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Abstract: In this paper, we have obtained the prime factorization form of positive integers N for
which the number of true different fourth- and fifth-degree permutation polynomials (PPs) modulo
N is equal to zero. We have also obtained the prime factorization form of N so that the number of
any degree PPs nonreducible at lower degree PPs, fulfilling Zhao and Fan (ZF) sufficient conditions,
is equal to zero. Some conclusions are drawn comparing all fourth- and fifth-degree permutation
polynomials with those fulfilling ZF sufficient conditions.
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1. Introduction

Permutation polynomials (PPs) are used in cryptography, sequence generation, or as interleavers
in turbo codes [1-3]. Recently, some results were obtained regarding the number of true different (td)
PPs modulo a positive integer N, whose definition is provided in Section 2.

In [4], the number of td quadratic permutation polynomials (QPPs) was obtained. Then, in [5],
the method from [4] was applied to determine the number of td cubic permutation polynomials (CPPs)
for N equal to a multiple of 8 as interleaver lengths from the long-term evolution (LTE) standard [6].
The method proposed in [7] is based on the Chinese remainder theorem and on two other important
theorems regarding PPs, and it aims to get the number of td PPs. By using it, the number of td QPPs
and CPPs for every N were obtained. In [8,9], the method from [7] was used to determine the number
of td CPPs, fourth-degree PPs (4-PPs), and fifth-degree PPs (5-PPs) under Zhao and Fan (ZF) sufficient
conditions given in [10]. In [11], an algorithm to determine the number of td PPs of degrees up to five,
based on the Weng and Dong (WD) algorithm from [12], was given.

In this paper, we obtain some new results as follows. We determine the form of prime factorization
of N so that the number of td 4-PPs and 5-PPs is equal to 0, and the form of prime factorization of N so
that the number of any degree PPs nonreducible at lower degree PPs, fulfilling ZF sufficient conditions,
is equal to 0. Thus, these values of N do not have to be used as 4-PP or 5-PP interleaver lengths because
some smaller degree PPs are equivalent to 4-PP or 5-PP, providing the same permutations. A similar
conclusion holds when we want to find PP interleavers under ZF sufficient conditions.

The paper is structured as follows. In Section 2, we recall the algorithm from [11], which is based
on the WD algorithm [12]. In Section 3, we obtain a necessary condition so that the number of td PPs of
a certain degree is equal to 0 (Lemma 1). Using the result from Lemma 1 in Sections 3.1-3.4, we obtain
the form of N’s prime factorization so that the number of td QPPs, CPPs, 4-PPs, and 5-PPs is equal to 0,
respectively. In Section 4, we obtain the number of null polynomials and the quantities required in the
algorithm from [11] to determine the number of any degree td PPs fulfilling ZF sufficient conditions.
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Then, in Theorem 1, we obtain the prime factorization of N so that the number of any degree td PPs
fulfilling ZF sufficient conditions is equal to 0. Section 5 concludes the paper.

2. Determining the Number of td PPs of Degree Up to Five by Using the WD Algorithm
Definition 1. The polynomial of degree d, modulo N,

(x) = g0+ q1x + qzxz 4+t qud (mod N), 1)

where N is a positive integer, is a PP if the coefficients qx, k = 1,...,d, are chosen so that the set
{m(0), 7(1),..., (N — 1)}, modulo N, is a permutation of the set {0,1,...,N — 1} of integers modulo N.

Definition 2. A PP of degree d (d-PP) is named true if the permutation generated by it can not be generated by
a PP of degree smaller than d.

Definition 3. Two PPs are referred to as different if they generate two different permutations of the set
{0,1,...,N—1}.

Definition 4. Two d-PPs are referred to as true different if they are both true and different.

Below, we give the algorithm given in [11] for determining the number of td PPs of degree up to
five based on the WD algorithm.

(1)  Factor the positive integer N as

s1 S1+S2 nN,ka
N=TIru- IT poyc™" b)
k=1 k=51+1

where NNpy > 1 Vk =s1+1,...,51 + 52,51 > 01is the number of prime numbers at power of
one in the factorization of N, s; > 0 is the number of prime numbers at power greater than one
in the factorization of N, and s1 + s, > 1.

(2) Compute the number of all d-PPs, for 1 < d < 5, with the formula

S1 s1+S2

d-(nnp, , —1)
CNa-ppsall = | [ Cpypd—pps T[] Cpppd—pps - (P2i) 72k, 3)
k=1 k251+l

where CPl,k,d* pps and szlk,d, pps are given in Tables 1-3, in columns with ny , = land ny, > 1,
respectively, for every prime type at power equal or greater than one and for any degree from
one to five. In the first product from (3), quantities C,, Ld—PPs have the values given in Tables 1-3
in columns with nyy , = 1. In the second product from (3), quantities C paj,d—PPs have the values
given in Tables 1-3 in columns with ny , > 1.

(3) Compute the number of different d-PPs, for 2 < d < 5, with the formula

CN,d—PPsall
Cnad_ = 4
N,d—PPs,diff 17, ged (kL N) 4)
(4) Compute the number of td d-PPs, for 2 < d < 5, with the recursive formula
d—1
CN,d—pPpstd = CNd—ppsdiff — Y CN jk—PPstds )
k=1

where Cy 1-ppsd = CN,1—Ppsall-
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Table 1. The number of all linear permutation polynomials (LPPs) and quadratic permutation

polynomials (QPPs) over Z, permuting Z PN withny, > 1.

nNp =1 nNp > 1

p
Cpprs  Cpopps  Cprpps  Cp,Qpps

2 1 2 1 1
p>2 p—1 p—1 p—1 p—1

Table 2. The number of all cubic permutation polynomials (CPPs) and fourth-degree permutation

polynomials (4-PPs) over Z, permuting anw ,withny, > 1.

nNp =1 nN,p >1
P Cpcpps  Cpa—prps  Cpcpps  Cpa—pps
2 4 8 1 2
3 6 18 4 4
5 24 24 4 4
7 6 90 6 6

1 (mod 3),
p>7 r-1 r—1 r—1 p-1

2(m0d3), 2 2 _ _
p>5 pr-1  p-1  p-1 p-1

Table 3. The number of all fifth-degree permutation polynomials (5-PPs) over Z, permuting anN,,, ,

with ny,, > 1.
. nNp =1 nNp >1
Cp,5—PPs Cp,5—PPs
2 16 4
3 54 16
5 120 56
7 720 258
13 2976 1884
1 (mod 15) p—1 p—1
11 (mod 15) p?—1 p—1

7 (mod 15) or
13 (mod 15), p*—p?>+p—-1 pP—2p>+2p—1

p>13
2 (mod 15) or
8 (mod 15), -1 p>—2p>+2p—1
p>2
4 (mod 15) -1 p—1
14 (mod 15) (p—1)(2p+1) p—1

3. Determining Positive Integers N so that the Number of td PPs of Degree Up to Five Is Equal to 0
Below, we first obtain a formula equivalent to (5), which is more appropriate for the aim of this

paper. We use (4) in (5) when d = 2, and we obtain

CN,2—PPsjall
CN,QPPstd = gcTZIS\Ia) — CNj-Ppsall- (6)
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We use (4) and (6) in (5) when d = 3, and we obtain

c _ CN,3-Ppsall ~ Cnpo-ppsall @
NCPPstd = o0d(2,N) - ged(6,N)  gcd(2,N)

Using (4) and (7) in (5) when d = 4, we obtain

c _ CN4—PPs,all B CN,3-PPs,all ®)
NA=PPstd = ¢0d(2,N) - ged(6,N) - ged(24,N)  ged(2,N) - ged(6,N)’

and using (4) and (8) in (5) when d = 5, we obtain

c _ CN,5-PPs,all
NS=PPstd = o.q(2,N) - ged (6, N) - ged (24, N) - ged (120, N)

B CN4—PPsall ©)
gcd(2,N) ged(6,N) - ged(24,N)°

We note that the formula

CN,d—pPsjall CN,(d—1)—-PPsjall

— 10
[Ty ged(K,N) T/ ged (K, N) o

CN,d—PPstd =

is valid for each degree d > 2, but the quantities CPl,k,d* pps and CPz,k,d* pps in (3) are not known, as in
Tables 1-3, for each degree d.

The values of N such that the number of td PPs of degrees up to five is equal to 0 can be derived
by using Equations (3), (6)—(9), and Tables 1-3.

In the following, a lemma that states a necessary condition to obtain Cy 4_pps s = 0, required to
obtain the sought results, is given.

Lemma 1. The number of td d-PPs is equal to 0 only if ny,,, = Land only if Cp, 4 pps = Cp, (a—1)—pps, OF at
most C;’”‘ﬂ | ged(d!, N) for each py | N so that py { ged(d!, N).

,(d—1)—PPs

Proof. Condition Cy 4_pps g = 0in (10) is equivalent to

Cna—
N,d PPs,all — ng(d’, N), (11)
CN,(d—1)-PPs,all

or taking into account (3),

S1 s1+52

Cpup-rpps Cpad—Pps (pap) ™2V = ged(dl, N). (12)
k=1 Cm,k,(d—l)—PPs k=s1+1 CPz,k:(d—l)—PPS '
ClearIYI Cpl/k,dfpps > Cplrk,(d71)7pps Vk = 1151/ and sz/k,dfpps > szrk,(dfl)fppsf

and (pz,k)(nN”’Z’k*l) > 1fornyy,, >1 Vk = s1 + 1,51 + s2. Notation Vk = 1, L, with L a positive integer,

means Vk = 1,2,...,L. Then, if p, ; { ged(d!, N) for some k € {s; +1,...,s1 + s2}, Equation (12) can
. . Cp ,d—PPs .

be fulfilled only if ny,,,, = 1,and Cp,, 4—pps = Cp,, (4-1)—pps OF m | ged(d!, N), and if py 1 {

ged(d!, N) for some k € {1,...,s1}, Equation (12) can be fulfilled dnly if Cp, d—pps = Cp,, (d—1)—PPs

Cpy pi—pPs
or T oed(d, N). O

p1 j(d—1)—PPs
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The cases when py | N and py | ged(d!, N), for degrees of 2 up to 5, are approached separately in

C7 —PPs C _PPs

Sections 3.1-3.4. To help in this purpose, in Tables 4 and 5 the values of P1xA—PP - PopAPP
Py (d—1)—PPs po f(d—1)—PPs

ford = 2,3,4,5, are given.

Table 4. The values Cc’”’i ford =2,3,4.
p,(d—1)—PPs

nN,py = 1 nN,p >1 nN,py = 1 nN,p >1 nNp = 1 nN,p >1

P Cp,opps Cp,QPPs Cp,cpps Cp,cpps Cp,a—pps Cpa—pps
Cp,LpPs Cp,LpPs Cp,qpps Cp,qrps Cp,crps Cp,cpps
2 2 1 2 1 2 2
3 1 1 3 2 3 1
5 1 1 6 1 1 1
7 1 1 1 1 15 1
1(mod3), 1 1 1 1 1 1
p>7
2 (mod 3),
p>5 1 1 p+1 1 1 1
Table 5. The values @
pA—PPs
nNyp =1 nNp >1
P Cp5-PPs Cp5-PPs
Cp,4—PPs Cp,4—I’Ps
2 2 2
3 3 4
5 5 14
7 8 43
13 248 157
1 (mod 15) 1 1
11 (mod 15) 1 1
7 (mod 15) or
13 (mod 15), p?+1 pPP—p+1
p>13

2 (mod 15) or
8(mod15), (PP+p+1)/(p+1) p*—p+1

p>2
4 (mod 15) p+1 1
14 (mod15)  (2p+1)/(p+1) 1

3.1. Determining Positive Integers N so That the Number of td QPPs Is Equal to 0

As can be seen from Table 4, the conditions in Lemma 1 are satisfied for each prime p > 2.
When ged(2!, N) = 2, it results that 2 | N. Two subcases result.

Ca,0pPPs

C = 2. As we see in Table 4,
2,LPPs

When p = 2 and ny2 = 1, equality Cy,gppsta = 0 implies
the last condition is true.
When p = 2 and ny, > 1, equality Cy gpps g = 0 implies % -2"2~1 = 2, or, equivalently,

1-2™271 =2 orny, = 2. Thus, this solution is valid.
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Concluding, the number of td QPPs results equal to 0 when N is of the form

S
Ney oppora=0 = 2"™2 - [ [ i, withnyo =0,2,pp > 2,Vk = 2,5, (13)
k=2

as was previously obtained by a different method given in [7].

3.2. Determining Positive Integers N so That the Number of td CPPs Is Equal to 0

As can be seen from Table 4, the conditions in Lemma 1 are satisfied for primes of type p =
1 (mod 3). In addition, if ged(3!, N) = 6, condition g” PP | ocd(3!, N) is met for p = 5.
When ged(3!, N) > 1, the following cases result.
(1) gcd(3,N)=2,ie,2|Nand3{N
When p = 2 and ny, = 1, equality Cy cppstg = 0 implies %
the last condition is true.

= 2. As we see in Table 4,

Saceps  gnna=1 = or, equivalently,

When p = 2 and ny» > 1, equality Cy cpps g = 0 1mpl1es
1-2™2-1 =2 orny, = 2, a valid solution.
(2) gcd(3!,N)=3,ie,2{Nand3|N

When p = 3 and ny3 = 1, equality Cy cpps g = 0 implies #

the last condition is true.

= 3. As we see in Table 4,

3CPP5

When p = 3 and ny3 > 1, equality Cy cpps g = 0 implies Crorme 33—l =3, or, equivalently,

2.3™3~1 = 3. Thus, no integer solution ny 3 of the last equatlon exists such that nn 3 > 1.
(3) gcd(3,N)=6,ie,2|Nand3 | N

In the cases when p = 2 and ny, € {1,2}, and when p = 3 and ny 3 = 1, only one solution
exists. Thus, we have to consider only the case when ny, > 2and ny3 > 1.
Cocpps  pnnp—1, CacPps | gnysz—1 _
Cs,qpps
23, or, equivalently, 1-2"N2~1.2.3"3~1 = 2.3, The last equatlon has no integer solutions so
thatny, > 2and nyz > 1. If 5 | N, ny5 =1, ny > 2 and ny3 > 1, condition Cy cpps g = 0
implies & Sacers  gnyp-1 % -3l % = 2.3, or, equivalently, 1-2"N2~1.2.3m371. 6 =
PPs 3,QPPs 5,QPPs
2-3. The last equation has also no solutions such that n N2 >2and nys > 1.

When ny, > 2 and ny3 > 1, equality Cx cpps g = 0 implies Croppe

Concluding, the number of td CPPs results equal to 0 when N is of the form

S
— JNN2 . 31N3 .
NCN,CPPs,td:O =2 3 kl—[ Pk
=3

with nN2 = 0,72, nN3 = 0,71, px >3, with pr=1 (mod 3),k =35, (14)

as was previously obtained by a different method given in [7].

3.3. Determining Positive Integers N so That the Number of td 4-PPs Is Equal to 0

From Table 4, we note that the conditions from Lemma 1 are fulfilled for each prime p > 7 and for
prime p = 5.
When ged(4!, N) > 1, the following cases result:

(1) ged(4!,N) =2"v2, withny, € {1,2,3},1e,2"N2 | N

24 PPs

c = 2. As we see in Table 4,
,CPPs

When p = 2 and nyp = 1, equality Cy 4_pps g = 0 implies
the last condition is true.
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@

®)

When p = 2 and ny, € {2,3}, equality Cy 4_ppstgs = O implies C“C;PS L2mN2l = 2Nz o,

equivalently, 2 - 2"N2~1 = 2"N2_ The last equation has as solutions both 1, = 2 and 1y, = 3.

When p = 2and ny, > 3, equality Cy 4—pps g = 0implies % 2m2~1 =23 or, equivalently,

2.2™2~1 = 23, The last equation has no integer solutions such that ny, > 3.
gcd(4,N) =3,ie,2{Nand 3 | N

34 PPs

When p = 3 and ny3 = 1, equality Cy 4_pps g = 0 implies Cs o

the last condition is true.

= 3. As we see in Table 4,

C3,4-pps
Cs,cpps

1-3™3~1 = 3. The last equation has as a valid solution ny 3 = 2
ged(4!,N) =2"N2 .3, withnyo € {1,2,3},1e,2"™2 | Nand 3 | N

When p = 3 and ny3 > 1, equality Cy 4_pps 19 = 0 implies .33l =3, or, equivalently,

Each of the above cases have solutions. Therefore, we do not have to consider this case because
the same solutions result.

Concluding, the number of td 4-PPs results equal to 0 when N is of the form

S
— DNN2 . 3"N3 . KNS . H i,

N CN,4—PPs,td=0

with NN = ,3, nN3 = ,2, nNs = , 1, pre > 7,k =4,s. (15)

3.4. Determining Positive Integers N so That the Number of td 5-PPs Is Equal to 0

As can be seen from Table 5, the conditions in Lemma 1 are satisfied for primes p of types

p =1 (mod 15) and p = 11 (mod 15). In addition, if 8 | gcd(5!, N), condition % | ged(5!,N) is

fulfilled for p = 7, and if 20 | ged(5!, N), condition % | ged(5!, N) is fulfilled for p = 19.

M

2

®)

When ged(5!, N) > 1, the following cases result:
ged(5!, N) = 2"v2, withny, € {1,2,3},ie.,2"™2 | N,3{N,and 5{ N

25 PPs

When p = 2 and nyo = 1, equality Cx5_ppstg = 0 1mp11es o

the last condition is true.

= 2. As we see in Table 5,

When p = 2 and ny, € {2,3}, equality Cy5_ppstg = 0 implies C;i o= 2mN2l = N2 o,

equivalently, 2 - 2"N2~1 = 2"N2 The last equation has as solutions both 11y, = 2 and 1y, = 3.
— : —0; : e $25-PPs -1 _»3 :

When p = 2and ny, > 3, equality Cy 5_pps g = 0implies oo -2"N271 = 27, or, equivalently,

2.2™2~1 = 23 The last equation has no integer solutions such that ny , > 3.

Ca5-pps  Hnuynos—1 . Cr5-pPPs _
When?7 | N, ny7 =1,and ny o > 3, equality Cy 5_pps g = 0 implies Coarm - 2MN2T oo

23, or, equivalently, 2 - 2"N2~1.8 = 23, The last equation has no integer solutions such that
nna > 3.
ged(3!,N) =3,ie,2¢tN,3| N,and5{ N

When p = 3 and ny3 = 1, equality Cy 5-pps g = 0 implies % = 3. As we see in Table 5,
the last condition is true.
35 PPs

When p = 3 and ny3 > 1, equality Cy 5_pps tq = 0 implies Coa -3"™3~1 = 3, or, equivalently,

4.3™3~1 = 3. The last equation has no integer solutions such that nyz > 1.
ged(5!,N) =2"v2 .3, withny, € {1,2,3},1.e,2"™2 | N,3 | N,and 5/ N

Each of the cases when p = 2 and ny, € {1,2,3}, and when p = 3 and ny3 = 1, have one
solution. Thus, we have to consider only the case when ny> > 3 and ny3 > 1.
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: 0 e C25-PPs  ony,—1 . C35-pps
When ny, > 3 and nyz > 1, equality Cys5_ppsg = 0 implies Gy 2N, Crane

3™s~1 =23 .3, or, equivalently, 2 - 2"N2~1 . 4. 3" 3~1 = 23. 3 The last equation has no integer
solutions such that ny> > 3 and ny3 > 1.

. . . Co5-pps 1
When7 | N,nyy =1,ny2 > 3and ny3 > 1, equality Cy 5_pps 1 = 0 implies ﬁ 2Nl
Sasopps  gung—1. Z5=PPs — 3.3 or equivalently, 2- 221 .4 .33l .8 = 23.3. The last

C3,4-PPs Cs54-pps ]
equation has no integer solutions such that ny> > 3 and ny3 > 1.

(4) gcd(5!,N)=5,ie,2¢tN,3tN,and5| N

When p = 5and nys = 1, equality Cy5-pps g = 0 implies % = 5. As we see in Table 5,
o . . _ . _ . . C5,57PPS

the last condition is true. When p = 5 and ny 5 > 1, equality Cy5_pps g = 0 implies G

5"5~1 = 5, or, equivalently, 14 - 5"N5~1 = 5. The last equation has no integer solutions such

that nys > 1.

The cases of other combinations of prime factors 2, 3, and 5, do not have to be considered because
the same solutions result.
Concluding, the number of td 5-PPs results equal to 0 when N is of the form

S
=2"2.3MW3 . 5" T ] pr, withnnp =0,3,nny3 =0,1,nn5=0,1,
k=4

N CN,5—PPs,td=0

prx > 5, with pr =1 (mod 15) or py = 11 (mod 15),k = 4,s. (16)

4. Determining Positive Integers N so That the Number of td d-PPs Fulfilling ZF Sufficient
Conditions Is Equal to 0

With the algorithm from Section 2, we can determine the number of td PPs fulfilling ZF sufficient
conditions for an arbitrary degree d of PPs. The values used in (3) are denoted by Cp, 4 pps zr in this
case. We consider the sufficient coefficient conditions from [10] to find the values for Cp, 4 pps zF,
depending on the degree d of PPs.

Let it be a PP of degree d modulo N as in Equation (1).

For p = 2 and ny,, = 1, the condition is (g1 + 42+ -~ +q4) # 0 (mod 2). It is fulfilled for
24/2 = 29=1 combinations of coefficients (41,42, . . .,q4)-

For p =2 and ny,, > 1, the conditions are q; # 0 (mod 2), (92 + g4 + g6 +...) = 0 (mod 2) and
(g3 +g5+q7+...) =0 (mod 2).

Condition q; # 0 (mod 2), with q; € Zy, is met only for g; = 1.

Furthermore, we consider the degree d odd and even, respectively, in the other two conditions.

When d is odd (d > 3),ie.,d = 2-k+1, k € N*, each of the sums (g2 + g4 +g¢ + ... ) and
(g5 + g5 + g7 + ... contain k coefficients, each of them being satisfied for 2 /2 = 25~1 combinations
of coefficients. It results that C,, s ppszr =1~ k=1 . k=1 — 22k=2 — 2d=3 for d odd.

When d is even (d > 4),ie,d =2 -k, withk € N, k > 2, the sum (g2 + g4 + g6 + . .. ) contains
k coefficients and the sum (g3 + g5 + g7 + ... ) contains k — 1 coefficients. The first sum is fulfilled
for 2k /2 = 2k=1 combinations of coefficients and the second one for 2¢=1/2 = 2k=2 combinations of
coefficients. It results that Cy, 4 ppszr =1+ 2k=1.9k=2 — 22k=3 — 2d=3 for d even.

When p > 2 and ny, > 1, the conditions become q; # 0 (mod p) and g = g3 = -+ =
gqs = 0 (mod p). Condition g1 # 0 (mod p), with q; € Zy, is fulfilled for p — 1 values. Condition
G2 =q3 =+ =qq =0 (mod p), with q; € Z, Vi = 2,d, is fulfilled only for g, = q3 = --- = g4 = 0.
In this case, Cp g_ppszr = (p—1)-1=p—1.

Table 6 summarizes the values of C,, s pps used in (3) in the case of ZF sufficient conditions.

We note that the ZF sufficient conditions also become necessary for LPPs and QPPs. Thus, the same
values of Cp, 4 pps from Table 1 can be used.
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Cpy d—PPsZF n Cpy jd—PPs,ZF

The values
Cu d=1)—PPs,ZF szlk,(d—l)—PPszF,

ford > 3, are given in Table 7 .

Table 6. The number of d-permutation polynomials (PPs) (d > 3) fulfilling ZF sufficient conditions
over Z, permuting anN,p ,withny, > 1.

nNpy =1 Ny > 1
p
Cpa—ppszr  Cpa—pps,zrF
2 del 2d73
p>2 p—1 p—1

Table 7. The values CC(’;”I% for d-PPs (d > 3) fulfilling Zhao and Fan (ZF) sufficient conditions.
p,(d—1)—PPs

Ny =1 nNp >1
Cp,a—pps Cp,a—pps

C,,(d—1)—Pps C,,(d—1)—Pps
2, ifd >3,

2 2 =
1, ifd=3.

p>2 1 1
Let there be ;
x) =Y z-x* (mod N), (17)
k=1

a null polynomial (NP) of degree d modulo N, i.e., z(x) =0,Vx =0, N — 1.
As we pointed out in [9], the null polynomials (NPs) under ZF sufficient conditions have to
fulfill conditions

z1 # (—q1) (mod p),zp =23 =--- =25 =0 (mod p),Vp | N,p > 2. (18)

Thus, the number of NPs of degrees smaller than or equal to 4 fulfilling ZF sufficient conditions
will not be equal to Hfzz gcd(k!, N) as used in (4). This number is obtained in the following.
The general form of NPs of degrees up to d is known from [13,14]:

d
_g{gcd T - Hx— } (mod N),

where 0 < 7 < ged(k!, N) — 1. (19)

The quantity ged(k!, N), k > 3 is denoted by gj in the following. Let

= gcd(k!, N) = 22 . Hp}g with sg, > 2,1g,0 > 1,ng, . > 1, and
]_

Pige > 2Y1=2,3,...,5g, (20)

be the factorization of g.
The truth value function ||x * y||, with x being an operator between two positive integers x and y,
is defined as

1, if x x y have a true value of truth,
[[x*y|| = 1)

0, if x x y have a false value of truth.
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We will use the function in (21) with the “equality operator” (==) and “greater than or equal to”
operator (>).

Similarly to [9], if a prime p < d exists, such that ng, , = ny p, then for NPs fulfilling ZF sufficient
conditions, we have to impose that p | 7, Vk = k/,k’ +1,...,d, where k' is the lowest integer such that
Ng,p = Ng,p- Thus, prime p will reduce the number of NPs by pd’k/“. With g; as in (20) for k = d,
the number of NPs fulfilling ZF sufficient conditions will be equal to

TT_, ged (K, N)

(dﬁk,,j%*l)'”ngd,}?k::nf\f,pk H ’

CNpszF = (22)

Sgd

ke (Prgy)

where k', is the lowest integer such that Mg o = Mgy pi-

Then the formula for the number of td d — PPs fulfilling ZF sufficient conditions is

584 (d=kj+1) [ |ng,p==nnN,p, ||

C C T2 (Prg,) ™ SaPk =Tk

N,d—PPs,zFtd = CN,d—PPs,ZF,all - v -
ITi—; ged (K, N)

841 (A=K 1) lng, o p==nnp,||
[T (Prg, )" e VK

[T} sed(k!, N)

—CN,(d—1)-PPsall * (23)

Theorem 1. Let the prime factorization of d! be

Sdt ng,p
__nn Pk
dt =27z H Prar +
k=2

withsgy > 2,n50 > 1,ng, >1, and2 < ppg <d,Vk=2,3,...,54. (24)

Pk

Then the number of td d-PPs fulfilling ZF sufficient conditions is equal to zero (Cy 4_pps,zF a = 0) if the
factorization of N is

Sqt S
oy
— oNN2 . Pk,
NCN,d—PPs,ZF,td:O =2 H Pk an H Pk
k=2 k=Sd]+1

with0 < nyp < ngipford >3and 0 < nyp < 2ford =3,
0<nnp <ngp +1,2<pea<dVk=23,...,s5, and py >d,Vk=s5+1,...,s. (25)

Proof. Imposing that Cy 4_ppszF 4 = 0in (23), we obtain

Se; d—k, ) ==
. Hkg;121 (Pk,gd,l)( a-1) gy p==nnp,l (26)

Cni
—NA=PPsZEAL _ o4 (g1, N)

CN,(d-1)—PPsall % (Prg,) (d=kg+1)-|Ingg,pp ==nnpy ||

k=2
The cases when d is a prime number and d is not a prime number are analyzed in the following.
(1) d—a prime number
The prime factorizations of g;_; and g;/d"va=1l) are the same if d is a prime number.

Moreover, ng, 4 =1 and k:i = d. Therefore, we have

Sg A—K,_)- —=
I (p) a1 s == | — 1 ) (27)
HZZZ(Pk)(d—kfi“)‘H”ng::”Nmk” d(llma==111)
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In this case, condition (26) becomes

Cnd—ppszran _ ged(d!, N)
Cn,(d—1)—ppsan  dl/mva==1l)

(28)

Taking into account Equation (3) and the values in Table 7, for d = 3 we obtain Cx cpps,zr .t = 0
if the factorization of N is

S
Ney cppszro = 22 - 3"N2 - [ 1Pk withny, =0,2,ny3=0,2,
k=3

px > 3,Vk =3,s, (29)
as in (25) for d = 3. The same result was obtained in [9].

If d is a prime number, d > 3, considering (3) and the values in Table 7, (28) is equivalent to

-1
5 oma-1. TT 1 ga=1) _ grggn T s g1~ (lnna==11)
e H “(p2x) g = H Prar ’ / ,
k=s1+1 k=2

with 0 <ng,» <ngo 0 <ng, , <ng,,and2 < pga <d,Vk=2,3,...,55 — 1. (30)

Pk’

For d a prime number, d > 3, from (30) it results that Cy 4_pps zr 14 = 0 if the factorization of
Nis
Sq1 -1

S
ny,
— 7NN . Pk . ANN .
NCN,d—PPs,ZF,td:O =2 H Pkar d H Pk
k=2 k=sn+1

with 0 <nnp <ngo, 0 <nnp, <ngp, +1, and 2 < prg < d, Vk=2,3,...,sq—1,
OgnN,d§2,pk>d,Vk:sd!+1,...,s. (31)
(31) is the same as (25) for d a prime number.
d—not a prime number

The prime factors from the factorization of g; are the same as those from the prime factorization
of g1, possibly with greater powers of some factors, if 4 is not a prime number. The maximum
powers of the primes py 4 in the factorization of ¢4 are ngy ,,, Vk = 2,3,...,s41.

_— / 1!
If prar | 84, Prar 1 d, and Nayp, > NNy, thenng, \ p = ng,, = ny, and kl,_, = kl;. Thus,

the term corresponding to factor py 4 in the ratio from the right-hand side of (26) is ;
k,d!
The same observation is valid if px 4 | 4, Pr.ar | 4, and ngy p, — 14, > 1N p,-

If prar | Sar Prar | d and Naipe = Mdp, < MNpe < My, then ng, | p, < Ngyp, = NNy

g, 10 == nnp |l = 0, gy p == ninp, |l =1, and K, = d. T?us, the term corresponding to
factor py 41 in the ratio from the right-hand side of (26) is also e’
k,d!
If prar | g4 and NN, > Ndyp,, thenng, | p < 1N p, Mgy pe < NN,pes H”gdwpk == ”N,pkH =0,
and ||ng, . == nn,p, || = 0. Thus, the term corresponding to factor py g in the ratio from the
right-hand side of (26) is equal to 1.
Concluding, if 4 is not a prime number, (26) is equivalent to
Cna— 1
N,d PPs,ZP,all — ng(d', N) . (32)

CN,(d-1)-PPsall T, (pray) e =ne
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Similarly to (30), (32) is equivalent to

s1+52 Sat 18Pk
2 . anrzfl . | | 1 A (pzk)(nN,pzlkfl) — and’z A szz pk,d!
’ Sar 1ayp, 21N, |
k=s1+1 szz(pk,d!) Pk Pk

with 0 <ng,» <ngo 0 <ng,p <ngyp, and2 < pps < dvVk=2,3,...,54. (33)

Pk’

If d is not a prime number, from (33) it results that Cx; 4_pps zr 14 = 0 if the factorization of N is

Sq1 S
oy
— DNN2 . Pk
NCN/d—PP.«;/ZF,td:O =2 H P H Pk
k=2 k=sg-+1

with 0 < nno < nd,,2,0 < 1N, py < a1, p, +1, and 2 < Prdr < dvk=23,...,s4,

pe>d,Vk=sy+1,...,s (34)

We mention that formula (34) is also valid if 4 is a prime number. Thus, the theorem is proved.
O

Two examples for the form of N when d is a prime number and when d is not a prime number are
given in the following.

Example 1 (Example of N so that Cy 11_pps,zr 4 = 0). For d = 11, we have
111 =28.3*.52. 71 . 111, (35)

and Cy 11—pps,zrd = 0 if N is of the form

N CN,11-PPs,ZF,td=0

S
— DNN2 . 3N . BINS . 7AN7 L] 1MNAL . H Pk
k=6

with0 <nnp <8,0<nN3<50<ny5<30<ny7<20<nN11 <2,

and p > 11,Vk =6, ...,s. (36)
Example 2 (Example of N such that Cy 12_pps zr 14 = 0). For d = 12, we have
120 =210.3%.52.71 .11, (37)

and CN,lZ*PPs,ZF,td =0 ZfN is Of theform

S
— 2NN2 . 31N3 . 5N5 . 7IN7 . 111N . H Pk,
k=6

Nc N,12— PPs,ZF,td=0

with0 <nynp2 <10,0<nn3 <6,0<nN5<3,0<nyy<2,0<ny1; <2,

and py > 11,Vk =6,...,s. (38)

We mention that the same results as in [9] for degrees d = 4 and d = 5 are obtained, i.e.,

S
— JNN2 . 3NN3 .
NCNA—PPS,ZF,td:O =2 3 kl—I Pk
=3

with0 <nnp <3,0<ny3z <2,
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and py > 3,Vk=3,...,s, (39)

and
S

— DQNN2 . 3IN3 . 5IN5 . H P,
k=4

with 0 < nyp <3,0<nN3<20<ny5<2,

N CN,5-PPs,ZF,td=0

and py > 5,Vk=4,...,s. (40)

5. Conclusions

In this paper, we obtained the form of N’s prime factorization for which the number of td fourth-
and fifth-degree permutation polynomials is equal to zero. These values of N do not have to be used
as fourth- and fifth-degree PP interleaver lengths because some PPs of smaller degree are equivalent to
the fourth- or fifth-degree PPs, providing the same permutations.

We have particularized the algorithm from [11] for permutation polynomials under ZF sufficient
conditions, and we obtained the number of null polynomials and the quantities C, s pps zr required
in the algorithm. We have also obtained the form of N’s prime factorization such that the number
of td PPs of any degree, fulfilling ZF sufficient conditions, is equal to zero. Similarly to those above,
these values of N do not have to be used as PP interleaver lengths when we search for PP interleavers
under ZF sufficient conditions.

Comparing (15) with (39), we conclude that there are no td 4-PPs fulfilling ZF sufficient conditions,
but there are td 4-PPs fulfilling other conditions, only when 7 | N.

Comparing (16) with (40), we conclude that there are no td 5-PPs fulfilling ZF sufficient conditions,
but there are td 5-PPs fulfilling other conditions, only when 9 | N, or 25 | N, or p | N with p #
1 (mod 15) and p # 11 (mod 15).
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