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Abstract: In this paper, we have obtained the prime factorization form of positive integers N for
which the number of true different fourth- and fifth-degree permutation polynomials (PPs) modulo
N is equal to zero. We have also obtained the prime factorization form of N so that the number of
any degree PPs nonreducible at lower degree PPs, fulfilling Zhao and Fan (ZF) sufficient conditions,
is equal to zero. Some conclusions are drawn comparing all fourth- and fifth-degree permutation
polynomials with those fulfilling ZF sufficient conditions.
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1. Introduction

Permutation polynomials (PPs) are used in cryptography, sequence generation, or as interleavers
in turbo codes [1–3]. Recently, some results were obtained regarding the number of true different (td)
PPs modulo a positive integer N, whose definition is provided in Section 2.

In [4], the number of td quadratic permutation polynomials (QPPs) was obtained. Then, in [5],
the method from [4] was applied to determine the number of td cubic permutation polynomials (CPPs)
for N equal to a multiple of 8 as interleaver lengths from the long-term evolution (LTE) standard [6].
The method proposed in [7] is based on the Chinese remainder theorem and on two other important
theorems regarding PPs, and it aims to get the number of td PPs. By using it, the number of td QPPs
and CPPs for every N were obtained. In [8,9], the method from [7] was used to determine the number
of td CPPs, fourth-degree PPs (4-PPs), and fifth-degree PPs (5-PPs) under Zhao and Fan (ZF) sufficient
conditions given in [10]. In [11], an algorithm to determine the number of td PPs of degrees up to five,
based on the Weng and Dong (WD) algorithm from [12], was given.

In this paper, we obtain some new results as follows. We determine the form of prime factorization
of N so that the number of td 4-PPs and 5-PPs is equal to 0, and the form of prime factorization of N so
that the number of any degree PPs nonreducible at lower degree PPs, fulfilling ZF sufficient conditions,
is equal to 0. Thus, these values of N do not have to be used as 4-PP or 5-PP interleaver lengths because
some smaller degree PPs are equivalent to 4-PP or 5-PP, providing the same permutations. A similar
conclusion holds when we want to find PP interleavers under ZF sufficient conditions.

The paper is structured as follows. In Section 2, we recall the algorithm from [11], which is based
on the WD algorithm [12]. In Section 3, we obtain a necessary condition so that the number of td PPs of
a certain degree is equal to 0 (Lemma 1). Using the result from Lemma 1 in Sections 3.1–3.4, we obtain
the form of N’s prime factorization so that the number of td QPPs, CPPs, 4-PPs, and 5-PPs is equal to 0,
respectively. In Section 4, we obtain the number of null polynomials and the quantities required in the
algorithm from [11] to determine the number of any degree td PPs fulfilling ZF sufficient conditions.
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Then, in Theorem 1, we obtain the prime factorization of N so that the number of any degree td PPs
fulfilling ZF sufficient conditions is equal to 0. Section 5 concludes the paper.

2. Determining the Number of td PPs of Degree Up to Five by Using the WD Algorithm

Definition 1. The polynomial of degree d, modulo N,

π(x) = q0 + q1x + q2x2 + · · ·+ qdxd (mod N), (1)

where N is a positive integer, is a PP if the coefficients qk, k = 1, . . . , d, are chosen so that the set
{π(0), π(1), . . . , π(N − 1)}, modulo N, is a permutation of the set

{
0, 1, . . . , N − 1

}
of integers modulo N.

Definition 2. A PP of degree d (d-PP) is named true if the permutation generated by it can not be generated by
a PP of degree smaller than d.

Definition 3. Two PPs are referred to as different if they generate two different permutations of the set
{0, 1, . . . , N− 1}.

Definition 4. Two d-PPs are referred to as true different if they are both true and different.

Below, we give the algorithm given in [11] for determining the number of td PPs of degree up to
five based on the WD algorithm.

(1) Factor the positive integer N as

N =
s1

∏
k=1

p1,k ·
s1+s2

∏
k=s1+1

p
nN,p2,k
2,k , (2)

where nN,p2,k > 1, ∀k = s1 + 1, . . . , s1 + s2, s1 ≥ 0 is the number of prime numbers at power of
one in the factorization of N, s2 ≥ 0 is the number of prime numbers at power greater than one
in the factorization of N, and s1 + s2 ≥ 1.

(2) Compute the number of all d-PPs, for 1 ≤ d ≤ 5, with the formula

CN,d−PPs,all =
s1

∏
k=1

Cp1,k ,d−PPs ·
s1+s2

∏
k=s1+1

Cp2,k ,d−PPs · (p2,k)
d·(nN,p2,k

−1), (3)

where Cp1,k ,d−PPs and Cp2,k ,d−PPs are given in Tables 1–3, in columns with nN,p = 1 and nN,p > 1,
respectively, for every prime type at power equal or greater than one and for any degree from
one to five. In the first product from (3), quantities Cp1,k ,d−PPs have the values given in Tables 1–3
in columns with nN,p = 1. In the second product from (3), quantities Cp2,k ,d−PPs have the values
given in Tables 1–3 in columns with nN,p > 1.

(3) Compute the number of different d-PPs, for 2 ≤ d ≤ 5, with the formula

CN,d−PPs,diff =
CN,d−PPs,all

∏d
k=2 gcd(k!, N)

. (4)

(4) Compute the number of td d-PPs, for 2 ≤ d ≤ 5, with the recursive formula

CN,d−PPs,td = CN,d−PPs,diff −
d−1

∑
k=1

CN,k−PPs,td, (5)

where CN,1−PPs,td = CN,1−PPs,all.
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Table 1. The number of all linear permutation polynomials (LPPs) and quadratic permutation
polynomials (QPPs) over Zp permuting ZpnN,p , with nN,p ≥ 1.

p
nN,p = 1 nN,p > 1

Cp,LPPs Cp,QPPs Cp,LPPs Cp,QPPs

2 1 2 1 1

p > 2 p− 1 p− 1 p− 1 p− 1

Table 2. The number of all cubic permutation polynomials (CPPs) and fourth-degree permutation
polynomials (4-PPs) over Zp permuting ZpnN,p , with nN,p ≥ 1.

p
nN,p = 1 nN,p > 1

Cp,CPPs Cp,4−PPs Cp,CPPs Cp,4−PPs

2 4 8 1 2

3 6 18 4 4

5 24 24 4 4

7 6 90 6 6

1 (mod 3), p− 1 p− 1 p− 1 p− 1p > 7

2 (mod 3),
p2 − 1 p2 − 1 p− 1 p− 1p > 5

Table 3. The number of all fifth-degree permutation polynomials (5-PPs) over Zp permuting ZpnN,p ,
with nN,p ≥ 1.

p
nN,p = 1 nN,p > 1

Cp,5−PPs Cp,5−PPs

2 16 4

3 54 16

5 120 56

7 720 258

13 2976 1884

1 (mod 15) p− 1 p− 1

11 (mod 15) p2 − 1 p− 1

7 (mod 15) or
p3 − p2 + p− 1 p3 − 2p2 + 2p− 113 (mod 15),

p > 13

2 (mod 15) or
p3 − 1 p3 − 2p2 + 2p− 18 (mod 15),

p > 2

4 (mod 15) p2 − 1 p− 1

14 (mod 15) (p− 1)(2p + 1) p− 1

3. Determining Positive Integers N so that the Number of td PPs of Degree Up to Five Is Equal to 0

Below, we first obtain a formula equivalent to (5), which is more appropriate for the aim of this
paper. We use (4) in (5) when d = 2, and we obtain

CN,QPPs,td =
CN,2−PPs,all

gcd(2, N)
− CN,1−PPs,all. (6)
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We use (4) and (6) in (5) when d = 3, and we obtain

CN,CPPs,td =
CN,3−PPs,all

gcd(2, N) · gcd(6, N)
−

CN,2−PPs,all

gcd(2, N)
. (7)

Using (4) and (7) in (5) when d = 4, we obtain

CN,4−PPs,td =
CN,4−PPs,all

gcd(2, N) · gcd(6, N) · gcd(24, N)
−

CN,3−PPs,all

gcd(2, N) · gcd(6, N)
, (8)

and using (4) and (8) in (5) when d = 5, we obtain

CN,5−PPs,td =
CN,5−PPs,all

gcd(2, N) · gcd(6, N) · gcd(24, N) · gcd(120, N)
−

−
CN,4−PPs,all

gcd(2, N) gcd(6, N) · gcd(24, N)
. (9)

We note that the formula

CN,d−PPs,td =
CN,d−PPs,all

∏d
k=2 gcd(k!, N)

−
CN,(d−1)−PPs,all

∏d−1
k=2 gcd(k!, N)

(10)

is valid for each degree d ≥ 2, but the quantities Cp1,k ,d−PPs and Cp2,k ,d−PPs in (3) are not known, as in
Tables 1–3, for each degree d.

The values of N such that the number of td PPs of degrees up to five is equal to 0 can be derived
by using Equations (3), (6)–(9), and Tables 1–3.

In the following, a lemma that states a necessary condition to obtain CN,d−PPs,td = 0, required to
obtain the sought results, is given.

Lemma 1. The number of td d-PPs is equal to 0 only if nN,pk = 1 and only if Cpk ,d−PPs = Cpk ,(d−1)−PPs, or at

most
Cpk ,d−PPs

Cpk ,(d−1)−PPs
| gcd(d!, N) for each pk | N so that pk - gcd(d!, N).

Proof. Condition CN,d−PPs,td = 0 in (10) is equivalent to

CN,d−PPs,all

CN,(d−1)−PPs,all
= gcd(d!, N), (11)

or taking into account (3),

s1

∏
k=1

Cp1,k ,d−PPs

Cp1,k ,(d−1)−PPs
·

s1+s2

∏
k=s1+1

Cp2,k ,d−PPs

Cp2,k ,(d−1)−PPs
· (p2,k)

(nN,p2,k
−1)

= gcd(d!, N). (12)

Clearly, Cp1,k ,d−PPs ≥ Cp1,k ,(d−1)−PPs ∀k = 1, s1, and Cp2,k ,d−PPs ≥ Cp2,k ,(d−1)−PPs,

and (p2,k)
(nN,p2,k

−1)
> 1 for nN,p2,k > 1 ∀k = s1 + 1, s1 + s2. Notation ∀k = 1, L, with L a positive integer,

means ∀k = 1, 2, . . . , L. Then, if p2,k - gcd(d!, N) for some k ∈ {s1 + 1, . . . , s1 + s2}, Equation (12) can

be fulfilled only if nN,p2,k = 1, and Cp2,k ,d−PPs = Cp2,k ,(d−1)−PPs or
Cp2,k ,d−PPs

Cp2,k ,(d−1)−PPs
| gcd(d!, N), and if p1,k -

gcd(d!, N) for some k ∈ {1, . . . , s1}, Equation (12) can be fulfilled only if Cp1,k ,d−PPs = Cp1,k ,(d−1)−PPs

or
Cp1,k ,d−PPs

Cp1,k ,(d−1)−PPs
| gcd(d!, N).
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The cases when pk | N and pk | gcd(d!, N), for degrees of 2 up to 5, are approached separately in

Sections 3.1–3.4. To help in this purpose, in Tables 4 and 5 the values of
Cp1,k ,d−PPs

Cp1,k ,(d−1)−PPs
and

Cp2,k ,d−PPs

Cp2,k ,(d−1)−PPs
,

for d = 2, 3, 4, 5, are given.

Table 4. The values Cp,d−PPs
Cp,(d−1)−PPs

for d = 2, 3, 4.

p
nN,p = 1 nN,p > 1 nN,p = 1 nN,p > 1 nN,p = 1 nN,p > 1

Cp,QPPs
Cp,LPPs

Cp,QPPs
Cp,LPPs

Cp,CPPs
Cp,QPPs

Cp,CPPs
Cp,QPPs

Cp,4−PPs
Cp,CPPs

Cp,4−PPs
Cp,CPPs

2 2 1 2 1 2 2

3 1 1 3 2 3 1

5 1 1 6 1 1 1

7 1 1 1 1 15 1

1 (mod 3), 1 1 1 1 1 1p > 7

2 (mod 3), 1 1 p + 1 1 1 1p > 5

Table 5. The values Cp,5−PPs
Cp,4−PPs

.

p
nN,p = 1 nN,p > 1

Cp,5−PPs
Cp,4−PPs

Cp,5−PPs
Cp,4−PPs

2 2 2

3 3 4

5 5 14

7 8 43

13 248 157

1 (mod 15) 1 1

11 (mod 15) 1 1

7 (mod 15) or
p2 + 1 p2 − p + 113 (mod 15),

p > 13

2 (mod 15) or
(p2 + p + 1)/(p + 1) p2 − p + 18 (mod 15),

p > 2

4 (mod 15) p + 1 1

14 (mod 15) (2p + 1)/(p + 1) 1

3.1. Determining Positive Integers N so That the Number of td QPPs Is Equal to 0

As can be seen from Table 4, the conditions in Lemma 1 are satisfied for each prime p > 2.
When gcd(2!, N) = 2, it results that 2 | N. Two subcases result.
When p = 2 and nN,2 = 1, equality CN,QPPs,td = 0 implies C2,QPPs

C2,LPPs
= 2. As we see in Table 4,

the last condition is true.
When p = 2 and nN,2 > 1, equality CN,QPPs,td = 0 implies C2,QPPs

C2,LPPs
· 2nN,2−1 = 2, or, equivalently,

1 · 2nN,2−1 = 2, or nN,2 = 2. Thus, this solution is valid.
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Concluding, the number of td QPPs results equal to 0 when N is of the form

NCN,QPPs,td=0 = 2nN,2 ·
s

∏
k=2

pk, with nN,2 = 0, 2, pk > 2, ∀k = 2, s, (13)

as was previously obtained by a different method given in [7].

3.2. Determining Positive Integers N so That the Number of td CPPs Is Equal to 0

As can be seen from Table 4, the conditions in Lemma 1 are satisfied for primes of type p =

1 (mod 3). In addition, if gcd(3!, N) = 6, condition
Cp,CPPs
Cp,QPPs

| gcd(3!, N) is met for p = 5.

When gcd(3!, N) > 1, the following cases result.

(1) gcd(3!, N) = 2, i.e., 2 | N and 3 - N

When p = 2 and nN,2 = 1, equality CN,CPPs,td = 0 implies C2,CPPs
C2,QPPs

= 2. As we see in Table 4,
the last condition is true.

When p = 2 and nN,2 > 1, equality CN,CPPs,td = 0 implies C2,CPPs
C2,QPPs

· 2nN,2−1 = 2, or, equivalently,

1 · 2nN,2−1 = 2 or nN,2 = 2, a valid solution.
(2) gcd(3!, N) = 3, i.e., 2 - N and 3 | N

When p = 3 and nN,3 = 1, equality CN,CPPs,td = 0 implies C3,CPPs
C3,QPPs

= 3. As we see in Table 4,
the last condition is true.

When p = 3 and nN,3 > 1, equality CN,CPPs,td = 0 implies C3,CPPs
C3,QPPs

· 3nN,3−1 = 3, or, equivalently,

2 · 3nN,3−1 = 3. Thus, no integer solution nN,3 of the last equation exists such that nN,3 > 1.
(3) gcd(3!, N) = 6, i.e., 2 | N and 3 | N

In the cases when p = 2 and nN,2 ∈ {1, 2}, and when p = 3 and nN,3 = 1, only one solution
exists. Thus, we have to consider only the case when nN,2 > 2 and nN,3 > 1.

When nN,2 > 2 and nN,3 > 1, equality CN,CPPs,td = 0 implies C2,CPPs
C2,QPPs

· 2nN,2−1 · C3,CPPs
C3,QPPs

· 3nN,3−1 =

2 · 3, or, equivalently, 1 · 2nN,2−1 · 2 · 3nN,3−1 = 2 · 3. The last equation has no integer solutions so
that nN,2 > 2 and nN,3 > 1. If 5 | N, nN,5 = 1, nN,2 > 2 and nN,3 > 1, condition CN,CPPs,td = 0
implies C2,CPPs

C2,QPPs
· 2nN,2−1 · C3,CPPs

C3,QPPs
· 3nN,3−1 · C5,CPPs

C5,QPPs
= 2 · 3, or, equivalently, 1 · 2nN,2−1 · 2 · 3nN,3−1 · 6 =

2 · 3. The last equation has also no solutions such that nN,2 > 2 and nN,3 > 1.

Concluding, the number of td CPPs results equal to 0 when N is of the form

NCN,CPPs,td=0 = 2nN,2 · 3nN,3 ·
s

∏
k=3

pk,

with nN,2 = 0, 2, nN,3 = 0, 1, pk > 3, with pk = 1 (mod 3), k = 3, s, (14)

as was previously obtained by a different method given in [7].

3.3. Determining Positive Integers N so That the Number of td 4-PPs Is Equal to 0

From Table 4, we note that the conditions from Lemma 1 are fulfilled for each prime p > 7 and for
prime p = 5.

When gcd(4!, N) > 1, the following cases result:

(1) gcd(4!, N) = 2nN,2 , with nN,2 ∈ {1, 2, 3}, i.e., 2nN,2 | N

When p = 2 and nN,2 = 1, equality CN,4−PPs,td = 0 implies C2,4−PPs
C2,CPPs

= 2. As we see in Table 4,
the last condition is true.
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When p = 2 and nN,2 ∈ {2, 3}, equality CN,4−PPs,td = 0 implies C2,4−PPs
C2,CPPs

· 2nN,2−1 = 2nN,2 , or,

equivalently, 2 · 2nN,2−1 = 2nN,2 . The last equation has as solutions both nN,2 = 2 and nN,2 = 3.

When p = 2 and nN,2 > 3, equality CN,4−PPs,td = 0 implies C2,4−PPs
C2,CPPs

· 2nN,2−1 = 23, or, equivalently,

2 · 2nN,2−1 = 23. The last equation has no integer solutions such that nN,2 > 3.
(2) gcd(4!, N) = 3, i.e., 2 - N and 3 | N

When p = 3 and nN,3 = 1, equality CN,4−PPs,td = 0 implies C3,4−PPs
C3,CPPs

= 3. As we see in Table 4,
the last condition is true.

When p = 3 and nN,3 > 1, equality CN,4−PPs,td = 0 implies C3,4−PPs
C3,CPPs

· 3nN,3−1 = 3, or, equivalently,

1 · 3nN,3−1 = 3. The last equation has as a valid solution nN,3 = 2.
(3) gcd(4!, N) = 2nN,2 · 3, with nN,2 ∈ {1, 2, 3}, i.e., 2nN,2 | N and 3 | N

Each of the above cases have solutions. Therefore, we do not have to consider this case because
the same solutions result.

Concluding, the number of td 4-PPs results equal to 0 when N is of the form

NCN,4−PPs,td=0 = 2nN,2 · 3nN,3 · 5nN,5 ·
s

∏
k=4

pk,

with nN,2 = 0, 3, nN,3 = 0, 2, nN,5 = 0, 1, pk > 7, k = 4, s. (15)

3.4. Determining Positive Integers N so That the Number of td 5-PPs Is Equal to 0

As can be seen from Table 5, the conditions in Lemma 1 are satisfied for primes p of types

p = 1 (mod 15) and p = 11 (mod 15). In addition, if 8 | gcd(5!, N), condition
Cp,5−PPs
Cp,4−PPs

| gcd(5!, N) is

fulfilled for p = 7, and if 20 | gcd(5!, N), condition
Cp,5−PPs
Cp,4−PPs

| gcd(5!, N) is fulfilled for p = 19.

When gcd(5!, N) > 1, the following cases result:

(1) gcd(5!, N) = 2nN,2 , with nN,2 ∈ {1, 2, 3}, i.e., 2nN,2 | N, 3 - N, and 5 - N

When p = 2 and nN,2 = 1, equality CN,5−PPs,td = 0 implies C2,5−PPs
C2,4−PPs

= 2. As we see in Table 5,
the last condition is true.

When p = 2 and nN,2 ∈ {2, 3}, equality CN,5−PPs,td = 0 implies C2,5−PPs
C2,4−PPs

· 2nN,2−1 = 2nN,2 , or,

equivalently, 2 · 2nN,2−1 = 2nN,2 . The last equation has as solutions both nN,2 = 2 and nN,2 = 3.

When p = 2 and nN,2 > 3, equality CN,5−PPs,td = 0 implies C2,5−PPs
C2,4−PPs

· 2nN,2−1 = 23, or, equivalently,

2 · 2nN,2−1 = 23. The last equation has no integer solutions such that nN,2 > 3.

When 7 | N, nN,7 = 1, and nN,2 > 3, equality CN,5−PPs,td = 0 implies C2,5−PPs
C2,4−PPs

· 2nN,2−1 · C7,5−PPs
C5,4−PPs

=

23, or, equivalently, 2 · 2nN,2−1 · 8 = 23. The last equation has no integer solutions such that
nN,2 > 3.

(2) gcd(3!, N) = 3, i.e., 2 - N, 3 | N, and 5 - N

When p = 3 and nN,3 = 1, equality CN,5−PPs,td = 0 implies C3,5−PPs
C3,4−PPs

= 3. As we see in Table 5,
the last condition is true.

When p = 3 and nN,3 > 1, equality CN,5−PPs,td = 0 implies C3,5−PPs
C3,4−PPs

· 3nN,3−1 = 3, or, equivalently,

4 · 3nN,3−1 = 3. The last equation has no integer solutions such that nN,3 > 1.
(3) gcd(5!, N) = 2nN,2 · 3, with nN,2 ∈ {1, 2, 3}, i.e., 2nN,2 | N, 3 | N, and 5 - N

Each of the cases when p = 2 and nN,2 ∈ {1, 2, 3}, and when p = 3 and nN,3 = 1, have one
solution. Thus, we have to consider only the case when nN,2 > 3 and nN,3 > 1.
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When nN,2 > 3 and nN,3 > 1, equality CN,5−PPs,td = 0 implies C2,5−PPs
C2,4−PPs

· 2nN,2−1 · C3,5−PPs
C3,4−PPs

·
3nN,3−1 = 23 · 3, or, equivalently, 2 · 2nN,2−1 · 4 · 3nN,3−1 = 23 · 3. The last equation has no integer
solutions such that nN,2 > 3 and nN,3 > 1.

When 7 | N, nN,7 = 1, nN,2 > 3 and nN,3 > 1, equality CN,5−PPs,td = 0 implies C2,5−PPs
C2,4−PPs

· 2nN,2−1 ·
C3,5−PPs
C3,4−PPs

· 3nN,3−1 · C7,5−PPs
C5,4−PPs

= 23 · 3, or, equivalently, 2 · 2nN,2−1 · 4 · 3nN,3−1 · 8 = 23 · 3. The last
equation has no integer solutions such that nN,2 > 3 and nN,3 > 1.

(4) gcd(5!, N) = 5, i.e., 2 - N, 3 - N, and 5 | N

When p = 5 and nN,5 = 1, equality CN,5−PPs,td = 0 implies C5,5−PPs
C5,4−PPs

= 5. As we see in Table 5,

the last condition is true. When p = 5 and nN,5 > 1, equality CN,5−PPs,td = 0 implies C5,5−PPs
C5,4−PPs

·
5nN,5−1 = 5, or, equivalently, 14 · 5nN,5−1 = 5. The last equation has no integer solutions such
that nN,5 > 1.

The cases of other combinations of prime factors 2, 3, and 5, do not have to be considered because
the same solutions result.

Concluding, the number of td 5-PPs results equal to 0 when N is of the form

NCN,5−PPs,td=0 = 2nN,2 · 3nN,3 · 5nN,5 ·
s

∏
k=4

pk, with nN,2 = 0, 3, nN,3 = 0, 1, nN,5 = 0, 1,

pk > 5, with pk = 1 (mod 15) or pk = 11 (mod 15), k = 4, s. (16)

4. Determining Positive Integers N so That the Number of td d-PPs Fulfilling ZF Sufficient
Conditions Is Equal to 0

With the algorithm from Section 2, we can determine the number of td PPs fulfilling ZF sufficient
conditions for an arbitrary degree d of PPs. The values used in (3) are denoted by Cpk ,d−PPs,ZF in this
case. We consider the sufficient coefficient conditions from [10] to find the values for Cpk ,d−PPs,ZF,
depending on the degree d of PPs.

Let it be a PP of degree d modulo N as in Equation (1).
For p = 2 and nN,p = 1, the condition is (q1 + q2 + · · · + qd) 6= 0 (mod 2). It is fulfilled for

2d/2 = 2d−1 combinations of coefficients (q1, q2, . . . , qd).
For p = 2 and nN,p > 1, the conditions are q1 6= 0 (mod 2), (q2 + q4 + q6 + . . . ) = 0 (mod 2) and

(q3 + q5 + q7 + . . . ) = 0 (mod 2).
Condition q1 6= 0 (mod 2), with q1 ∈ Z2, is met only for q1 = 1.
Furthermore, we consider the degree d odd and even, respectively, in the other two conditions.
When d is odd (d ≥ 3), i.e., d = 2 · k + 1, k ∈ N∗, each of the sums (q2 + q4 + q6 + . . . ) and

(q3 + q5 + q7 + . . . ) contain k coefficients, each of them being satisfied for 2k/2 = 2k−1 combinations
of coefficients. It results that Cpk ,d−PPs,ZF = 1 · 2k−1 · 2k−1 = 22k−2 = 2d−3, for d odd.

When d is even (d ≥ 4), i.e., d = 2 · k, with k ∈ N, k ≥ 2, the sum (q2 + q4 + q6 + . . . ) contains
k coefficients and the sum (q3 + q5 + q7 + . . . ) contains k− 1 coefficients. The first sum is fulfilled
for 2k/2 = 2k−1 combinations of coefficients and the second one for 2k−1/2 = 2k−2 combinations of
coefficients. It results that Cpk ,d−PPs,ZF = 1 · 2k−1 · 2k−2 = 22k−3 = 2d−3, for d even.

When p > 2 and nN,p ≥ 1, the conditions become q1 6= 0 (mod p) and q2 = q3 = · · · =
qd = 0 (mod p). Condition q1 6= 0 (mod p), with q1 ∈ Zp, is fulfilled for p− 1 values. Condition
q2 = q3 = · · · = qd = 0 (mod p), with qi ∈ Zp, ∀i = 2, d, is fulfilled only for q2 = q3 = · · · = qd = 0.
In this case, Cpk ,d−PPs,ZF = (p− 1) · 1 = p− 1.

Table 6 summarizes the values of Cpk ,d−PPs used in (3) in the case of ZF sufficient conditions.
We note that the ZF sufficient conditions also become necessary for LPPs and QPPs. Thus, the same

values of Cpk ,d−PPs from Table 1 can be used.
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The values
Cp1,k ,d−PPs,ZF

Cp1,k ,(d−1)−PPs,ZF
and

Cp2,k ,d−PPs,ZF

Cp2,k ,(d−1)−PPs ,ZF , for d ≥ 3, are given in Table 7 .

Table 6. The number of d-permutation polynomials (PPs) (d ≥ 3) fulfilling ZF sufficient conditions
over Zp permuting ZpnN,p , with nN,p ≥ 1.

p
nN,p = 1 nN,p > 1

Cp,d−PPs,ZF Cp,d−PPs,ZF

2 2d−1 2d−3

p > 2 p− 1 p− 1

Table 7. The values Cp,d−PPs
Cp,(d−1)−PPs

for d-PPs (d ≥ 3) fulfilling Zhao and Fan (ZF) sufficient conditions.

p
nN,p = 1 nN,p > 1

Cp,d−PPs
Cp,(d−1)−PPs

Cp,d−PPs
Cp,(d−1)−PPs

2 2

{
2, if d > 3,
1, if d = 3.

p > 2 1 1

Let there be

z(x) =
d

∑
k=1

zk · xk (mod N), (17)

a null polynomial (NP) of degree d modulo N, i.e., z(x) = 0, ∀x = 0, N − 1.
As we pointed out in [9], the null polynomials (NPs) under ZF sufficient conditions have to

fulfill conditions

z1 6= (−q1) (mod p), z2 = z3 = · · · = zd = 0 (mod p), ∀p | N, p > 2. (18)

Thus, the number of NPs of degrees smaller than or equal to d fulfilling ZF sufficient conditions
will not be equal to ∏d

k=2 gcd(k!, N) as used in (4). This number is obtained in the following.
The general form of NPs of degrees up to d is known from [13,14]:

z(x) =
d

∑
k=1

{
N

gcd(k!, N)
· τk ·

k−1

∏
m=0

(x−m)

}
(mod N),

where 0 ≤ τk ≤ gcd(k!, N)− 1. (19)

The quantity gcd(k!, N), k ≥ 3 is denoted by gk in the following. Let

gk = gcd(k!, N) = 2ngk ,2 ·
sgk

∏
j=2

p
ngk ,pj
j,gk

, with sgk ≥ 2, ngk ,2 ≥ 1, ngk ,pj ≥ 1, and

pj,gk > 2, ∀j = 2, 3, . . . , sgk , (20)

be the factorization of gk.
The truth value function ||x ? y||, with ? being an operator between two positive integers x and y,

is defined as

||x ? y|| =
{

1, if x ? y have a true value of truth,

0, if x ? y have a false value of truth.
(21)
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We will use the function in (21) with the “equality operator” (==) and “greater than or equal to”
operator (≥).

Similarly to [9], if a prime p ≤ d exists, such that ngd ,p = nN,p, then for NPs fulfilling ZF sufficient
conditions, we have to impose that p | τk, ∀k = k′, k′ + 1, . . . , d, where k′ is the lowest integer such that
ngk′ ,p = ngd ,p. Thus, prime p will reduce the number of NPs by pd−k′+1. With gd as in (20) for k = d,
the number of NPs fulfilling ZF sufficient conditions will be equal to

CNPs,ZF =
∏d

k=2 gcd(k!, N)

∏
sgd
k=2(pk,gd

)(d−k′d+1)·||ngd ,pk==nN,pk
|| , (22)

where k′d is the lowest integer such that ngk′d
,pk = ngd ,pk .

Then the formula for the number of td d− PPs fulfilling ZF sufficient conditions is

CN,d−PPs,ZF,td = CN,d−PPs,ZF,all ·
∏

sgd
k=2(pk,gd

)(d−k′d+1)·||ngd ,pk==nN,pk
||

∏d
k=2 gcd(k!, N)

−

−CN,(d−1)−PPs,all ·
∏

sgd−1
k=2 (pk,gd−1

)(d−k′d−1)·||ngd−1,pk==nN,pk
||

∏d−1
k=2 gcd(k!, N)

. (23)

Theorem 1. Let the prime factorization of d! be

d! = 2nd!,2 ·
sd!

∏
k=2

p
nd!,pk
k,d! ,

with sd! ≥ 2, nd!,2 ≥ 1, nd!,pk
≥ 1, and 2 < pk,d! ≤ d, ∀k = 2, 3, . . . , sd!. (24)

Then the number of td d-PPs fulfilling ZF sufficient conditions is equal to zero (CN,d−PPs,ZF,td = 0) if the
factorization of N is

NCN,d−PPs,ZF,td=0 = 2nN,2 ·
sd!

∏
k=2

p
nN,pk
k,d! ·

s

∏
k=sd!+1

pk,

with 0 ≤ nN,2 ≤ nd!,2 for d > 3 and 0 ≤ nN,2 ≤ 2 for d = 3,

0 ≤ nN,pk ≤ nd!,pk
+ 1, 2 < pk,d! < d, ∀k = 2, 3, . . . , sd!, and pk > d, ∀k = sd! + 1, . . . , s. (25)

Proof. Imposing that CN,d−PPs,ZF,td = 0 in (23), we obtain

CN,d−PPs,ZF,all

CN,(d−1)−PPs,all
= gcd(d!, N) ·

∏
sgd−1
k=2 (pk,gd−1

)(d−k′d−1)·||ngd−1,pk==nN,pk
||

∏
sgd
k=2(pk,gd

)(d−k′d+1)·||ngd ,pk==nN,pk
|| . (26)

The cases when d is a prime number and d is not a prime number are analyzed in the following.

(1) d—a prime number

The prime factorizations of gd−1 and gd/d(||nN,d≥1||) are the same if d is a prime number.
Moreover, ngd ,d = 1 and k′d = d. Therefore, we have

∏
sgd−1
k=2 (pk)

(d−k′d−1)·||ngd−1,pk==nN,pk
||

∏
sgd
k=2(pk)

(d−k′d+1)·||ngd ,pk==nN,pk
|| =

1

d(||nN,d==1||) . (27)
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In this case, condition (26) becomes

CN,d−PPs,ZF,all

CN,(d−1)−PPs,all
=

gcd(d!, N)

d(||nN,d==1||) . (28)

Taking into account Equation (3) and the values in Table 7, for d = 3 we obtain CN,CPPs,ZF,td = 0
if the factorization of N is

NCN,CPPs,ZF,td=0 = 2nN,2 · 3nN,3 ·
s

∏
k=3

pk, with nN,2 = 0, 2, nN,3 = 0, 2,

pk > 3, ∀k = 3, s, (29)

as in (25) for d = 3. The same result was obtained in [9].

If d is a prime number, d > 3, considering (3) and the values in Table 7, (28) is equivalent to

2 · 2nN,2−1 ·
s1+s2

∏
k=s1+1

1 · (p2,k)
(nN,p2,k

−1)
= 2ngd ,2 ·

sd!−1

∏
k=2

p
ngd ,pk
k,d! · d

(||nN,d≥1||)−(||nN,d==1||),

with 0 ≤ ngd ,2 ≤ nd!,2, 0 ≤ ngd ,pk ≤ nd!,pk
, and 2 < pk,d! < d, ∀k = 2, 3, . . . , sd! − 1. (30)

For d a prime number, d > 3, from (30) it results that CN,d−PPs,ZF,td = 0 if the factorization of
N is

NCN,d−PPs,ZF,td=0 = 2nN,2 ·
sd!−1

∏
k=2

p
nN,pk
k,d! · d

nN,d ·
s

∏
k=sd!+1

pk,

with 0 ≤ nN,2 ≤ nd!,2, 0 ≤ nN,pk ≤ nd!,pk
+ 1, and 2 < pk,d! < d, ∀k = 2, 3, . . . , sd! − 1,

0 ≤ nN,d ≤ 2, pk > d, ∀k = sd! + 1, . . . , s. (31)

(31) is the same as (25) for d a prime number.
(2) d—not a prime number

The prime factors from the factorization of gd are the same as those from the prime factorization
of gd−1, possibly with greater powers of some factors, if d is not a prime number. The maximum
powers of the primes pk,d! in the factorization of gd are nd!,pk

, ∀k = 2, 3, . . . , sd!.

If pk,d! | gd, pk,d! - d, and nd!,pk
≥ nN,pk , then ngd−1,pk = ngd ,pk = nN,pk and k′d−1 = k′d. Thus,

the term corresponding to factor pk,d! in the ratio from the right-hand side of (26) is
1

pk,d!
.

The same observation is valid if pk,d! | gd, pk,d! | d, and nd!,pk
− nd,pk

≥ nN,pk .

If pk,d! | gd, pk,d! | d and nd!,pk
− nd,pk

< nN,pk ≤ nd!,pk
, then ngd−1,pk < ngd ,pk = nN,pk ,

||ngd−1,pk == nN,pk || = 0, ||ngd ,pk == nN,pk || = 1, and k′d = d. Thus, the term corresponding to

factor pk,d! in the ratio from the right-hand side of (26) is also
1

pk,d!
.

If pk,d! | gd and nN,pk > nd!,pk
, then ngd−1,pk < nN,pk , ngd ,pk < nN,pk , ||ngd−1,pk == nN,pk || = 0,

and ||ngd ,pk == nN,pk || = 0. Thus, the term corresponding to factor pk,d! in the ratio from the
right-hand side of (26) is equal to 1.

Concluding, if d is not a prime number, (26) is equivalent to

CN,d−PPs,ZF,all

CN,(d−1)−PPs,all
= gcd(d!, N) · 1

∏sd!
k=2(pk,d!)

||nd!,pk
≥nN,pk

|| . (32)
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Similarly to (30), (32) is equivalent to

2 · 2nN,2−1 ·
s1+s2

∏
k=s1+1

1 · (p2,k)
(nN,p2,k

−1)
= 2ngd ,2 ·

∏sd!
k=2 p

ngd ,pk
k,d!

∏sd!
k=2(pk,d!)

||nd!,pk
≥nN,pk

|| ,

with 0 ≤ ngd ,2 ≤ nd!,2, 0 ≤ ngd ,pk ≤ nd!,pk
, and 2 < pk,d! < d, ∀k = 2, 3, . . . , sd!. (33)

If d is not a prime number, from (33) it results that CN,d−PPs,ZF,td = 0 if the factorization of N is

NCN,d−PPs,ZF,td=0 = 2nN,2 ·
sd!

∏
k=2

p
nN,pk
k,d! ·

s

∏
k=sd!+1

pk,

with 0 ≤ nN,2 ≤ nd!,2, 0 ≤ nN,pk ≤ nd!,pk
+ 1, and 2 < pk,d! < d, ∀k = 2, 3, . . . , sd!,

pk > d, ∀k = sd! + 1, . . . , s. (34)

We mention that formula (34) is also valid if d is a prime number. Thus, the theorem is proved.

Two examples for the form of N when d is a prime number and when d is not a prime number are
given in the following.

Example 1 (Example of N so that CN,11−PPs,ZF,td = 0). For d = 11, we have

11! = 28 · 34 · 52 · 71 · 111, (35)

and CN,11−PPs,ZF,td = 0 if N is of the form

NCN,11−PPs,ZF,td=0 = 2nN,2 · 3nN,3 · 5nN,5 · 7nN,7 · 11nN,11 ·
s

∏
k=6

pk,

with 0 ≤ nN,2 ≤ 8, 0 ≤ nN,3 ≤ 5, 0 ≤ nN,5 ≤ 3, 0 ≤ nN,7 ≤ 2, 0 ≤ nN,11 ≤ 2,

and pk > 11, ∀k = 6, . . . , s. (36)

Example 2 (Example of N such that CN,12−PPs,ZF,td = 0). For d = 12, we have

12! = 210 · 35 · 52 · 71 · 111, (37)

and CN,12−PPs,ZF,td = 0 if N is of the form

NCN,12−PPs,ZF,td=0 = 2nN,2 · 3nN,3 · 5nN,5 · 7nN,7 · 11nN,11 ·
s

∏
k=6

pk,

with 0 ≤ nN,2 ≤ 10, 0 ≤ nN,3 ≤ 6, 0 ≤ nN,5 ≤ 3, 0 ≤ nN,7 ≤ 2, 0 ≤ nN,11 ≤ 2,

and pk > 11, ∀k = 6, . . . , s. (38)

We mention that the same results as in [9] for degrees d = 4 and d = 5 are obtained, i.e.,

NCN,4−PPs,ZF,td=0 = 2nN,2 · 3nN,3 ·
s

∏
k=3

pk,

with 0 ≤ nN,2 ≤ 3, 0 ≤ nN,3 ≤ 2,
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and pk > 3, ∀k = 3, . . . , s, (39)

and

NCN,5−PPs,ZF,td=0 = 2nN,2 · 3nN,3 · 5nN,5 ·
s

∏
k=4

pk,

with 0 ≤ nN,2 ≤ 3, 0 ≤ nN,3 ≤ 2, 0 ≤ nN,5 ≤ 2,

and pk > 5, ∀k = 4, . . . , s. (40)

5. Conclusions

In this paper, we obtained the form of N’s prime factorization for which the number of td fourth-
and fifth-degree permutation polynomials is equal to zero. These values of N do not have to be used
as fourth- and fifth-degree PP interleaver lengths because some PPs of smaller degree are equivalent to
the fourth- or fifth-degree PPs, providing the same permutations.

We have particularized the algorithm from [11] for permutation polynomials under ZF sufficient
conditions, and we obtained the number of null polynomials and the quantities Cp,d−PPs,ZF required
in the algorithm. We have also obtained the form of N’s prime factorization such that the number
of td PPs of any degree, fulfilling ZF sufficient conditions, is equal to zero. Similarly to those above,
these values of N do not have to be used as PP interleaver lengths when we search for PP interleavers
under ZF sufficient conditions.

Comparing (15) with (39), we conclude that there are no td 4-PPs fulfilling ZF sufficient conditions,
but there are td 4-PPs fulfilling other conditions, only when 7 | N.

Comparing (16) with (40), we conclude that there are no td 5-PPs fulfilling ZF sufficient conditions,
but there are td 5-PPs fulfilling other conditions, only when 9 | N, or 25 | N, or p | N with p 6=
1 (mod 15) and p 6= 11 (mod 15).
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