation (2) turns out to be a Perov contraction. Indeed, if we represent

d(Tx, Ty) = (Λ1, Λ2, . . . , Λm)

and
d(x, y) = (λ1, λ2, . . . λm),

then from Equation (2) we have
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Θ(d(Tx, Ty)) � [Θ(d(x, y))][k]

⇔ Θ((Λ1, Λ2, . . . , Λm)) � [Θ((λ1, λ2, . . . λm))]
[k]

⇔ (exp
√

Λ1, exp
√

Λ2, . . . , exp
√

Λm) � (exp
√

λ1, exp
√

λ2, . . . , exp
√

λm)[k]

⇔ (exp
√

Λi,Tx,Ty)
m
i=1 � (exp ki

√
Λi,x,y)

m
i=1

⇔ exp
√

Λi ≤ exp ki
√

λi for each i ∈ {1, 2, . . . m}

⇔ Λi ≤ k2
i λi for each i ∈ {1, 2, . . . m}

⇔ (Λ1, Λ2, . . . , Λm) � (k2
1λ1, k2

2λ2, . . . , k2
mλm)

⇔ (Λ1, Λ2, . . . , Λm) � M(λ1, λ2, . . . λm)

⇔ d(Tx, Ty) � Md(x, y),

where

M =


k2

1 0 . . . 0
0 k2

2 . . . 0
...

...
. . .

...
0 0 . . . k2

m


m×m

.

By considering some different function Θ belonging to Ξm in Equation (2), we can obtain new
type contractions on vector-valued metric spaces.

2. Main Result

Here we present our main result.

Theorem 3. Let (X, d) be a complete vector-valued metric space and T : X → X be a Perov type Θ-contraction,
then T has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point and define a sequence {xn} in X by xn = Txn−1 for n ∈
{1, 2, . . . }. If xn0+1 = xn0 for some n0 ∈ {0, 1, . . . }, then Txn0 = xn0 , and so T has a fixed point.

Now let xn+1 6= xn for every n ∈ {0, 1, . . . } and let d(xn+1, xn) = (λ
(1)
n , λ

(2)
n , . . . , λ

(m)
n ) = λn for

n ∈ {0, 1, . . . }. Then λ
(i)
n > 0 for all n ∈ {0, 1, . . . } and for all i ∈ {1, 2, . . . , m}. By using the

representation
Θ((λ

(1)
n , λ

(2)
n , . . . , λ

(m)
n )) = (Λ(1)

n , Λ(2)
n , . . . , Λ(m)

n )

and Equation (2), we have

(Λ(1)
n , Λ(2)

n , . . . , Λ(m)
n ) = Θ((λ

(1)
n , λ

(2)
n , . . . , λ

(m)
n )))

= Θ(d(xn+1, xn))

= Θ(d(Txn, Txn−1))

� [Θ(d(xn, xn−1))]
[k]

=
[
Θ((λ

(1)
n−1, λ

(2)
n−1, . . . , λ

(m)
n−1))

][k]
=

[
(Λ(1)

n−1, Λ(2)
n−1, . . . , Λ(m)

n−1)
][k]

.
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Therefore we obtain
Λ(i)

n ≤
[
Λ(i)

n−1

]ki

for all i ∈ {1, 2, . . . , m} and hence

Λ(i)
n ≤

[
Λ(i)

0

]kn
i (3)

for all i ∈ {1, 2, . . . , m}. Thus from Equation (3), we get limn→∞ Λ(i)
n = 1. Hence, from condition (Θ3),

we have
lim

n→∞
λ
(i)
n = 0+

for all i ∈ {1, 2, . . . , m}. From (Θ2) there exist r ∈ (0, 1) and l ∈ (0, ∞] such that

lim
n→∞

Λ(i)
n − 1

[λ
(i)
n ]r

= l

for all i ∈ {1, 2, . . . , m}.
Suppose that l < ∞. In this case, let B = l

2 > 0. From the definition of the limit, there exists
n0 ∈ N such that, for all n ≥ n0 ∣∣∣∣∣Λ

(i)
n − 1

[λ
(i)
n ]r

− l

∣∣∣∣∣ ≤ B

for all i ∈ {1, 2, . . . , m}. This implies that, for all n ≥ n0,

Λ(i)
n − 1

[λ
(i)
n ]r

≥ l − B = B

for all i ∈ {1, 2, . . . , m}. Then, for all n ≥ n0 and for all i ∈ {1, 2, . . . , m}

Bn
[
λ
(i)
n

]r
≤ n

[
Λ(i)

n − 1
]

.

Suppose now that l = ∞. Let B > 0 is an arbitrary positive number. From the definition of the
limit, there exists n0 ∈ N such that, for all n ≥ n0,

Λ(i)
n − 1

[λ
(i)
n ]r

≥ B

or all i ∈ {1, 2, . . . , m}. This implies that, for all n ≥ n0 and for all i ∈ {1, 2, . . . , m}

Bn
[
λ
(i)
n

]r
≤ n

[
Λ(i)

n − 1
]

.

Considering these two cases and Equation (3) we have

Bn
[
λ
(i)
n

]r
≤ n

[[
Λ(i)

0

]kn
i − 1

]
(4)

for all i ∈ {1, 2, . . . , m} and for some B > 0. Letting n→ ∞ in Equation (4), we obtain that

lim
n→∞

n
[
λ
(i)
n

]r
= 0 (5)
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for all i ∈ {1, 2, . . . , m}. From Equation (5), there exists n(i) ∈ {1, 2, . . . } such that n
[
λ
(i)
n

]r
≤ 1 for all

n ≥ n(i). So, we have, for all n ≥ n0 = max{n(i) : i ∈ {1, 2, . . . , m}}

λ
(i)
n ≤

1
n1/r . (6)

In order to show that {xn} is a Cauchy sequence consider k, l ∈ N such that k > l ≥ n0. Using the
triangular inequality for the vector-valued metric and from Equation (6), we have

d(xl , xk) � d(xl , xl+1) + d(xl+1, xl+2) + · · ·+ d(xk−1, xk)

= λl + λl+1 + · · ·+ λk−1

= (λ
(i)
l )m

i=1 + (λ
(i)
l+1)

m
i=1 + · · ·+ (λ

(i)
k−1)

m
i=1

=

(
k−1

∑
j=l

λ
(i)
j

)m

i=1

�
(

∞

∑
j=l

λ
(i)
j

)m

i=1

�
(

∞

∑
j=q

1
j1/r

)m

i=1

By the convergence of the series
∞
∑

j=1

1
j1/r , passing to limit l → ∞, we get d(xl , xk) → 0. This yields

that {xn} is a Cauchy sequence in (X, d). Since (X, d) is a complete vector-valued metric space, the
sequence {xn} converges to some point z ∈ X, that is, limn→∞ xn = z.

On the other hand from (Θ1) and Equation (2), we can get

d(Tx, Ty) � d(x, y)

for all x, y ∈ X. Therefore, we have
d(Txn, Tz) � d(xn, z)

that is
0 � d(xn+1, Tz) � d(xn, z)→ 0

as n → ∞. So we have limn→∞ xn = Tz and hence Tz = z. The uniqueness of the fixed point can be
easily seen by Equation (2).

Remark 1. By taking Θ : Rm
+0 → Rm

+1 by

Θ((α1, α2, . . . , αm)) = (exp
√

α1, exp
√

α2, . . . , exp
√

αm),

in Theorem 3, we obtain Theorem 2 with

M =


k2

1 0 . . . 0
0 k2

2 . . . 0
...

...
. . .

...
0 0 . . . k2

m


m×m

.

Here, since max{ki : i ∈ {1, 2, . . . , m}} < 1, the matrix M is convergent to zero.

Now we present an illustrative and at the same time comparative example.
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Example 8. Consider the complete vector-valued metric space (X, d), where X = {0, 1, 2, . . . } and d :
X× X → R2 is given by

d(x, y) =


(0, 0) , x = y

(x + y, x + y) , x 6= y
.

Let T : X → X be defined by

Tx =


0 , x ∈ {0, 1}

x− 1 , x ≥ 2
.

Then T is not a Perov contraction. Indeed, for y ≥ 2 and x = y + 1, then we have d(Tx, Ty) =

(2y− 1, 2y− 1) and d(x, y) = (2y + 1, 2y + 1). Now suppose there is a matrix M =

(
a b
c d

)
∈ M2

2(R+)

which converges to zero satisfying
d(Tx, Ty) � Md(x, y)

then we have

(2y− 1, 2y− 1) �
(

a b
c d

)(
2y + 1
2y + 1

)
= ((a + b)(2y + 1), (c + d)(2y + 1)).

Therefore by considering the unboundedness of y, we have a + b ≥ 1 and c + d ≥ 1. This shows that M
does not converges to zero, which shows T is not a Perov contraction.

Now, we claim that T is a Perov type Θ-contraction with

Θ(α1, α2) = (exp
√

α1 exp α1, exp
√

α2 exp α2)

and k = (exp(− 1
2 ), exp(− 1

2 )). To see this we have to show that

Θ(d(Tx, Ty)) � [Θ(d(x, y))][k]

for all x, y ∈ X with d(Tx, Ty) � 0. For this, it is sufficient to show

Θ(d(Tx, Ty)) � [Θ(d(x, y))][k]

or equivalently
Tx + Ty

x + y
exp{Tx + Ty− x− y} ≤ exp(−1). (7)

for all x, y ∈ X with d(Tx, Ty) � 0. First, observe that

d(Tx, Ty) � 0⇔ the set {x, y} ∩ {0, 1} is singleton or empty.

Since Equation (7) is symmetric with respect to x and y, we may assume x > y in the following cases.
Case 1. Let {x, y} ∩ {0, 1} be singleton. Then Tx + Ty = x− 1 and x + y ≤ x + 1, and so we have

Tx + Ty
x + y

exp{Tx + Ty− x− y} ≤ x− 1
x + 1

exp(−1) ≤ exp(−1).
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Case 2. Let {x, y} ∩ {0, 1} be empty. Then Tx + Ty = x + y− 2 and so we have

Tx + Ty
x + y

exp{Tx + Ty− x− y} = x + y− 2
x + y

exp(−2) ≤ exp(−1).

Therefore by Theorem 3, T has a unique fixed point.

3. Semilinear Operator System

Let (B, ‖·‖) be a Banach space and N, M : B2 → B be two nonlinear operators. In this section we
will give an existence result for a semilinear operator system of the form

N(x, y) = x
M(x, y) = y.

(8)

Since initial or boundary value problems for nonlinear differential systems can be written in the
operator form of Equation (8), such systems appear in various applications of mathematics. We can see
that various fixed point theorems such as Schauder, Leray–Schauder, Krasnoselskii and Perov fixed
point theorems were applied in the existence of solutions of such systems in [9].

Let X = B2 and define d : X × X → R2, for u = (x1, y1), v = (x2, y2) ∈ X by d(u, v) =

(‖x1 − x2‖ , ‖y1 − y2‖). Then it can be seen that (X, d) is a complete vector-valued metric space. If we
define a mapping T : X → X by Tu = (Nu, Mu), then Equation (8) can be written as a fixed point
problem

Tu = u (9)

in the space X. Therefore, we will use the Theorem 3 to investigate the sufficient conditions that
guarantee the existence of a solution of the fixed point problem Equation (9).

Theorem 4. Assume that there exists a function Θ ∈ Ξ2 and a constant γ ∈ (0, 1) such that

Θ(‖Nu− Nv‖ , ‖Mu−Mv‖) ≤ [Θ(‖x1 − x2‖ , ‖y1 − y2‖)][k], (10)

where k = (γ, γ), for all u = (x1, y1), v = (x2, y2) ∈ B2 with Nu 6= Nv. Then Equation (8) has a unique
solution in B2.

Proof. By Equation (10), we have

Θ (d(Tu, Tv)) � (Θd(u, v))[k] .

Thus, by applying Theorem 3, T has a unique fixed point in X = B2 or equivalently the semilinear
operator system Equation (8) has a unique solution in B2.

Remark 2. Note that, if there exists a constant γ < 1 such that

max


‖N(x1,y1)−N(x2,y2)‖

‖x1−x2‖
,

‖M(x1,y1)−M(x2,y2)‖
‖y1−y2‖

exp{‖M(x1, y1)−M(x2, y2)‖ − ‖y1 − y2‖}

 ≤ γ

for all u = (x1, y1), v = (x2, y2) ∈ B2 with x1 6= x2 and y1 6= y2, then we get Equation (10) with the function

Θ(α1, α2) = (exp{
√

α1}, exp{
√

α2 exp{α2}})

and k = (
√

γ,
√

γ).
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4. Conclusions

In this paper, by using the recent technique named as Θ-contraction we give a new generalization
of the Perov fixed point theorem on vector-valued metric space. Then we present an existence result of
solution of a kind of semilinear operator system.
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