
mathematics

Article

Direct and Inverse Fractional Abstract
Cauchy Problems

Mohammed AL Horani 1, Angelo Favini 2,* and Hiroki Tanabe 3

1 Department of Mathematics, The University of Jordan, Amman 11942, Jordan; horani@ju.edu.jo
2 Dipartimento di Matematica, Universita di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
3 Takarazuka, Hirai Sanso 12-13, Osaka 665-0817, Japan; bacbx403@jttk.zaq.ne.jp
* Correspondence: angelo.favini@unibo.it

Received: 7 September 2019; Accepted: 21 October 2019; Published: 25 October 2019
����������
�������

Abstract: We are concerned with a fractional abstract Cauchy problem for possibly degenerate
equations in Banach spaces. This form of degeneration may be strong and some convenient
assumptions about the involved operators are required to handle the direct problem. Moreover,
we succeeded in handling related inverse problems, extending the treatment given by Alfredo Lorenzi.
Some basic assumptions on the involved operators are also introduced allowing application of the
real interpolation theory of Lions and Peetre. Our abstract approach improves previous results given
by Favini–Yagi by using more general real interpolation spaces with indices θ, p, p ∈ (0, ∞] instead
of the indices θ, ∞. As a possible application of the abstract theorems, some examples of partial
differential equations are given.
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1. Introduction

Consider the abstract equation
BMu− Lu = f (1)

where B, M, L are closed linear operators on the complex Banach space E, the domain of L is
contained in domain of M, i.e., D(L) ⊆ D(M), 0 ∈ ρ(L), the resolvent set of L, f ∈ E and u is the
unknown. The first approach to handle existence and uniqueness of the solution u to (1) was given
by Favini–Yagi [1], see in particular the monograph [2]. By using real interpolation spaces, see [3,4],
suitable assumptions on the operators B, M, L guarantee that (1) has a unique solution. Such a result
was improved by Favini, Lorenzi and Tanabe in [5], see also [6–8]. In order to describe the results,
we list the basic assumptions:

(H1) Operator B has a resolvent (z− B)−1 for any z ∈ C, Re z < a, a > 0 satisfying

‖(z− B)−1‖L(E) ≤
c

|Re z|+ 1
, Re z < a , (2)

where L(E) denotes the space of all continuous linear operators from E into E.

(H2) Operators L, M satisfy

‖M(λM− L)−1‖L(E) ≤
c

(|λ|+ 1)β
(3)

for any λ ∈ Σα :=
{

z ∈ C : Re z ≥ −c(1 + |Im z|)α, c > 0, 0 < β ≤ α ≤ 1
}

.
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(H3) Let A be the possibly multivalued linear operator A = LM−1, D(A) = M(D(L)). Then A and B
commute in the resolvent sense:

B−1 A−1 = A−1B−1 .

Let (E, D(B))θ,∞, 0 < θ < 1, denote the real interpolation space between E and D(B). The main
result holds

Theorem 1. Let α + β > 1, 2 − α − β < θ < 1. Then under hypotheses (H1)–(H3), Equation (1)
admits a unique strict solution u such that Lu, BMu ∈ (E, D(B))ω,∞, ω = θ − 2 + α + β, provided
that f ∈ (E, D(B))θ,∞.

It is straightforward to verify that if B generates a bounded c0−group in E, then assumption
(H1) holds for B. Analogously, if −B generates a bounded c0−semigroup in E, then assumption (H1)
holds for B. It was also shown, in a previous paper, that Theorem 1 works well for solving degenerate
equations on the real axis, too, see [9].

The first aim of this paper is to extend Theorem 1 to the interpolation spaces (E, D(B))θ,p,
1 < p < ∞. This affirmation is not immediate. Section 2 is devoted to this proof. In Section 3,

we apply the abstract results to solve concrete differential equations. In Section 4, we handle related
inverse problems. In Section 5, we study abstract equations generalizing second-order equations in
time. In Section 6, we present our conclusions and remarks. For some related results, we refer to
Guidetti [10] and Bazhlekova [11].

2. Fundamental Results

To begin with, we recall, from Favini–Yagi [2], p. 16, that if E0, E1 are two Banach spaces such
that (E0, E1) is an interpolation couple, i.e., there exists a locally convex topological space X such that
Ei ⊂ X, i = 0, 1, continuously, then the following injections

E0 ∩ E1 ⊂d (E0, E1)ζ, q ⊂d (E0, E1)η, 1 ⊂d (E0, E1)η, ∞ ⊂d (E0, E1)ξ, q ⊂ E0 + E1

are true for 1 ≤ q < ∞, 0 < ξ < η < ζ < 1, where ⊂d denotes continuous and dense
embedding. Moreover,

(E0, E1)θ, q ⊂d (E0, E1)θ, r for 1 ≤ q < r < ∞, 0 < θ < 1 .

Taking into account the previous embedding and Theorem 1, we easily deduce that if ε, ε1 are
suitable small positive numbers, since (E, D(B))θ+ε, q ⊂ (E, D(B))θ, ∞, then Equation (1) admits a
unique solution u with Lu, BMu ∈ (E, D(B))θ−2+α+β, ∞ and Lu, BMu ∈ (E, D(B))θ−2+α+β−ε1, q ,
that is a weaker result than case q = ∞.

Our aim is to extend Theorem 1 to 1 < p < ∞. In order to establish the corresponding result,
we need the following lemma concerning multiplicative convolution. We recall that Lp

∗(R+) =

Lp (R+; t−1dt
)

and that the multiplicative convolution of two (measurable) functions f , g : R+ → C is
defined by

( f ∗ g)(x) =
∫ ∞

0
f (xt−1)g(t)t−1 dt

where the integral exists a.e. for x ∈ R+.

Lemma 1. For any f1 ∈ Lp
∗(R+) and g ∈ L1

∗(R+), the multiplicative convolution f1 ∗ g ∈ Lp
∗(R+)

and satisfies
‖ f1 ∗ g‖Lp

∗
≤ ‖ f1‖Lp

∗
‖g‖L1∗
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Consider now the chain of estimates

tθ+α+β−2‖B(B + t)−1v‖ ≤ tθ+α+β−2
∫ ∞

0

(1 + y)3−α−β−θ

(1 + y + t)
(1 + y)θ‖B(B + 1 + y)−1 f ‖ dy

1 + y

≤ tθ+α+β−2
∫ ∞

0

y3−α−β−θ

y + t
yθ ‖B(B + y)−1 f ‖ dy

y

= tθ+α+β−2
∫ ∞

0

y3−α−β−θ

y(1 + ty−1)
yθ ‖B(B + y)−1 f ‖ dy

y

=
∫ ∞

0

(ty−1)θ+α+β−2

1 + ty−1 yθ ‖B(B + y)−1 f ‖ dy
y

where
v = (2πi)−1

∫
Γ

z−1(zT − 1)−1B(B− z)−1 f dz, T = ML−1 ,

Γ = Γα being the oriented contour

Γ = {z = a− c(1 + |y|)α + iy, −∞ < y < ∞} ,

with a ∈ (c, c + a0). Such a function v is the unique solution to BTv− v = f , that is, u with v = Lu
satisfies (1).

Let f1(y) = yθ ‖B(B + y)−1 f ‖ , g(y) =
yθ+α+β−2

1 + y
, y ∈ R+, and note that f ∈ (E, D(B))θ, p if

and only if f1 ∈ Lp
∗(R+). Moreover, g ∈ Lp

∗(R+) since θ > 2− α− β and obviously θ < 3− α− β.
Therefore, from Lemma 1, we deduce that f ∈ (E, D(B))ω, p, where ω = θ + α + β− 2. Thus, we can
establish the fundamental result concerning Equation (1) .

Theorem 2. Let B, M, L be three closed linear operators on the Banach space E satisfying (H1)–(H3), 0 < β ≤
α ≤ 1. Then for all f ∈ (E, D(B))θ, p, 2− α− β < θ < 1, 1 < p < ∞, Equation (1) admits a unique solution
u. Moreover, Lu, BMu ∈ (E, D(B))ω, p, ω = θ + α + β− 2.

3. Fractional Derivative

Let α̃ > 0, m = dα̃e is the smallest integer greater or equal to α̃, I = (0, T) for some T > 0. Define

gβ(t) =

{
1

Γ(β)
tβ−1 t > 0,

0 t ≤ 0,
β ≥ 0 ,

where Γ(β) is the Gamma function. Note that g0(t) = 0 because Γ(0)−1 = 0. The Riemann–Liouville
fractional derivative of order α̃, or, more precisely, the so-called left handed Riemann–Liouville
fractional derivative of order α̃, is defined for all f ∈ L1(I), gm−α̃ ∗ f ∈Wm,1(I) by

Dα̃
t f (t) = Dm

t (gm−α̃ ∗ f )(t) = Dm
t Jm−α̃

t f (t)

where Dm
t :=

dm

dtm , m ∈ N. Dα̃
t is a left inverse of Jα̃

t , but in general it is not a right inverse.
The Riemann–Liouville fractional integral of order α̃ > 0 is defined as:

Jα̃
t f (t) := (gα̃ ∗ f )(t), f ∈ L1(I), t > 0, J0

t f (t) := f (t) .

If X is a complex Banach space, α̃ > 0, then we define the operator Jα̃ as:

D (Jα̃) := Lp(I; X), Jα̃u = gα̃ ∗ u, p ∈ [1, ∞) .
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Define the spaces Rα̃,p(I; X) and Rα̃,p
0 (I; X) as follows. If α̃ 6∈ N, set

Rα̃,p(I; X) := {u ∈ Lp(I; X) : gm−α̃ ∗ u ∈Wm,p(I; X)} ,

Rα̃,p
0 (I; X) :=

{
u ∈ Lp(I; X) : gm−α̃ ∗ u ∈Wm,p

0 (I; X)
}

,

where
Wm,p

0 (I; X) =
{

y ∈Wm,p(I; X), y(k)(0) = 0, k = 0, 1, ..., m− 1
}

.

For the Sobolev space Wβ,p(I; X) of fractional order β > 0, we define

Wβ,p
0 (I; X) =

{
y ∈Wβ,p(I; X), y(k)(0) = 0, k = 0, 1, ..., bβ− 1/pc

}
,

β− 1/p /∈ N0 = N∪ {0} , and bβ− 1/pc is the greatest integer less or equal to β− 1/p.
If α̃ ∈ N, we take

Rα̃,p(I; X) := W α̃,p(I; X), Rα̃,p
0 (I; X) := W α̃,p

0 (I; X) .

Denote the extensions of the operators of fractional differentiation in Lp(I; X) by Lα̃, i.e.,

D(Lα̃) := Rα̃,p
0 (I; X) , Lα̃u := Dα̃

t u ,

where Dα̃
t is the Riemann–Liouville fractional derivative. Notice that if α̃ ∈ (0, 1), u ∈ D(Lα̃), then

(g1−α̃ ∗ u)(0) = 0.
We illustrate the previous abstract concepts in the following example

Example 1. For u ∈ Lp(I, X) = Lp(0, T; X) set u(t) = 0 for t < 0. Then, if u ∈ W1,p
0 (I, X), we have

u ∈W1,p(−∞, T; X). Let U(τ), τ ≥ 0, be the semigroup in Lp(0, T; X) defined by

(U(τ)u)(t) = u(t− τ), t ∈ I.

Clearly U(τ) = 0 if τ > T. For Reλ > 0, t > 0(∫ ∞

0
e−λτU(τ)udτ

)
(t) =

∫ ∞

0
e−λτ(U(τ)u)(t)dτ =

∫ ∞

0
e−λτu(t− τ)dτ

=
∫ t

0
e−λτu(t− τ)dτ =

∫ t

0
e−λ(t−s)u(s)ds. (4)

Since D(Dt) = W1,p
0 (I, X), Dt = d/dt, equation (λ + Dt)u = f is{

λu(t) + u′(t) = f (t), 0 < t < T,

u(0) = 0.

The solution is

u(t) =
∫ t

0
e−λ(t−s) f (s)ds,

i.e.,

((λ + Dt)
−1 f )(t) =

∫ t

0
e−λ(t−s) f (s)ds, λ > 0. (5)

From (4) and (5) it follows that

(λ + Dt)
−1 =

∫ ∞

0
e−λτU(τ)dτ, λ > 0.
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Therefore −Dt is the infinitesimal generator of the semigroup U(τ), τ ≥ 0. Let α̃ > 0. Then for
f ∈ Lp(I, X)

(D−α̃
t f )(t) =

1
Γ(α̃)

∫ ∞

0
τα̃−1(U(τ) f )(t)dτ =

1
Γ(α̃)

∫ t

0
τα̃−1 f (t− τ)dτ

=
1

Γ(α̃)

∫ t

0
(t− s)α̃−1 f (s)ds, 0 ≤ t ≤ T.

If m ∈ N, m− 1 < α̃ < m,

(D−α̃
t f )(t) = 0 ∀t ∈ [0, T]⇐⇒

∫ t

0
(t− s)α̃−1 f (s)ds = 0 ∀t ∈ [0, T]

=⇒
∫ τ

0
(τ − t)m−α̃−1

∫ t

0
(t− s)α̃−1 f (s)dsdt = 0 ∀τ ∈ [0, T]

=⇒
∫ τ

0

∫ τ

s
(τ − t)m−α̃−1(t− s)α̃−1dt f (s)ds = 0 ∀τ ∈ [0, T]

=⇒ Γ(m− α̃)Γ(α̃)
Γ(m)

∫ τ

0
(τ − s)m−1 f (s)ds = 0 ∀τ ∈ [0, T] =⇒ f (τ) = 0 ∀τ ∈ [0, T].

If α̃ = m ∈ N and

(D−α̃
t f )(t) = (D−m

t f )(t) =
1

(m− 1)!

∫ t

0
(t− s)m−1 f (s)ds = 0 ∀t ∈ [0, T] =⇒ f (t) = 0 ∀t ∈ [0, T].

Therefore D−α̃
t has an inverse which is denoted by Dα̃

t .We have

Dα̃+β
t = Dα̃

t Dβ
t ∀α̃, β ∈ R.

Therefore, if m ∈ N, m− 1 < α̃ < m,

Dα̃
t = Dm

t Dα̃−m
t = Dm

t gm−α̃∗, D(Dα̃
t ) = {u; gm−α̃ ∗ u ∈ D(Dm

t ) = Wm,p
0 (I; X)} = Rα̃,p

0 (I; X).

Let us now list the main properties of Lα̃, see [11], Lemma 1.8, p. 15.

Lemma 2. Let α̃ > 0, 1 < p < ∞, X a complex Banach space, and Lα̃ be the operator introduced above. Then
(a) Lα̃ is closed, linear and densely defined
(b) Lα̃ = J −1

α̃

(c) Lα̃ = Lα̃
1 , the α̃−th power of the operator L1

(d) if α̃ ∈ (0, 2), operator Lα̃ is positive with spectral angle ωLα̃
= α̃π/2

(e) if α̃ ∈ (0, 1], then Lα̃ is m-accretive
(f) Rα̃,p

0 (I; X) ↪→ Cα̃−1/p(I; X), α̃ > 1/p, α̃− 1/p 6∈ N, see [11], Theorem 1.10, p. 17
(g) if α̃γ− 1/p 6∈ N0, (

Lp(I; X), Rα̃,p
0 (I; X)

)
γ,p

= W α̃γ,p
0 (I; X) ,

see [11], Proposition 11, p. 18 .

Statement (e) implies that if α̃ ∈ (0, 1],

‖λ(λ + Lα̃)
−1‖Lp(I;X) ≤ C, |arg λ| < π(1− α̃

2
) .
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However, this reads equivalently ‖(λ − Lα̃)
−1‖ ≤ C/|λ| provided that λ is in a sector of the

complex plane containing Re λ ≤ 0. Therefore, if α̃ ≤ 1, operator Lα̃ =
d

dtα̃
= Dα̃

t satisfies assumption
(H1) in Theorem 1. Therefore, we can handle abstract equations of the type

Dα̃
t (My(t)) = Ly(t) + f (t), 0 ≤ t ≤ T ,

in a Banach space X with an initial condition
(

g1−α̃ ∗ u
)
(0) = 0. Then the results follow easily from

the abstract model.

Example 2. Let M be the multiplication operator in Lp(Ω), Ω a bounded open set in Rn with a Cn boundary
∂Ω, 1 < p < ∞, by m(x), m is continuous and bounded, and take L = ∆− c, D(L) = W2,p(Ω) ∩W1,p

0 (Ω),
c > 0. Then it is seen in Favini–Yagi [2], pp. 79–80,

‖M(zM− L)−1 f ‖Lp(Ω) ≤
c

(1 + |z|)1/p ‖ f ‖Lp(Ω)

for all z in a sector containing Re z ≥ 0.
In order to solve our problem, 0 < α̃ ≤ 1,

Dα̃
t (My(t)) = Ly(t) + f (t), 0 ≤ t ≤ T ,

we must recall, see (g) in Lemma 2, that if α̃γ− 1/p 6∈ N, the interpolation space(
Lp(I; X), Rα̃,p

0 (I; X)
)

γ,p
= W α̃γ,p

0 (I; X) .

Therefore, using Theorem 2, for any f ∈ W α̃θ,p
0 (I; X), 1− 1

p < θ < 1, 1 < p < ∞, α̃θ − 1
p 6∈ N0,

the problem above admits a unique strict solution y such that

∆y, Dα̃
t m(·)y ∈W

α̃(θ+ 1
p−1),p

0 (I; X) .

Remark 1. Since −1
p < α̃θ − 1

p < 1, then the only integer that α̃θ − 1
p can take is the zero integer.

We refer to to the monograph [2] for many further examples of concrete degenerate partial
differential equations to which Theorem 2 applies.

4. Inverse Problems

Given the problem

Dα̃
t (My(t)) = Ly(t) + f (t)z + h(t), 0 ≤ t ≤ T , (6)

then corresponding to an initial condition and following the strategy in various previous papers,
see in particular Lorenzi [12], we could study existence and regularity of solutions (y, f ) to the above
problem such that Φ[My(t)] = g(t), where g is a complex-valued function on [0, T]. This is, of course,
an inverse problem. Applying Φ to both sides of Equation (6) we get

Dα̃
t g(t) = Φ[Ly(t)] + Φ[h(t)] + f (t)Φ[z] .

If Φ[z] 6= 0, we obtain necessarily

f (t) =
Dα̃

t g(t)−Φ[Ly(t)]−Φ[h(t)]
Φ[z]

.
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Therefore,

Dα̃
t (My(t)) = Ly(t) + h(t)− Φ[Ly(t)]

Φ[z]
z− Φ[h(t)]

Φ[z]
z +

Dα̃
t g(t)
Φ[z]

z .

If L1 is defined by

D(L1) = D(L), L1y = −Φ[Ly(t)]
Φ[z]

z ,

one can introduce assumptions on the given operators ensuring that the direct problem

Dα̃
t (My(t)) = Ly(t) + L1y + h(t)− Φ[h(t)]

Φ[z]
z +

Dα̃
t g(t)
Φ[z]

z

has a unique strict solution, see [13]. The main step is to verify that assumption (H2) holds for the
operators L + L1 and M.

Introduce the multivalued linear operator A := LM−1, D(A) = M(D(L)) such that (H2) holds.

This means that ‖(λI − A)−1‖L(X) ≤
c

(|λ|+ 1)β
, λ ∈ Σα. Theorem 1 in [13], pp. 148–149, affirms that

if L, L1, M are closed linear operators on X, D(L) ⊆ D(L1) ⊆ D(M), 0 ∈ ρ(L), such that (H2) holds
and L1 ∈ L

(
D(L), Xθ1

A

)
, 1− β < θ1 < 1, where

Xθ1
A =

{
u ∈ X, sup

t>0
tθ1‖A0(t− A)−1u‖X < ∞

}
,

with A0(t− A)−1 = −I + t(t− A)−1, then

‖M(λM− L− L1)
−1‖L(X) ≤ c(1 + |λ|)−β, ∀ λ ∈ Σα , |λ| large .

In order to apply this theorem in our case, we must suppose that z belongs to Xθ1
A for some

θ1 ∈ (1− β, 1). Then

Dα̃
t (My(t)) = Ly(t) + L1y + h(t)− Φ[h(t)]

Φ[z]
z +

Dα̃
t g(t)
Φ[z]

z(
g1−α̃ ∗My

)
(0) = 0

will admit a unique strict solution y provided that

h(t)− Φ[h(t)]
Φ[z]

z +
Dα̃

t g(t)
Φ[z]

z ∈W α̃θ,p
0 (I; X)

with α̃θ − 1/p 6∈ N and then Dα̃
t (My(t)) and Ly(t) ∈ W α̃(θ+α+β−2),p

0 (I; X), α̃(θ + α + β − 2) 6∈ N.
Notice that if α̃θ − 1/p 6∈ N, then α̃(θ + α + β− 2)− 1/p = α̃θ − 1

p + α̃(α + β− 2) 6∈ N.

5. Application: Generalized Second-Order Abstract Equation

Let us consider the abstract equation, generalizing second-order equation in time,

B2CB1u + BB1u + Au = f

where A, B, C are some closed linear operators in the complex Banach space X, B1, B2 are suitable
operators defined on suitable Banach spaces. The change of variables B1u = v transforms the given
equation to the system
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B1u = v ,

B2Cv + Bv + Au = f ,

which can be written in the matrix form[
B1 0
0 B2

] [
I 0
0 C

] [
u
v

]
+

[
0 −I
A B

] [
u
v

]
=

[
0
f

]
.

The basic idea is to use a convenient space and a domain of operator matrices. Noting

B =

[
B1 0
0 B2

]
, M =

[
I 0
0 C

]
, L =

[
0 I
−A −B

]
, F =

[
0
f

]
,

it assumes the form
(BM− L)U = F , U = (u, v)T .

In order to simplify the argument, we take D(B) ⊆ D(A) ∩ D(C). Moreover, we assume that for
all z ∈ Σα, where

Σα :=
{

z ∈ C : Re z ≥ −c(1 + |Im z|)α, c > 0, 0 < β ≤ α ≤ 1 , α + β > 1
}

,

the involved operators satisfy

‖C(zC + B)−1‖L(X) ≤
c1

(1 + |z|)β
, (7)

which guarantees that the problem is of parabolic type. Take Y = D(B)× X with the usual product
norm. Then it is shown in Favini–Yagi [2], page 184, that the resolvent estimate

‖M(zM− L)−1‖L(Y) ≤
c

(1 + |z|)β
, ∀z ∈ Σα

holds. Therefore assumption (H2) is satisfied.
Take B1 the Riemann–Liouville fractional derivative of order α̃, 0 < α̃ ≤ 1, in Lp(0, T; D(B)),

1 < p < ∞; similarly, take B2 the Riemann–Liouville fractional derivative of order β̃, 0 < β̃ ≤ 1,
in Lp(0, T; X), 1 < p < ∞. Then assumptions (H1) and (H2) hold. Therefore, according to Theorem 2,
see also Bazhlekova [11], problem

Dα̃
t u = v ,

Dβ̃
t Cv + Bv + Au = f (t) , 0 ≤ t ≤ T ,(

g1−α̃ ∗ u
)
(0) = 0 ,

(
g1−β̃ ∗ Cv

)
(0) = 0

admits a unique strict solution (u, v) in Lp(0, T; D(B))× Lp(0, T; X), provided that D(B) ⊆ D(A) ∩
D(C), f ∈ W β̃θ,p

0 (I; X), 2− α− β < θ < 1, 0 < β ≤ α ≤ 1, α + β > 1, β̃θ − 1/p 6= 0. Moreover,

Dα̃
t u = v ∈ W α̃ω,p

0 (I; D(B)), Dβ̃
t Cv ∈ W β̃ω,p

0 (I; X), Au + Bv ∈ W β̃ω,p
0 (I; X), ω = θ + α + β − 2,

α̃ω = α̃θ + α̃(α + β− 2)− 1
p 6∈ N0, β̃ω = β̃θ + β̃(α + β− 2)− 1

p 6∈ N0.

Example 3. Consider the problem

Dβ̃
t
(
m(x)Dα̃

t u
)
− ∆Dα̃

t u + A(x; D)u = f (x, t) , (x, t) ∈ Ω× [0, T] ,

u(x, 0) = 0 , x ∈ Ω ,

m(x)Dα̃
t u(x, 0) = 0 , x ∈ Ω ,
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where Ω is a bounded open set in Rn, n ≥ 1, with a smooth boundary ∂Ω, m ∈ L∞, m(x) ≥ 0 in Ω,
A(x; D) is a second order linear differential operator on Ω with continuous coefficients in Ω, f (x, t) is a
scalar valued continuous function on Ω × [0, T], then we take B = −∆1, the Laplacian with respect to x,
D(B) = H1

0(Ω) ∩ H2(Ω), X = L2(Ω). Therefore, (H2) holds with α = 1, β = 1/2.

6. Conclusions

It was shown that the degenerate problem including Riemann–Liouville fractional derivative can
be handled by means of a general abstract equation. Applications to degenerate fractional differential
equations with some related inverse problems were studied. Moreover, generalized second-order
abstract equations were well-treated.
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