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Abstract: We consider the split feasibility problem in Hilbert spaces when the hard constraint is
common solutions of zeros of the sum of monotone operators and fixed point sets of a finite family
of nonexpansive mappings, while the soft constraint is the inverse image of a fixed point set of
a nonexpansive mapping. We introduce iterative algorithms for the weak and strong convergence
theorems of the constructed sequences. Some numerical experiments of the introduced algorithm are
also discussed.
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1. Introduction

The split feasibility problem (SFP), which was introduced by Censor and Elfving [1], is the
problem of finding a point x∗ ∈ Rn such that

x∗ ∈ C ∩ L−1Q, (1)

where C and Q are nonempty closed convex subsets of Rn, and L is an n× n matrix. SFP problems
have many applications in many fields of science and technology, such as signal processing,
image reconstruction, and intensity-modulated radiation therapy; for more information, the readers
may see [1–4] and the references therein. In [1], Censor and Elfving proposed the following algorithm:
for arbitrary x1 ∈ Rn,

xn+1 = L−1PQ
(

PL(C)(Lxn)
)
, ∀n ∈ N,

where L(C) = {y ∈ Rn|y = Lx, for some x ∈ C}, and PQ and PL(C) are the metric projections
onto Q and L(C), respectively. Observe that the introduced algorithm needs the computations of
matrix inverses, which may lead to an expensive computation. To overcome this drawback, Byrne [2]
suggested the following so-called CQ algorithm: for arbitrary x1 ∈ Rn,
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xn+1 = PC
(

xn + γL>(PQ − I)Lxn
)
, ∀n ∈ N, (2)

where γ ∈
(
0, 2/‖L‖2), and L> is the transpose of the matrix L. Notice that Algorithm (2) generates

a sequence {xn} by relying on the transpose operator instead of the inverse operator of the considered
matrix L. Later on, in 2010, Xu [5] considered SFP in infinite-dimensional Hilbert spaces setting. That is,
for two real Hilbert spaces H1 and H2, and nonempty closed convex subsets C and Q of H1 and H2,
respectively, and bounded linear operator L : H1 → H2: for a given x1 ∈ H1, the sequence {xn} is
constructed by

xn+1 = PC
(

xn + γL∗(PQ − I)Lxn
)
, ∀n ∈ N, (3)

where γ ∈
(
0, 2/‖L‖2) and L∗ is the adjoint operator of L. In [5], the conditions to guarantee weak

convergence of the sequence {xn} to a solution of SFP was considered.
On the other hand, for a Hilbert space H, the variational inclusion problem (VIP), which was

initially considered by Martinet [6], has the following formal form: find x∗ ∈ H such that

0 ∈ Bx∗, (4)

where B : H → 2H is a set-valued operator. The popular iteration method for finding a solution of
problem (4) is the following so-called proximal point algorithm: for a given x1 ∈ H,

xn+1 = JB
λn

xn, ∀n ∈ N,

where {λn} ⊂ (0, ∞) and JB
λn

= (I + λnB)−1 is the resolvent of the maximal monotone operator B
corresponding to λn; see [7–10]. Subsequently, for set-valued mappings B1 : H1 → 2H1 and B2 :
H2 → 2H2 , and a bounded linear operator L : H1 → H2, by using the concept of SFP, Byrne et al. [11]
proposed the following so-called split null point problem (SNPP): finding a point x∗ ∈ H1 such that

0 ∈ B1(x∗) and 0 ∈ B2(Lx∗). (5)

In [11], the following iterative algorithm was suggested: for λ > 0 and an arbitrary x1 ∈ H1,

xn+1 = JB1
λ

(
xn − γL∗(I − JB2

λ )Lxn
)
, ∀n ∈ N,

where γ ∈
(
0, 2/‖L‖2), and JB1

λ and JB2
λ are the resolvent of maximal monotone operators B1 and B2,

respectively. They showed that, under the suitable control conditions, the sequence {xn} converges
weakly to a solution of problem (5).

Due to the importance of the two above concepts, many authors have been interested and studied
approximating the common solutions of a fixed point of nonlinear mappings and the VIP problems;
see [12–14] for example. In 2015, Takahashi et al. [15] considered the problem of finding a point

x∗ ∈ B−10∩ L−1F(T), (6)

where B : H1 → 2H1 is a maximal monotone operator, L : H1 → H2 is a bounded linear operator,
and T : H2 → H2 is a nonexpansive mapping. They suggested the following iterative algorithm: for
any x1 ∈ H1,

xn+1 = JB
λn

(
I − γnL∗(I − T)L

)
xn, ∀n ∈ N, (7)

where {λn} and {γn} satisfy some suitable control conditions, and JB
λn

is the resolvent of a maximal
monotone operator B associated with λn. They discussed the weak convergence theorem of Algorithm
(7) for the solution set of problem (6). Moreover, in [15], Takahashi et al. also considered the problem
of finding a point

x∗ ∈ F(S) ∩ B−10∩ L−1F(T), (8)
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where S : H1 → H1 is a nonexpansive mapping. They suggested the following iterative algorithm: for
any x1 ∈ H1,

xn+1 = αnxn + (1− αn)S
(

JB
λn
(I − λnL∗(I − T)L)xn

)
, ∀n ∈ N, (9)

where {αn} and {λn} satisfy some suitable control conditions and provided the weak convergence
theorem of Algorithm (9) to a solution point of problem (8).

Now, let us consider a generalized concept of the problem (4): finding a point x∗ ∈ H such that

0 ∈ Ax∗ + Bx∗, (10)

where A : H → H, and B : H → 2H . If A and B are monotone operators on H, then the elements in the
solution set of problem (10) will be called the zeros of the sum of monotone operators. It is well known
that there are a number of real world problems that arise in the form of problem (10); see [16–19] for
example and the references therein. By considering the VIP problem (10), Suwannaprapa et al. [20]
extended problem (6) to the following problem setting: finding a point

x∗ ∈ (A + B)−10∩ L−1F(T), (11)

when A : H1 → H1 is a monotone operator and B : H1 → 2H1 is a maximal monotone operator.
They proposed the following algorithm

xn+1 = JB
λn

(
(I − λn A)− γnL∗(I − T)L

)
xn, ∀n ∈ N, (12)

and showed the weak convergence theorem of Algorithm (12). Later, in 2018, Zhu et al. [21] considered
the problem of finding a point x∗ ∈ H1 and such that

x∗ ∈ F(S) ∩ (A + B)−10∩ L−1F(T) =: F , (13)

when S : H1 → H1 and T : H2 → H2 are nonexpansive mappings, and proposed the following iterative
algorithm: for any x1 ∈ H1,

un = JB
λn

(
(I − λn A)− γnL∗(I − T)L

)
xn,

xn+1 = αn f (xn) + (1− αn)Sun, ∀n ∈ N,
(14)

where f : H1 → H1 is a contraction mapping. They showed that, under the suitable control conditions,
the generated sequence {xn} converges strongly to a point z ∈ F , where z = PF f (z).

In this paper, motivated by the above literature, we will consider a problem of finding a point
x∗ ∈ H1 such that

x∗ ∈ ∩N
i=1F(Si) ∩ (A + B)−10∩ L−1F(T), (15)

where Si : H1 → H1, i = 1, . . . , N and T : H2 → H2 are nonexpansive mappings. We will denote Γ for
the solution set of problem (15). We aim to suggest the algorithms for finding a common solution of
problem (15) and provide some suitable conditions to guarantee that the constructed sequence {xn} of
each algorithm converges to a point in Γ.

2. Preliminaries

Throughout this paper, we denote by R and N for the sets of real numbers and natural numbers,
respectively. A real Hilbert space H will be equipped with the inner product 〈·, ·〉 and norm ‖ · ‖,
respectively. For a sequence {xn} in H, we denote the strong convergence and weak convergence of
{xn} to x in H by xn → x and xn ⇀ x, respectively.

Let T : H → H be a mapping. Then, T is said to be
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(i) Lipschitz if there exists K ≥ 0 such that

‖Tx− Ty‖ ≤ K‖x− y‖, ∀x, y ∈ H.

The number K is called a Lipschitz constant. Moreover, if K ∈ [0, 1), we say that T is contraction.
(ii) Nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H.

(iii) Firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉, ∀x, y ∈ H.

(iv) Averaged if there is α ∈ (0, 1) such that

T = (1− α)I + αS, (16)

where I is the identity operator on H and S : H → H is a nonexpansive mapping. In the case (16),
we say that T is α-averaged.

(v) β-inverse strongly monotone (β-ism) if, for a positive real number β,

〈Tx− Ty, x− y〉 ≥ β‖Tx− Ty‖2, ∀x, y ∈ H.

For a mapping T : H → H, the notation F(T) will stand for the set of fixed points of T that
is F(T) = {x ∈ H : Tx = x}. It is well known that, if T is a nonexpansive mapping, then F(T)
is closed and convex. Furthermore, it should be observed that firmly nonexpansive mappings are
1
2 -averaged mappings.

Next, we collect the important properties that are needed in this work.

Lemma 1. The following are true [16,22]:

(i) The composite of finitely many averaged mappings is averaged. In particular, if Ti is αi-averaged for
αi ∈ (0, 1), i = 1, 2, then T1T2 is α-averaged, where α = α1 + α2 − α1α2.

(ii) If the mappings {Ti}N
i=1 are averaged and have a common fixed point, then

N⋂
i=1

F(Ti) = F(T1T2 . . . TN).

(iii) If A is β-ism and λ ∈ (0, β], then T := I − λA is firmly nonexpansive.
(iv) A mapping T : H → H is nonexpansive if and only if I − T is 1

2 -ism.

Let B : H → 2H be a set-valued mapping. We donote D(B) for the effective domain of B, that is,
D(B) = {x ∈ H : Bx 6= ∅}. The set-valued mapping B is said to be monotone if

〈x− y, u− v〉 ≥ 0, ∀x, y ∈ D(B), u ∈ Bx, v ∈ By.

A monotone mapping B is said to be maximal when its graph is not properly contained in the graph of
any other monotone operator. For a maximal monotone operator B : H → 2H and λ > 0, we define
the resolvent JB

λ by
JB
λ := (I + λB)−1 : H → D(B).

It is well known that, under these settings, the resolvent JB
λ is a single-valued and firmly nonexpansive

mapping. Moreover, F
(

JB
λ

)
= B−10 ≡ {x ∈ H : 0 ∈ Bx}, ∀λ > 0; see [15,23].

The following lemma is a useful fact for obtaining our main results.
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Lemma 2 ([24]). Let C be a nonempty closed and convex subset of a real Hilbert space H, and A : C → H be
an operator. If B : H → 2H is a maximal monotone operator, then F

(
JB
λ (I − λA)

)
= (A + B)−10.

We also use the following lemmas for proving the main result.

Lemma 3 ([15]). Let H1 and H2 be Hilbert spaces. Let L : H1 → H2 be a nonzero bounded and linear operator,
and T : H2 → H2 be a nonexpansive mapping. Then, for 0 < γ < 1

‖L‖2 , I − γL∗(I − T)L is γ‖L‖2 -averaged.

Lemma 4 ([25]). Let C be a closed convex subset of a Hilbert space H and T : C → C be a nonexpansive
mapping. Then, U := I − T is demiclosed, that is, xn ⇀ x0 and Uxn → y0 imply Ux0 = y0.

The following fundamental results are needed in our proof.
For each x, y ∈ H and λ ∈ R, we know that

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2; (17)

see [23].
Let C be a nonempty closed and convex subset of a Hilbert space H. For each point x ∈ H,

there exists a unique nearest point in C, denoted by PCx. That is,

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

The operator PC is called the metric projection of H onto C; see [26]. The following property of PC is
well known:

〈x− PCx, y− PCx〉 ≤ 0, ∀x ∈ H, y ∈ C.

The following lemmas are important for proving the convergence theorems in this work.

Lemma 5 ([15]). Let H be a Hilbert space and let {xn} be a sequence in H. Assume that C is a nonempty
closed convex subset of H satisfying the following properties:

(i) for every x∗ ∈ C, limn→∞‖xn − x∗‖ exists;
(ii) if a subsequence {xnj} ⊂ {xn} converges weakly to x∗, then x∗ ∈ C.

Then, there exists x0 ∈ C such that xn ⇀ x0.

Lemma 6 ([9,27]). Assume that {an} is a sequence of nonnegative real numbers satisfying the following
relation:

an+1 ≤ (1− αn)an + αnσn + δn, ∀n ∈ N,

where {αn}, {σn} and {δn} are sequences of real numbers satisfying

(i) {αn} ⊂ [0, 1], ∑∞
n=1 αn = ∞;

(ii) lim supn→∞ σn ≤ 0;
(iii) δn ≥ 0, ∑∞

n=1 δn < ∞.

Then, an → 0 as n→ ∞.

3. Main Results

In our main results, the following assumptions will be concerned in order to show the convergence
theorems for the introduced algorithm to a solution of problem (15).

(A1) A : H1 → H1 is a β-inverse strongly monotone operator;
(A2) B : H1 → 2H1 is a maximal monotone operator;
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(A3) L : H1 → H2 is a bounded linear operator;
(A4) T : H2 → H2 is a nonexpansive mapping;
(A5) Si : H1 → H1, i = 1, . . . , N are nonexpansive mappings;
(A6) f : H1 → H1 is a contraction mapping with coefficient η ∈ (0, 1).

Now, we provide the main algorithm and its convergence theorems.

3.1. Weak Convergence Theorems

Theorem 1. Let H1 and H2 be Hilbert spaces. For any x1 ∈ H1, define

yn = JB
λn
(I − λn A)

(
xn − γnL∗(I − T)Lxn

)
,

xn+1 = αnxn + (1− αn)UNUN−1 . . . U1yn, ∀n ∈ N,
(18)

where the sequences {λn}, {γn} and {αn} satisfy the following conditions:

(i) 0 < λn < β,

(ii) 0 < a ≤ γn ≤ b1 <
1
‖L‖2 ,

(iii) 0 < a ≤ αn ≤ b2 < 1,

for some a, b1, b2 ∈ R, and Ui = (1− κi)I + κiSi for κi ∈ (0, 1), i = 1, . . . , N. Suppose that the assumptions
(A1)–(A5) hold and Γ 6= ∅. Then, the sequence {xn} converges weakly to an element in Γ.

Proof. Firstly, we set
Tn := JB

λn
(I − λn A)

(
I − γnL∗(I − T)L

)
and un = xn − γnL∗(I − T)Lxn, for each n ∈ N. It follows that

yn = Tnxn = JB
λn
(I − λn A)un,

for each n ∈ N. We note that JB
λn

is 1
2 -averaged. Since A is β-ism, in view of Lemma 1(iii), for each

λn ∈ (0, β), we have that (I − λn A) is 1
2 -averaged. Subsequently, by Lemma 1(i), we get JB

λn
(I − λn A)

is 3
4 -averaged. Moreover, by Lemma 3, for each γn ∈

(
0, 1/‖L‖2), we know that

(
I − γnL∗(I − T)L

)
is

γn‖L‖2-averaged. Consequently, by Lemma 1(i), we get Tn is δn-averaged, where δn =
3 + γn‖L‖2

4
,

for each n ∈ N. Now, for each n ∈ N, we can write

Tn = (1− δn)I + δnVn,

where δn :=
3 + γn‖L‖2

4
and Vn is a nonexpansive mapping.

Next, we let z ∈ Γ. Then, z ∈ (A + B)−10 and Lz ∈ F(T), imply z = JB
λn
(I − λn A)z and(

I − γnL∗(I − T)L
)
z = z. Subsequently, we have

Tnz = JB
λn
(I − λn A)

(
I − γnL∗(I − T)L

)
z = JB

λn
(I − λn A)z = z

and hence z ∈ F(Tn) = F(Vn). Consider,

‖yn − z‖2 = ‖Tnxn − z‖2

=
∥∥(1− δn)xn + δnVnxn − z

∥∥2

= (1− δn)‖xn − z‖2 + δn‖Vnxn − z‖2 − δn(1− δn)
∥∥xn −Vnxn

∥∥2

≤ ‖xn − z‖2 − δn(1− δn)
∥∥xn −Vnxn

∥∥2,

(19)



Mathematics 2019, 7, 1012 7 of 21

for each n ∈ N. By condition (ii), we know that δn ∈
( 3

4 , 1
)
, so we have

‖yn − z‖2 ≤ ‖xn − z‖2,

for each n ∈ N. Thus,
‖yn − z‖ ≤ ‖xn − z‖,

for each n ∈ N.
Furthermore, since z ∈ Γ, we also have z ∈ ∩N

i=1F(Si); this implies z = Siz = Uiz, for each
i = 1, . . . , N. It follows that UNUN−1 . . . U1z = z. We denote UN for the operator UNUN−1 . . . U1.
From above, we get UNz = z.

By the definition of xn+1 and the relation (19), we obtain

‖xn+1 − z‖2 =
∥∥αnxn + (1− αn)UNyn − z

∥∥2

=
∥∥αn(xn − z) + (1− αn)(UNyn − z)

∥∥2

≤ αn‖xn − z‖2 + (1− αn)‖yn − z‖2 − αn(1− αn)‖xn −UNyn‖2

≤ αn‖xn − z‖2 + (1− αn)

[
‖xn − z‖2 − δn(1− δn)

∥∥xn −Vnxn
∥∥2
]

−αn(1− αn)‖xn −UNyn‖2

= ‖xn − z‖2 − (1− αn)δn(1− δn)
∥∥xn −Vnxn

∥∥2

−αn(1− αn)‖xn −UNyn‖2

≤ ‖xn − z‖2,

(20)

for each n ∈ N. Thus,
‖xn+1 − z‖ ≤ ‖xn − z‖,

for each n ∈ N. Therefore, for all z ∈ Γ, limn→∞ ‖xn − z‖ exists.
Now, from the relation (20), we see that

(1− αn)δn(1− δn)
∥∥xn −Vnxn

∥∥2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2,

for each n ∈ N. By the existence of {xn}, and the conditions (ii) and (iii), we get

lim
n→∞

‖xn −Vnxn‖ = 0. (21)

In addition, from the relation (20), we obtain

αn(1− αn)‖xn −UNyn‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2,

for each n ∈ N. By the existence of {xn} and the condition (iii), we get

lim
n→∞

‖xn −UNyn‖ = 0. (22)

Consider

‖xn − yn‖ = ‖xn − Tnxn‖
=

∥∥xn −
(
(1− δn)xn + δnVnxn

)∥∥
≤ δn‖xn −Vnxn‖,

for each n ∈ N. By using the fact (21), we obtain

lim
n→∞

‖xn − yn‖ = 0. (23)
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Next, consider

‖xn − xn+1‖ =
∥∥xn − αnxn − (1− αn)UNyn

∥∥
≤ (1− αn)

∥∥xn −UNyn
∥∥,

for each n ∈ N. Then, by using the fact (22), we have

lim
n→∞

‖xn − xn+1‖ = 0. (24)

Next, since Lz ∈ F(T), so we have (I − T)Lz = 0. Note that I − T is 1
2 -ism. Then, we have the

following relation∥∥(I − T)Lxn − (I − T)Lz
∥∥2 ≤ 2

〈
(I − T)Lxn − (I − T)Lz, Lxn − Lz

〉
, (25)

for each n ∈ N. By (I − T)Lz = 0 above, we obtain∥∥(I − T)Lxn
∥∥2 ≤ 2

〈
(I − T)Lxn, Lxn − Lz

〉
, (26)

for each n ∈ N.
By the relation (26) and z ∈ Γ, we have

‖yn − z‖2 =
∥∥JB

λn
(I − λn A)

(
xn − γnL∗(I − T)Lxn

)
− JB

λn
(I − λn A)z

∥∥2

≤
∥∥(xn − z)− γnL∗(I − T)Lxn

∥∥2

= ‖xn − z‖2 − 2γn
〈

xn − z, L∗(I − T)Lxn
〉
+ γ2

n
∥∥L∗(I − T)Lxn

∥∥2

= ‖xn − z‖2 − 2γn
〈

Lxn − Lz, (I − T)Lxn
〉
+ γ2

n
∥∥L∗(I − T)Lxn

∥∥2

≤ ‖xn − z‖2 − γn‖(I − T)Lxn‖2 + γ2
n‖L∗‖2

∥∥(I − T)Lxn
∥∥2

= ‖xn − z‖2 − γn
(
1− γn‖L‖2)∥∥(I − T)Lxn

∥∥2,

(27)

for each n ∈ N. Then,

γn
(
1− γn‖L‖2)∥∥(I − T)Lxn

∥∥2 ≤ ‖xn − z‖2 − ‖yn − z‖2,

for each n ∈ N. By the condition (ii), for each n ∈ N, we have

∥∥(I − T)Lxn
∥∥2 ≤ 1

a
(
1− b2‖L‖2

) (‖xn − z‖2 − ‖yn − z‖2)

≤ 1
a
(
1− b2‖L‖2

) (‖xn − z‖+ ‖yn − z‖)‖xn − yn‖.

By using the fact (23), we get
lim

n→∞

∥∥(I − T)Lxn
∥∥ = 0. (28)

Next, we will prove the weak convergence of {xn} by using Lemma 5. Remember that we have
limn→∞ ‖xn − z‖ existing for all z ∈ Γ. Thus, it remains to prove that, if there is a subsequence {xnj} of
{xn} that converges weakly to a point x∗ ∈ H1, then x∗ ∈ Γ.

Assume that xnj ⇀ x∗; we first show that x∗ ∈ L−1F(T). Consider

∥∥TLx∗ − Lx∗
∥∥2

=
〈

TLx∗ − Lx∗, TLx∗ − TLxnj

〉
+
〈

TLx∗ − Lx∗, TLxnj − Lxnj

〉
+
〈

TLx∗ − Lx∗, Lxnj − Lx∗
〉
,

(29)
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for each j ∈ N. Since L is a bounded linear operator, so we have Lxnj ⇀ Lx∗. By using this one
and together with the fact (28), from the equality (29), we have TLx∗ = Lx∗. Hence, Lx∗ ∈ F(T) or
x∗ ∈ L−1F(T).

Next, we will show that x∗ ∈ (A + B)−10. Consider∥∥x∗ − JB
λn
(I − λn A)x∗

∥∥
=

〈
x∗ − JB

λn
(I − λn A)x∗, x∗ − xnj

〉
+
〈

x∗ − JB
λn
(I − λn A)x∗, xnj − JB

λn
(I − λn A)xnj

〉
+
〈

x∗ − JB
λn
(I − λn A)x∗, JB

λn
(I − λn A)xnj − JB

λn
(I − λn A)x∗

〉
,

(30)

for each j ∈ N. Observe that∥∥yn − JB
λn
(I − λn A)xn

∥∥ =
∥∥JB

λn
(I − λn A)

(
xn − γnL∗(I − T)Lxn

)
− JB

λn
(I − λn A)xn

∥∥
≤

∥∥xn − γnL∗(I − T)Lxn − xn
∥∥

≤ γn‖L‖
∥∥(I − T

)
Lxn

∥∥,
(31)

for each n ∈ N. By using the fact (28) to the inequality (31), we obtain

lim
n→∞

∥∥yn − JB
λn
(I − λn A)xn

∥∥ = 0. (32)

Since ∥∥xn − JB
λn
(I − λn A)xn

∥∥ ≤ ‖xn − yn‖+
∥∥yn − JB

λn
(I − λn A)xn

∥∥,

for each n ∈ N, by the facts (23) and (32), we have

lim
n→∞

∥∥xn − JB
λn
(I − λn A)xn

∥∥ = 0. (33)

Thus, from the inequality (30), by using the fact (33) and together with xnj ⇀ x∗, we obtain

lim
j→∞

∥∥x∗ − JB
λn
(I − λn A)x∗

∥∥ = 0. (34)

Therefore, x∗ = JB
λn
(I − λn A)x∗ and hence x∗ ∈ (A + B)−10.

Finally, we will show that x∗ ∈ ∩N
i=1F(Si). Consider

‖yn −UNyn‖ ≤ ‖yn − xn‖+ ‖xn −UNyn‖,

for each n ∈ N. By using the facts (22) and (23), we obtain

lim
n→∞

‖yn −UNyn‖ = 0. (35)

By using the fact (35) and ynj ⇀ x∗, for each j ∈ N, we obtain from Lemma 4 that x∗ ∈ F(UN).
Since Ui, i = 1, . . . , N are averaged mappings, by Lemma 1(ii), we have F(U1U2 . . . UN) = ∩N

i=1F(Ui).
This implies that x∗ ∈ ∩N

i=1F(Ui) = ∩N
i=1F(Si). From the above results, we have that x∗ ∈ ∩N

i=1F(Si) ∩
(A + B)−10 ∩ L−1F(T). That is, x∗ ∈ Γ. Finally, by Lemma 5, we can conclude that {xn} converges
weakly to a point in Γ. Hence, the proof is completed.

3.2. Strong Convergence Theorems

Theorem 2. Let H1 and H2 be Hilbert spaces. For any x1 ∈ H1, define

yn = JB
λ (I − λA)

(
xn − γL∗(I − T)Lxn

)
,

xn+1 = αn f (xn) + (1− αn)UNUN−1 . . . U1yn, ∀n ∈ N,
(36)
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where λ ∈ (0, β), γ ∈ (0, 1
‖L‖2 ), and Ui = (1− κi)I + κiSi for κi ∈ (0, 1), i = 1, . . . , N. Suppose that the

assumptions (A1)–(A6) hold, Γ 6= ∅, and the sequence {αn} ⊂ (0, 1) satisfies the following conditions:

(i) limn→∞ αn = 0;
(ii) ∑∞

n=1 αn = ∞ and ∑∞
n=1 |αn − αn−1| < ∞.

Then, {yn} and {xn} both converge strongly to x̄ ∈ Γ, where x̄ = PΓ f (x̄).

Proof. Firstly, we will show the boundedness of {xn}. Let z ∈ Γ and follow the lines proof of the
inequality (19), we can obtain

‖yn − z‖ ≤ ‖xn − z‖,

for each n ∈ N. Moreover, by the definition of xn+1 and UNz = z, we obtain

‖xn+1 − z‖ =
∥∥αn( f (xn)− z) + (1− αn)

(
UNyn − z

)∥∥
≤ αn

∥∥ f (xn)− z
∥∥+ (1− αn)

∥∥UNyn − z
∥∥

≤ αn
∥∥ f (xn)− f (z)

∥∥+ αn
∥∥ f (z)− z

∥∥+ (1− αn)‖yn − z‖
≤ αnη‖xn − z‖+ αn

∥∥ f (z)− z
∥∥+ (1− αn)‖xn − z‖

=
(
1− αn(1− η)

)
‖xn − z‖+ αn

∥∥ f (z)− z
∥∥

≤
(
1− αn(1− η)

)
‖xn − z‖+ αn(1− η)

(∥∥ f (z)− z
∥∥

1− η

)
≤ max

{
‖xn − z‖,

∥∥ f (z)− z
∥∥

1− η

}
...

≤ max

{
‖x1 − z‖,

∥∥ f (z)− z
∥∥

1− η

}
,

(37)

for each n ∈ N. This implies that
{
‖xn − z‖

}
is a bounded sequence. Consequently,

{
‖yn − z‖

}
is also

a bounded sequence. These imply that {xn} and {yn} are bounded.
Next, we note that PΓ f (·) is a contraction mapping. We now let x̄ be the unique fixed point of

PΓ f (·). We consider

‖xn+1 − x̄‖2 =
〈
αn f (xn) + (1− αn)UNyn − x̄, xn+1 − x̄

〉
= αn

〈
f (xn)− x̄, xn+1 − x̄

〉
+ (1− αn)

〈
UNyn − x̄, xn+1 − x̄

〉
= αn

〈
f (xn)− f (x̄), xn+1 − x̄

〉
+ αn

〈
f (x̄)− x̄, xn+1 − x̄

〉
+(1− αn)

〈
UNyn − x̄, xn+1 − x̄

〉
≤ αn

2

(∥∥ f (xn)− f (x̄)
∥∥2

+
∥∥xn+1 − x̄

∥∥2
)

+
1− αn

2

(∥∥UNyn − x̄
∥∥2

+
∥∥xn+1 − x̄

∥∥2
)
+ αn

〈
f (x̄)− x̄, xn+1 − x̄

〉
≤ αnη2

2
‖xn − x̄‖2 +

αn

2
‖xn+1 − x̄‖2 +

1− αn

2
‖xn − x̄‖2 +

1− αn

2
‖xn+1 − x̄‖2

+αn
〈

f (x̄)− x̄, xn+1 − x̄
〉

≤ 1− αn(1− η2)

2
‖xn − x̄‖2 +

1
2
‖xn+1 − x̄‖2 + αn

〈
f (x̄)− x̄, xn+1 − x̄

〉
,

for each n ∈ N. This gives

‖xn+1 − x̄‖2 ≤
(
1− αn(1− η2)

)
‖xn − x̄‖2 + αn(1− η2)

(
2

1− η2

〈
f (x̄)− x̄, xn+1 − x̄

〉)
, (38)
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for each n ∈ N.

Next, we will show that limn→∞ ‖xn+1 − xn‖ = 0. Consider, for each n ∈ N,

‖xn+1 − xn‖ =
∥∥αn f (xn)− αn f (xn−1) + αn f (xn−1)− αn−1 f (xn−1)

+(1− αn)UNyn − (1− αn)UNyn−1 + (1− αn)UNyn−1 − (1− αn−1)UNyn−1
∥∥

≤ αn
∥∥ f (xn)− f (xn−1)

∥∥+ |αn − αn−1|
∥∥ f (xn−1)

∥∥
+(1− αn)

∥∥UNyn −UNyn−1
∥∥+ |αn − αn−1|

∥∥UNyn−1
∥∥

≤ αnη‖xn − xn−1‖+ (1− αn)‖yn − yn−1‖+ 2|αn − αn−1|M,

(39)

where M = supn
{
‖ f (xn)‖+ ‖UNyn‖

}
. In the second term of the inequality (39), by the definition of

yn and JB
λ (I − λA)

(
I − γL∗(I − T)L

)
being a nonexpansive mapping, it follows that

‖yn − yn−1‖ =
∥∥JB

λ (I − λA)
(

I − γL∗(I − T)L
)
xn − JB

λ (I − λA)
(

I − γL∗(I − T)L
)
xn−1

∥∥
≤ ‖xn − xn−1‖,

(40)

for each n ∈ N. Substituting the inequality (40) into the inequality (39), we get

‖xn+1 − xn‖ ≤ αnη‖xn − xn−1‖+ (1− αn)‖xn − xn−1‖+ 2|αn − αn−1|M
=

(
1− αn(1− η)

)
‖xn − xn−1‖+ 2|αn − αn−1|M,

for each n ∈ N. Thus, by Lemma 6, we have

lim
n→∞

‖xn+1 − xn‖ = 0. (41)

Furthermore, by the definition of xn+1 and the relation (19) in Theorem 1, we get

‖xn+1 − x̄‖2 = αn‖ f (xn)− x̄‖2 + (1− αn)
∥∥UNyn − x̄

∥∥2

−αn(1− αn)
∥∥ f (xn)−UNyn

∥∥2

≤ αn‖ f (xn)− x̄‖2 + (1− αn)

[
‖xn − x̄‖2 − δ(1− δ)

∥∥xn −Vxn
∥∥2
]

−αn(1− αn)
∥∥ f (xn)−UNyn

∥∥2

= ‖xn − x̄‖2 + αn

[
‖ f (xn)− x̄‖2 − ‖xn − x̄‖2

]
−(1− αn)δ(1− δ)

∥∥xn −Vxn
∥∥2 − αn(1− αn)

∥∥ f (xn)−UNyn
∥∥2,

(42)

for each n ∈ N. Then, we have that

(1− αn)δ(1− δ)
∥∥xn −Vxn

∥∥2 ≤ ‖xn − x̄‖2 − ‖xn+1 − x̄‖2 + αn

[
‖ f (xn)− x̄‖2 − ‖xn − x̄‖2

]
=

(
‖xn − x̄‖+ ‖xn+1 − x̄‖

)
‖xn − xn+1‖

+αn

[
‖ f (xn

)
− x̄‖2 − ‖xn − x̄‖2

]
,

for each n ∈ N. By using the fact (41), the condition (i) and δ ∈
( 3

4 , 1
)
, we get

lim
n→∞

‖xn −Vxn‖ = 0. (43)

Subsequently, we have

‖yn − xn‖ =
∥∥(1− δ)xn + δVxn − xn

∥∥
≤ δ‖xn −Vxn‖, (44)
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for each n ∈ N. Thus, by the fact (43), we obtain

lim
n→∞

‖yn − xn‖ = 0. (45)

Moreover, by the same proof in Theorem 1, we also have

lim
n→∞

∥∥(I − T)Lxn
∥∥ = 0. (46)

Next, since {xn} is bounded on H1, there exists a subsequence {xnj} of {xn} that converges
weakly to x∗ ∈ H1. We will show that x∗ ∈ Γ. Now, we know from Theorem 1 that x∗ ∈ L−1F(T) and
x∗ ∈ (A + B)−10. It remains to show that x∗ ∈ ∩N

i=1F(Si). Consider, for each n ∈ N,∥∥xn+1 −UNyn
∥∥ =

∥∥αn f (xn) + (1− αn)UNyn −UNyn
∥∥

≤ αn
∥∥ f (xn)−UNyn

∥∥
≤ αn‖ f (xn)− f (x̄)‖+ αn

∥∥ f (x̄)−UNyn
∥∥

≤ αnη‖xn − x̄‖+ αn
∥∥ f (x̄)−UNyn

∥∥.

(47)

Thus, by condition(i), we obtain
lim

n→∞

∥∥xn+1 −UNyn
∥∥ = 0. (48)

Since ∥∥yn −UNyn
∥∥ ≤ ‖yn − xn‖+ ‖xn − xn+1‖+

∥∥xn+1 −UNyn
∥∥, (49)

for each n ∈ N, by using the facts (41), (45) and (48), we have

lim
n→∞

∥∥yn −UNyn
∥∥ = 0. (50)

By using the relation (50) and ynj ⇀ x∗, for each j ∈ N, we obtain from Lemma 4 that x∗ ∈
F(UN) = ∩N

i=1F(Ui) = ∩N
i=1F(Si). From the above results, we obtain that x∗ ∈ Γ.

Finally, we will prove that {xn} converges strongly to x̄ = PΓ f (x̄). Now, we know that {xn} is
bounded and from the relation (41) we have ‖xn+1 − xn‖ → 0, as n→ ∞. Without loss of generality,
by passing to a subsequence if necessary, we may assume that a subsequence {xnj+1} of {xn+1}
converges weakly to x∗ ∈ H1. Thus, we obtain

lim sup
n→∞

2
1− η2

〈
f (x̄)− x̄, xn+1 − x̄

〉
= lim

j→∞

2
1− η2

〈
f (x̄)− x̄, xnj+1 − x̄

〉
=

2
1− η2

〈
f (x̄)− x̄, x∗ − x̄

〉
≤ 0.

From the inequality (38), by using Lemma 6, we can conclude that ‖xn − x̄‖ → 0, as n → ∞. Thus,
xn → x̄, as n→ ∞. Since ‖yn − xn‖ → 0, as n→ ∞, so we conclude yn → x̄, as n→ ∞. This completes
the proof.

4. Some Deduced Results

If S1 = S2 = · · · = SN = I (the identity operator), we see that problem (15) reduces to problem
(11). Thus, we have the following results.

Corollary 1. Let H1 and H2 be Hilbert spaces. For any x1 ∈ H1, define

yn = JB
λn
(I − λn A)

(
xn − γnL∗(I − T)Lxn

)
,

xn+1 = αnxn + (1− αn)yn, ∀n ∈ N,
(51)
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where the sequences {λn}, {γn} and {αn} satisfy the following conditions:

(i) 0 < λn < β,

(ii) 0 < a ≤ γn ≤ b1 <
1
‖L‖2 ,

(iii) 0 < a ≤ αn ≤ b2 < 1,

for some a, b1, b2 ∈ R. Suppose that the assumptions (A1)–(A4) hold and (A + B)−10 ∩ L−1F(T) 6= ∅.
Then, the sequence {xn} converges weakly to an element in (A + B)−10∩ L−1F(T).

Corollary 2. Let H1 and H2 be Hilbert spaces. For any x1 ∈ H1, define

yn = JB
λ (I − λA)

(
xn − γL∗(I − T)Lxn

)
,

xn+1 = αn f (xn) + (1− αn)yn, ∀n ∈ N,
(52)

where λ ∈ (0, β) and γ ∈ (0, 1
‖L‖2 ). Suppose that the assumptions (A1)–(A4) and (A6) hold, (A + B)−10∩

L−1F(T) 6= ∅, and the sequence {αn} ⊂ (0, 1) satisfies the following conditions:

(i) limn→∞ αn = 0;
(ii) ∑∞

n=1 αn = ∞ and ∑∞
n=1 |αn − αn−1| < ∞.

Then, {yn} and {xn} both converge strongly to x̄ ∈ (A+ B)−10∩ L−1F(T), where x̄ = P(A+B)−10∩L−1F(T) f (x̄).

If A = 0 (the zero operator) and F(S) := ∩N
i=1F(Si), then problem (15) is reduced to problem (8).

Thus, we also have the following results.

Corollary 3. Let H1 and H2 be Hilbert spaces. For any x1 ∈ H1, define

yn = JB
λn

(
xn − γnL∗(I − T)Lxn

)
,

xn+1 = αnxn + (1− αn)Uyn, ∀n ∈ N,
(53)

where the sequences {λn}, {γn} and {αn} satisfy the following conditions:

(i) 0 < λn < ∞,

(ii) 0 < a ≤ γn ≤ b1 <
1
‖L‖2 ,

(iii) 0 < a ≤ αn ≤ b2 < 1,

for some a, b1, b2 ∈ R, and U = (1− κ)I + κS for κ ∈ (0, 1), and S is a nonexpansive mapping. Suppose that
the assumptions (A2)–(A4) hold and F(S)∩ B−10∩ L−1F(T) 6= ∅. Then, the sequence {xn} converges weakly
to an element in F(S) ∩ B−10∩ L−1F(T).

Corollary 4. Let H1 and H2 be Hilbert spaces. For any x1 ∈ H1, define

yn = JB
λ

(
xn − γL∗(I − T)Lxn

)
,

xn+1 = αn f (xn) + (1− αn)Uyn, ∀n ∈ N,
(54)

where λ ∈ (0, β), γ ∈ (0, 1
‖L‖2 ), and U = (1− κ)I + κS for κ ∈ (0, 1) and S is a nonexpansive mapping.

Suppose that the assumptions (A2)–(A4), (A6) hold, F(S) ∩ B−10∩ L−1F(T) 6= ∅, and the sequence {αn} ⊂
(0, 1) satisfies the following conditions:

(i) limn→∞ αn = 0;
(ii) ∑∞

n=1 αn = ∞ and ∑∞
n=1 |αn − αn−1| < ∞.

Then, {yn} and {xn} both converge strongly to x̄ ∈ F(S)∩ B−10∩ L−1F(T), where x̄ = PF(S)∩B−10∩L−1F(T) f (x̄).
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If A = 0 and L = I, then problem (15) is reduced to a type of the common fixed points of
nonexpansive mappings; see [28]. That is, in this case, we will consider a problem of finding a point

x∗ ∈ ∩N
i=1F(Si) ∩ F(JB

λn
) ∩ F(T) =: Ω. (55)

In addition, the following results can be obtained from the main Theorems 1 and 2, respectively.

Corollary 5. Let H be a Hilbert space. For any x1 ∈ H, define

yn = JB
λn

(
(1− γn)xn + γnTxn

)
,

xn+1 = αnxn + (1− αn)UNUN−1 . . . U1yn, ∀n ∈ N,
(56)

where the sequences {λn}, {γn} and {αn} satisfy the following conditions:

(i) 0 < λn < ∞,
(ii) 0 < a ≤ γn ≤ b < 1,
(iii) 0 < a ≤ αn ≤ b < 1,

for some a, b ∈ R, and Ui = (1− κi)I + κiSi for κi ∈ (0, 1), i = 1, . . . , N. Suppose that the assumptions (A2),
(A4), and (A5) hold and Ω 6= ∅. Then, the sequence {xn} converges weakly to an element in Ω.

Corollary 6. Let H1 and H2 be Hilbert spaces. For any x1 ∈ H1, define

yn = JB
λ

(
(1− γ)xn + γTxn

)
,

xn+1 = αn f (xn) + (1− αn)UNUN−1 . . . U1yn, ∀n ∈ N,
(57)

where λ ∈ (0, ∞), γ ∈ (0, 1), and Ui = (1− κi)I + κiSi for κi ∈ (0, 1), i = 1, . . . , N. Suppose that the
assumptions (A2), (A4)–(A6) hold, Ω 6= ∅, and the sequence {αn} ⊂ (0, 1) satisfies the following conditions:

(i) limn→∞ αn = 0;
(ii) ∑∞

n=1 αn = ∞ and ∑∞
n=1 |αn − αn−1| < ∞.

Then, {yn} and {xn} both converge strongly to x̄ ∈ Ω, where x̄ = PΩ f (x̄).

5. Applications

In this section, we discuss the applications of problem (15) via Theorems 1 and 2, respectively.

5.1. Variational Inequality Problem

Let the normal cone to C at u ∈ C be defined by

NC(u) =
{

z ∈ H : 〈z, y− u〉 ≤ 0, ∀y ∈ C
}

. (58)

It is well known that NC is a maximal monotone operator. By considering B := NC : H → 2H , then we
can see that problem (10) is reduced to the problem of finding a point x∗ ∈ C such that

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C. (59)

Let VIP(C, A) be denoted for the solution set of problem (59). Notice that, in this case, we have
JB
λ =: PC. By these settings, problem (15) is reduced to a problem of finding a point

x∗ ∈ ∩N
i=1F(Si) ∩VIP(C, A) ∩ L−1F(T) =: ΓA,S,T . (60)

Subsequently, by applying Theorems 1 and 2, we obtain the following convergence theorems.
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Theorem 3. Let H1 and H2 be Hilbert spaces and C be a nonempty closed convex subset of H1. For any
x1 ∈ H1, define

yn = PC(I − λn A)
(
xn − γnL∗(I − T)Lxn

)
,

xn+1 = αnxn + (1− αn)UNUN−1 . . . U1yn, ∀n ∈ N,
(61)

where the sequences {λn}, {γn}, and {αn} satisfy the following conditions:

(i) 0 < λn < β,

(ii) 0 < a ≤ γn ≤ b1 <
1
‖L‖2 ,

(iii) 0 < a ≤ αn ≤ b2 < 1,

for some a, b1, b2, ∈ R, and Ui = (1− κi)I + κiSi for κi ∈ (0, 1), i = 1, . . . , N. Suppose that the assumptions
(A1), (A3)–(A5) hold and ΓA,S,T 6= ∅. Then, the sequence {xn} converges weakly to an element in ΓA,S,T .

Theorem 4. Let H1 and H2 be Hilbert spaces and C be a nonempty closed convex subset of H1. For any x1 ∈ H1,
define

yn = PC(I − λA)
(
xn − γL∗(I − T)Lxn

)
,

xn+1 = αn f (xn) + (1− αn)UNUN−1 . . . U1yn, ∀n ∈ N,
(62)

where λ ∈ (0, β), γ ∈ (0, 1
‖L‖2 ), and Ui = (1− κi)I + κiSi for κi ∈ (0, 1), i = 1, . . . , N. Suppose that the

assumptions (A1), (A3)–(A6) hold, ΓA,S,T 6= ∅, and the sequence {αn} ⊂ (0, 1) satisfies the following conditions:

(i) limn→∞ αn = 0;
(ii) ∑∞

n=1 αn = ∞ and ∑∞
n=1 |αn − αn−1| < ∞.

Then, {yn} and {xn} both converge strongly to x̄ ∈ ΓA,S,T , where x̄ = PΓA,S,T f (x̄).

5.2. Convex Minimization Problem

We consider a convex function g : H → R, which is Fréchet differentiable. Let C be a given closed
convex subset of H. By setting A := ∇g (the gradient of g) and B := NC, we see that the problem of
finding a point x∗ ∈ (A + B)−10 is equivalent to the following problem: find a point x∗ ∈ C such that〈

∇g(x∗), x− x∗
〉
≥ 0, ∀x ∈ C. (63)

It is well known that the equation (63) is equivalent to the minimization problem of finding x∗ ∈ C
such that

x∗ ∈ arg min
x∈C

g(x).

Therefore, in this case, problem (15) reduces to a problem of finding a point

x∗ ∈ ∩N
i=1F(Si) ∩ arg min

x∈C
g(x) ∩ L−1F(T) =: Γg,S,T . (64)

Then, by applying Theorems 1 and 2, we obtain the following results.

Theorem 5. Let H1 and H2 be Hilbert spaces and C be a nonempty closed convex subset of H1. Let g : H1 → R
be convex and Fréchet differentiable such that ∇g is a ν-Lipschitz continuous. For any x1 ∈ H1, define

yn = PC(I − λn∇g)
(

xn − γnL∗(I − T)Lxn
)
,

xn+1 = αnxn + (1− αn)UNUN−1 . . . U1yn, ∀n ∈ N,
(65)

where the sequences {λn}, {γn} and {αn} satisfy the following conditions:

(i) 0 < λn <
1
ν

,
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(ii) 0 < a ≤ γn ≤ b1 <
1
‖L‖2 ,

(iii) 0 < a ≤ αn ≤ b2 < 1,

for some a, b1, b2, ∈ R, and Ui = (1− κi)I + κiSi for κi ∈ (0, 1), i = 1, . . . , N. Suppose that the assumptions
(A3)–(A5) hold and Γg,S,T 6= ∅. Then, the sequence {xn} converges weakly to an element in Γg,S,T .

Proof. Notice that, by the convex assumption of g together with the ν-Lipschitz continuity of ∇g,
we have∇g is 1

ν -ism (see [29]). Thus, the conclusion can be followed immediately from Theorem 1.

Theorem 6. Let H1 and H2 be Hilbert spaces and C be a nonempty closed convex subset of H1. Let g : H1 → R
be convex and Fréchet differentiable such that ∇g is a ν-Lipschitz continuous. For any x1 ∈ H1, define

yn = PC(I − λn∇g)
(
xn − γL∗(I − T)Lxn

)
,

xn+1 = αn f (xn) + (1− αn)UNUN−1 . . . U1yn, ∀n ∈ N,
(66)

where λ ∈ (0,
1
ν
), γ ∈ (0, 1

‖L‖2 ), and Ui = (1− κi)I + κiSi for κi ∈ (0, 1), i = 1, . . . , N. Suppose that the

assumptions (A3)–(A6) hold, Γg,S,T 6= ∅, and the sequence {αn} ⊂ (0, 1) satisfies the following conditions:

(i) limn→∞ αn = 0;
(ii) ∑∞

n=1 αn = ∞ and ∑∞
n=1 |αn − αn−1| < ∞.

Then, {yn} and {xn} both converge strongly to x̄ ∈ Γg,S,T , where x̄ = PΓg,S,T f (x̄).

5.3. Split Common Fixed Point Problem

Consider a nonexpansive mapping V : H1 → H1. By Lemma 1(iv), we know that A := I −V is
a 1

2 -ism, and Ax∗ = 0 if and only if x∗ ∈ F(V). Thus, in the case that B := 0 (the zero operator), we see
that problem (11) is reduced to the problem of finding a point

x∗ ∈ F(V) such that Lx∗ ∈ F(T). (67)

Problem (67) is called the split common fixed point problem (SCFP), and it has been studied by many
authors; see [30–33] for example. Then, problem (15) is reduced to a problem of finding a point

x∗ ∈ ∩N
i=1F(Si) ∩ F(V) ∩ L−1F(T) =: ΓV,S,T . (68)

By applying Theorems 1 and 2, we can obtain the following results.

Theorem 7. Let H1 and H2 be Hilbert spaces. Let V : H1 → H1 be nonexpansive mapping. For any x1 ∈ H1,
define

yn =
(
(1− λn)I − λnV

)(
xn − γnL∗(I − T)Lxn

)
,

xn+1 = αnxn + (1− αn)UNUN−1 . . . U1yn, ∀n ∈ N,
(69)

where the sequences {λn}, {γn} and {αn} satisfy the following conditions:

(i) 0 < λn <
1
2

,

(ii) 0 < a ≤ γn ≤ b1 <
1
‖L‖2 ,

(iii) 0 < a ≤ αn ≤ b2 < 1,

for some a, b1, b2, ∈ R, and Ui = (1− κi)I + κiSi for κi ∈ (0, 1), i = 1, . . . , N. Suppose that the assumptions
(A3)–(A5) hold and ΓV,S,T 6= ∅. Then, the sequence {xn} converges weakly to an element in ΓV,S,T .
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Proof. Observe that Algorithm (18) is reduced to Algorithm (69), by setting A := I −V and B := 0.
Remember that the zero operator is monotone and continuous. Consequently, it is a maximal monotone
operator. Moreover, we know that its resolvent operator is nothing but the identity operator on H1.
Using these facts, the result is followed immediately.

Theorem 8. Let H1 and H2 be Hilbert spaces. Let V : H1 → H1 be a nonexpansive mapping. For any x1 ∈ H1,
define

yn =
(
(1− λ)I − λV

)(
xn − γL∗(I − T)Lxn

)
,

xn+1 = αn f (xn) + (1− αn)UNUN−1 . . . U1yn, ∀n ∈ N,
(70)

where λ ∈ (0, 1
2 ), γ ∈ (0, 1

‖L‖2 ), and Ui = (1− κi)I + κiSi for κi ∈ (0, 1), i = 1, . . . , N. Suppose that the

assumptions (A3)–(A6) hold, ΓV,S,T 6= ∅, and the sequence {αn} ⊂ (0, 1) satisfies the following conditions:

(i) limn→∞ αn = 0;
(ii) ∑∞

n=1 αn = ∞ and ∑∞
n=1 |αn − αn−1| < ∞.

Then, {yn} and {xn} both converge strongly to x̄ ∈ ΓV,S,T , where x̄ = PΓV,S,T f (x̄).

Proof. We get the above result by setting A := I −V and B := 0 into Algorithm (36).

6. Numerical Experiments

In this section, we will consider the numerical experiments of Theorems 1 and 2.

Example 1. Let H1 = R2 and H2 = R3 be equipped with the Euclidean norm. Let x̃ :=

(
3
−2

)
and

x̂ :=

(
1
−4

)
be two fixed vectors in H1. We consider the operators PC1 and PC2 , where C1 and C2 are the

following nonempty convex subsets of H1:

C1 :=
{

u ∈ H1 : 〈x̃, u〉 ≤ 6
}

,

C2 :=
{

u ∈ H1 : 〈x̂, u〉 ≤ −1
}

.

Now, we notice that F(PC1) ∩ F(PC2) = C1 ∩ C2.

Next, for each x :=

(
x1

x2

)
∈ H1, we will consider the following two norms:

‖x‖1 = |x1|+ |x2| and ‖x‖∞ = max
{
|x1|, |x2|

}
.

For a function g : H1 → R, which is defined by

g(x) = ‖x‖1, ∀x ∈ H1.

We know that g is a convex function and its subdifferential operator is

∂g(x) =
{

z ∈ H1 : 〈x, z〉 = ‖x‖1, ‖z‖∞ ≤ 1
}

, ∀x ∈ H1.

Furthermore, since g is a convex function, we know that ∂g(·) is a maximal monotone operator. Moreover,
for each λ > 0, we have

J∂g
λ (x) =

{(
u1

u2

)
∈ H1 : ui = xi −

(
min{|xi|, λ}

)
sgn(xi), for i = 1, 2

}
,

where sgn(·) stands for the signum function.
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On the other hand, we let x̄ :=

(
4
3

)
∈ H1 and ȳ :=

 2
1
−1

 ∈ H2 be other fixed vectors. We consider

1-ism operators PQ1 , where Q1 is the following convex subset of H1:

Q1 :=
{

u ∈ H1 : 〈x̄, u〉 ≤ −7
}

.

Furthermore, we consider a nonexpansive single value mapping on H2, PQ2 , where Q2 are the following convex
subset of H2:

Q2 :=
{

v ∈ H2 : ‖ȳ− v‖ ≤ 2
}

.

We also notice that, since Q2 is a nonempty set, so we have F(PQ2) = Q2.

Now, let us consider a 3× 2 matrix L :=

1 1
2

1
2

1
3

1
3

1
4

. We can check that L : H1 → H2 with ‖L‖ = 1.3330.

Under the above settings, we will discuss some numerical experiments of the constructed Algorithm (18).
In fact, in this suitation, we are considering that Algorithm (18) converges to a point x∗ ∈ H1 such that

x∗ ∈ (C1 ∩ C2) ∩ (PQ1 + ∂g)−10∩ L−1(Q2). (71)

Notice that the solution set of problem (71) is

{(
x

3x−1
4

)
∈ H1 : 1 ≤ x ≤ 2.5358

}
. We consider the

experiments by using stopping criterion by
‖xn+1 − xn‖

max{1, ‖xn‖}
≤ 1.0e−04.

We first consider Algorithm (18) with five cases of the stepsize parameters αn and λn, with the initial

vectors

(
0
0

)
,

(
1
−1

)
,

(
−1
1

)
and

(
10
−10

)
in H1. The results are showed in the following Table 1, with fixed

values of γn = 0.5
‖L‖2 and κ1 = κ2 = 0.5. From Table 1, we see that, for each initial point, the case of stepsize

parameters αn = 0.1, λn = 0.9 shows the better convergence rate than the other cases.
Next, in Table 2, we set the stepsize parameters αn = 0.1, λn = 0.9 and consider different three cases of γn

that are γn = 0.1
‖L‖2 , 0.5

‖L‖2 , 0.9
‖L‖2 . From the presented result in Table 2, we may suggest that the larger stepsize of

parameter γn should provide faster convergence.

Table 1. Numerical experiments for the different stepsize parameters of αn and λn to Algorithm (18)
with some initial points.

Case → αn = 0.5, λn = 0.5 αn = 0.1, λn = 0.1 αn = 0.1, λn = 0.9 αn = 0.9, λn = 0.1 αn = 0.9, λn = 0.9

#Initial Point ↓ Iters Sol Iters Sol Iters Sol Iters Sol Iters Sol

(0, 0)> 206
(

0.9961
0.4985

)
353

(
0.9916
0.4976

)
95

(
0.9985
0.4993

)
1,645

(
0.9277
0.4793

)
566

(
0.9862
0.4935

)
(1,−1)> 193

(
0.9961
0.4984

)
297

(
0.9916
0.4976

)
94

(
0.9986
0.4993

)
1,164

(
0.9277
0.4793

)
555

(
0.9862
0.4935

)
(−1, 1)> 207

(
0.9961
0.4985

)
351

(
0.9916
0.4976

)
96

(
0.9986
0.4993

)
1,647

(
0.9277
0.4793

)
573

(
0.9862
0.4935

)
(10,−10)> 31

(
1.7922
1.0935

)
64

(
1.8762
1.1544

)
9

(
1.5947
0.9460

)
382

(
1.8824
1.1348

)
95

(
1.6352
0.9741

)
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Table 2. Influence of the stepsize parameter γn of Algorithm (18) for different initial points.

Case → γn = 0.1
‖L‖2 γn = 0.5

‖L‖2 γn = 0.9
‖L‖2

#Initial Point ↓ Iters Sol Iters Sol Iters Sol

(0, 0)> 98
(

0.9986
0.4993

)
95

(
0.9985
0.4993

)
94

(
0.9986
0.4993

)
(1,−1)> 95

(
0.9986
0.4993

)
94

(
0.9986
0.4993

)
94

(
0.9986
0.4993

)
(−1, 1)> 99

(
0.9986
0.4994

)
96

(
0.9986
0.4993

)
94

(
0.9986
0.4993

)
(10,−10)> 9

(
1.5721
0.9291

)
9

(
1.5947
0.9460

)
9

(
1.3762
0.7821

)

Example 2. Let H1 = R2 and H2 = R3. We consider some operators and function as in Example 1 that are

PC1 , PQ1 , PQ2 , L and g. Furthermore, we consider a contraction mapping f :=

[
1

10 0
0 1

20

]
.

This means, in this suitation, we are considering the problem

C1 ∩ (PQ1 + ∂g)−10∩ L−1(Q2). (72)

We notice that the solution set of problem (72) is

{(
x

3x−1
4

)
∈ H1 : 1

3 ≤ x ≤ 2.5358

}
.

In Table 3, we compare the iteration number of Algorithm (14) and Algorithm (36), under the different
initial points. We use αn = 0.1, λn = λ = 0.9 and γn = γ = 0.9

‖L‖2 in both experiments. From Table 3, one may
see that Algorithm (36) shows a faster convergence than Algorithm (14).

Table 3. Numerical comparison between Algorithm (14) and Algorithm (36) for different initial points.

Case → Algorithm (14) Algorithm (36)

#Initial Point ↓ Iters Sol Iters Sol

(0, 0)> 15
(

0.4045
0.0689

)
15

(
0.4013
0.0747

)
(1,−1)> 15

(
0.4045
0.0689

)
15

(
0.4014
0.0747

)
(−1, 1)> 15

(
0.4045
0.0689

)
14

(
0.4013
0.0747

)
(−1,−1)> 16

(
0.4045
0.0689

)
16

(
0.4013
0.0747

)
(1, 1)> 26

(
0.4047
0.0690

)
25

(
0.4015
0.0748

)
(10,−10)> 26

(
0.4047
0.0690

)
26

(
0.4015
0.0748

)
(−10, 10)> 29

(
0.4047
0.0690

)
25

(
0.4015
0.0748

)
(−10,−10)> 34

(
0.4047
0.0690

)
16

(
0.4013
0.0747

)
(10, 10)> 34

(
0.4047
0.0690

)
33

(
0.4015
0.0748

)
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7. Conclusions

In this work, we focus on the problem of finding a common solution of a class of a split feasibility
problem and the common fixed points of nonexpansive mappings, namely problem (15), which is
a generalization of the problems (8) and (11). By providing the suitable control conditions to the
process, in Theorem 1, we can guarantee that the proposed algorithm converges weakly to a solution.
Furthermore, the strong convergence theorem of the proposed algorithm (Theorem 2) is also discussed.
Some important applications and numerical experiments of the considered problems are also discussed.
We point out that the main motivation of the introduced algorithm in this work aims to avoid the
complexity of computation of the resolvent operator when we are dealing with the problems that are
occurring in the form of the sum of two maximal monotone operators.
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