
mathematics

Article

Directed Strongly Regular Cayley Graphs over
Metacyclic Groups of Order 4n

Tao Cheng 1,†, Lihua Feng 2,†,* and Weijun Liu 2,†

1 School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China;
taocheng@sdnu.edu.cn

2 School of Mathematics and Statistics, Central South University New Campus, Changsha 410083, China;
wjliu@csu.edu.cn

* Correspondence: fenglh@csu.edu.cn
† These authors contributed equally to this work.

Received: 15 September 2019; Accepted: 22 October 2019; Published: 24 October 2019
����������
�������

Abstract: We construct several new families of directed strongly regular Cayley graphs (DSRCGs)
over the metacyclic group M4n = 〈a, b | an = b4 = 1, b−1ab = a−1〉, some of which generalize those
earlier constructions. For a prime p and a positive integer α > 1, for some cases, we characterize the
DSRCGs over M4pα .
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1. Introduction

The directed strongly regular graph [1] is one generalization of the undirected strongly regular
graphs (SRG), which is an interesting topic in algebraic graph theory.

A directed strongly regular graph (DSRG) with parameters (n, k, µ, λ, t) is a k-regular directed graph
on n vertices such that every vertex is on t 2-cycles (which may be considered as undirected edges), and
the number of paths of length two from a vertex u to a vertex v is λ if there is an arc from u to v, and it
is µ if there is no arc from u to v. There is also another definition of a DSRG regarding the adjacency
matrix. For a directed graph X of order n, its adjacency matrix is A = A(X) = (aij)n×n, where aij = 1
if vi and vj are adjacent, and aij = 0 otherwise. We use I = In to denote the n× n identity matrix;
J = Jn the all-ones matrix. Then X is a DSRG with parameters (n, k, µ, λ, t) if and only if JA = AJ = kJ
and A2 = tI + λA + µ(J − I − A). When t = k, the DSRG is just the undirected SRG. When t = 0,
the DSRG is the doubly regular tournaments [1]. Therefore we assumed that 0 < t < k in the rest of
the paper.

For the SRGs and DSRGs, they share many analog properties. In particular, their eigenvalues are
extremely similar. However, for a DSRG, its adjacency matrix is non-symmetric, this leads to more
difficulties and makes it an interesting subject. Observe that the DSRGs have several parameters, there
has been many constructions oriented to obtain several infinite families of DSRGs, also, some sporadic
examples are known in the literature. Although many scholars have studied the existence and
constructions of DSRGs for different parameters (one may refer to [2–5]), there are also plenty of
DSRGs whose existence cannot be determined. As such, the complete characterization of DSRGs is far
from being solved.

By using character theory of finite groups, He and Zhang [6] generalized the semidirect product
method in [2] and obtained a large family of directed strongly regular Cayley graph (DSRCG).
Technically, they constructed some DSRCGs over dihedral groups, which partially generalize the
earlier results in [5]. These results reveals that representation theory is a powerful tool in this subject.

Mathematics 2019, 7, 1011; doi:10.3390/math7111011 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/7/11/1011?type=check_update&version=1
http://dx.doi.org/10.3390/math7111011
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 1011 2 of 12

For more results regarding the interplay between algebraic graph theory and representation theory,
one may refer to [7–9] and the references therein.

The purpose of this paper is to construct several new infinite families of DSRGs by making use
of the representation theory. Borrowing ideas from [6], we consider the DSRCGs over the metacyclic
group M4n = 〈a, b | an = b4 = 1, b−1ab = a−1〉 of order 4n [10]. Let Cn = 〈a〉 be a cyclic multiplicative
group of order n. The metacyclic group M4n can be viewed as the semidirect product of Cn = 〈a〉 of
order n and C4 = 〈b〉 of order 4. As mentioned in [7], if n is odd, the metacyclic group M4n is the
dicyclic group T4n. Therefore it would be interesting to consider this group for various applications.

This paper is organized as follows. At first, we give some sufficient and necessary conditions
for the Cayley graph C(T4n, X ∪ Yb ∪ Xb2 ∪ Yb3) with X = Y and X ⊆ Y to be directed strongly
regular, and we construct several new classes of DSRCGs over metacyclic groups. Then, for prime p,
we characterize the DSRCGs C(T4pα , aX ∪ aYb ∪ aXb2 ∪ aYb3) when X = Y or X ⊆ Y.

2. Preliminaries

In this section, we present the fundamental concepts, we also present several lemmas which will
be used later. In the sequel, F = Q[ω] is the n-th cyclotomic field over the rationals, where ω is the
primitive n-th root of unity.

For a multiset M, we define the multiplicity function ∆M : M→ N, where ∆M(x) is the number
of times the element x appears in M. For two multisets M and N, the sum of M and N is denoted
by M ] N, then ∆M]N = ∆M + ∆N . For a positive integer n, the scalar multiplication of M by n
is defined as n ] M, then we have ∆n]M = n∆M. The difference of M and N is defined as M\N,
then we have ∆M\N(x) = max{∆M(x)− ∆N(x), 0} for any x ∈ M. For instance, if M = {2, 3, 3, 4, 4}
and N = {1, 1, 2, 2, 3}, then we have M ] N = {1, 1, 2, 2, 2, 3, 3, 4, 4}, 2]M = {2, 2, 3, 3, 3, 3, 4, 4, 4, 4},
and M\N = {3, 4, 4}.

For a finite group G with the identity element e (we sometimes use 1 if there is no confusion),
and a non-empty subset S of G, we denote by S(−1) the set {s−1 | s ∈ S}. Assume now that e /∈ S,
then the graph Γ = C(G, S) is called the directed Cayley graph over G with respect to S, if V(Γ) = G and
x → y (means there is an arc from x to y) if and only if yx−1 ∈ S for any x, y ∈ G.

Let G be a group and C be the complex field. We denote the group algebra of G over C by CG,
and we denote the element of CG by X for any multisubset X of G. Thus we can write X as

X = ∑
x∈X

∆X(x)x.

By using the group algebra, we have

Lemma 1 ([1]). A Cayley graph C(G, S) of group G with the multiset S ⊆ G is a DSRG with parameters
(n, k, µ, λ, t) if and only if |G| = n, |S| = k and

S2
= te + λS + µ(G− e− S).

The following relations will be frequently used in the context.

Lemma 2. For the metacyclic group M4n = 〈a, b | an = b4 = 1, b−1ab = a−1〉, we have

(i) akb = ba−k; akb2 = b2ak; akb3 = b3a−k;
(ii) (akb)−1 = akb3; (akb2)−1 = a−kb2.

Proof. By relations an = b4 = 1 and b−1ab = a−1, the results follow immediately.
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2.1. Fourier Transformation on Zn

The following statement and notations are coincided with [6,11]. Let M, N be the multisubsets of
Zn and k ∈ Zn. We denote kM = {km | m ∈ M}, k + M = {k + m | m ∈ M}, and k−M = {k−m |
m ∈ M}. The sum of multisubsets M and N is M + N = {m + n | m ∈ M, n ∈ N}, and the multiplicity
function of M + N is

∆M+N(c) = ∑
m+n=c

∆M (m)∆N (n) ,

for any c ∈ Zn. And let
xM =

⊎
m∈M

∆M(m)⊕ {xm} .

Then Cn = xZn and xM is a multisubset of Cn.
Let Z∗n be the multiplicative group of the units in the ring Zn. Then Z∗n has an action on Zn by

multiplication, and hence Zn is the union of some Z∗n-orbits. Each Z∗n-orbit consists of all elements of a
given order in the additive group Zn. We denote the Z∗n-orbit containing all elements of order r by Or,
where r is a positive divisor of n. Thus

Or =

{
z | z ∈ Zn,

n
(n, z)

= r
}

=
{

c
n
r
| 1 6 c 6 r, c ∈ Z∗n

}
,

and |Or| = ϕ(r).
We denote all functions f : Zn → F mapping from Zn to the field F by FZn . By defining the

multiplication point-wise, the F-algebra obtained from FZn will be denoted by
(
FZn , ·

)
. And the

F-algebra obtained from FZn by defining the multiplication as the convolution will be denoted by(
FZn , ∗

)
, where the convolution is defined by:

( f ∗ g)(z) = ∑
i∈Zn

f (i)g(z− i), f , g ∈ FZn . (1)

The Fourier transformation, as an isomorphsim between the F-algebra
(
FZn , ·

)
and

(
FZn , ∗

)
,

is defined as
F :

(
FZn , ∗

)
→
(
FZn , ·

)
, (F f )(z) = ∑

i∈Zn

f (i)ωiz.

For any multisubsets M and N of Zn, we have

F∆(−M) = F∆M, F∆M+N = F (∆M ∗ ∆N) = (F∆M) (F∆N) . (2)

Then, for rZn = {0, r, 2r, . . . , n− r}, where r is a positive divisor of n, we have

F∆rZn =
n
r

∆ n
r
Zn, F∆Zn = n∆0, F∆0 = ∆Zn = 1.

The following lemmas will be used in the sequel.

Lemma 3 ([11]). Let f : Zn → F be a function and Im( f ) ⊆ Q. Then we have Im(F f ) ⊆ Q if and only if
f = ∑r|n αr∆Or for some αr ∈ Q.

From the Ramanujan’s sums, we have

(F∆Or ) (z) = µ

(
r

(r, z)

)
ϕ(r)

ϕ
(

r
(r,z)

) ∈ Z. (3)
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Let v be a positive divisor of n. Then we can define a homomorphism

ψv : Zn → Zv, i 7→ i (modv) + vZn (4)

with Kerψv = vZn. Then it follows that

Lemma 4 ([6]). If F(z) is a complex variables function, then we have

F
((
F∆(v)

ψv(H)

)
(z)
)
= 0, ∀z ∈ Zv ⇔ F ((F∆H) (z)) = 0, ∀z ∈ n

v
Zn.

2.2. Some Lemmas

Throughout this section, we always assume that p is a prime and α > 1 is an integer.
Let νp(z) be the maximum power of the prime p that divides z. Note that the set of divisors of pα

is
{

1, p, p2, · · · , pα−1, pα
}

, so all the Z∗pα -orbits are O1 = Op0 ,Op,Op2 , · · · ,Opα , where

Opz =
{

cpα−z | 1 6 c 6 pz, (p, c) = 1
}
=
{

i | i ∈ Zpα , νp(i) = α− z
}

.

We denote Opi by Oi for simplicity hereafter. In particular, O1 =
{

i | i ∈ Zpα , νp(i) = α
}
= {0}.

Note that pα−βZpα is a subgroup of Zpα and

pα−βZpα =
β⋃

i=0

Opi =
β⋃

i=0

Oi,

for each 0 6 β 6 α.
In this section, we assume that X is a subset of Zpα such that 0 /∈ X and(

F∆X](−X)

)
(z) = (F∆X) (z) + (F∆X) (z) ∈ {0,−m}, (5)

for any 0 6= z ∈ Zpα , where m is a positive integer. We also assume X 6= −X. Then we have

Lemma 5 ([6]). Let X be a subset of Zpα such that(
F∆X](−X)

)
(z) = (F∆X) (z) + (F∆X) (z) ∈ {0,−m},

where m is a positive integer. Then there exists some integers 1 6 r1 < r2 < · · · < rs 6 α and 1 6 rs+1 <

rs+2 < · · · < rt 6 α satisfy

X ] (−X) = (2⊕Or1) ] (2⊕Or2) ] · · · ] (2⊕Ors) ]
(
Ors+1 ∪Ors+2 ∪ · · · ∪Ort

)
.

Let I1 = {r1, r2, · · · , rs} and I2 = {rs+1, rs+2, · · · , rt}. Then I2 6= ∅ as X 6= −X. Thus |I1| = s
and |I2| = t− s > 1.

Lemma 6 ([6]). Let I1 and I2 be the sets defined above. Then I1 and I2 form a partition of {β + 1, β +

2, · · · , α} for some integer 0 ≤ β ≤ α− 1. Hence

X ] (−X) = (Or1 ∪Or2 ∪ · · · ∪Ors) ]
(
Zpα\pα−βZpα

)
.

Lemma 7 ([6]). Let X be a subset of Zpα \ {0} satisfying the condition (5), and I1, I2 be the sets defined above.
If p is an odd prime, then I1 = ∅ and

X ] (−X) = Zpα\pα−βZpα .
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Lemma 8 ([6]). Let X be a subset of Z2α \ {0} satisfies the condition (5), and I1, I2 be the sets defined above.
If I1 6= ∅, then I1 = {β + 1}, I2 = {β + 1, β + 2, · · · , α} and

X ] (−X) = Oβ+1 ] (Z2α\2α−βZpα).

Lemma 9 ([6]). Let X be a subset of Zpα and 0 < γ 6 α be a positive integer. If X satisfies (F∆X) (z) = 0 for
all z /∈ pγZpα , then X = T′ + pα−γZpα for some subset T′ of {0, 1, · · · , pα−γ − 1} .

3. The DSRCGs over M4n

In this section, we will provide several constructions of DSRCGs over M4n.

Let Λ1 = aX + a(−X) = aX](−X) and Λ2 = aY a(−Y) − aX a(−X).
We now give a criterion for the Cayley graph C(M4n, aX ∪ aYb ∪ aXb2 ∪ aYb3) to be directed

strongly regular.

Lemma 10. The Cayley graph C(M4n, aX ∪ aYb ∪ aXb2 ∪ aYb3) is a DSRCG with parameters (4n, 2(|X|+
|Y|), µ, λ, t) if and only if

(i) t = µ;
(ii) 2aYΛ1 = (λ− µ)aY + µCn;

(iii) 2(aXΛ1 + Λ2) = aX2
+ aY a(−Y) = (λ− µ)aX + µCn.

Proof. By Lemma 2, we have(
aX + aYb + aXb2 + aYb3

)2

= aX2
+ aX aYb + aX2

b2 + aX aYb3 + aY a(−X)b + aY a(−Y)b2

+aY a(−X)b3 + aY a(−Y) + aX2
b2 + aX aYb3 + aX2

+ aX aYb +

aY a(−X)b3 + aY a(−Y) + aY a(−X)b + aY a(−Y)b2

= 2
(

aX2
+ aY a(−Y)

)
+ 2

(
aX aY + aY a(−X)

)
b

+2
(

aX2
+ aY a(−Y)

)
b2 + 2

(
aX aY + aY a(−X)

)
b3

= 2(aXΛ1 + Λ2) + 2aYΛ1b + 2(aXΛ1 + Λ2)b2 + 2aYΛ1b3.

Thus, from Lemma 1, the Cayley graph C(M4n, aX ∪ aYb ∪ aXb2 ∪ aYb3) is a DSRCG with
parameters (4n, 2(|X|+ |Y|), µ, λ, t) if and only if(

aX + aYb + aXb2 + aYb3
)2

= te + λ
(

aX + aYb + aXb2 + aYb3
)
+ µ

(
Cn + Cnb + Cnb2 + Cnb3

)
−µe− µ

(
aX + aYb + aXb2 + aYb3

)
=

(
(t− µ)e + (λ− µ)aX + µCn

)
+
(
(λ− µ)aY + µCn

)
b

+
(
(λ− µ)aX + µCn

)
b2 +

(
(λ− µ)aY + µCn

)
b3.

Comparing the above two equations, we complete the proof.

Setting X = Y in Lemma 10, we have
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Lemma 11. The Cayley graph C(M4n, aX ∪ aXb ∪ aXb2 ∪ aXb3) is a DSRCG with parameters
(4n, 4|X|, µ, λ, t) if and only if t = µ and

2aXΛ1 = (λ− µ)aX + µCn.

We now define

r(z) = (F∆X) (z) = ∑
i∈X

ωiz and t(z) = (F∆Y) (z) = ∑
i∈Y

ωiz.

Then r(z) + r(z) =
(
F∆X](−X)

)
(z). The following lemma gives a characterization of the Cayley

graph C(M4n, aX ∪ aYb ∪ aXb2 ∪ aYb3) to be directed strongly regular by using r(z) and t(z).

Lemma 12. The Cayley graph C(M4n, aX ∪ aYb ∪ aXb2 ∪ aYb3) is a DSRCG with parameters (4n, 2(|X|+
|Y|), µ, λ, t) if and only if

(i) t = µ;
(ii) t(r + r) = µn

2 ∆0 +
λ−µ

2 t;

(iii) r2 + |t|2 = µn
2 ∆0 +

λ−µ
2 r.

Proof. By Equation (1), we have

2aYΛ1 = 2aYaX](−X)

= 2 ∑
j∈Zn

∆Y(j)xj · ∑
k∈Zn

∆X](−X)(k)xk

= 2 ∑
j,k∈Zn

∆Y(j)xj · ∆X](−X)(k)xj+k

= 2 ∑
j∈Zn

∆Y(j)xj · ∆X](−X)(i− j)xi

= 2(∆Y ∗ ∆X](−X))(i)xi.

and

(λ− µ)aY + µCn = ∑
i∈Zn

(λ− µ)∆Y(i)xi + ∑
i∈Zn

µ∆Zn(i)xi

= ∑
i∈Zn

((λ− µ)∆Y(i) + µ∆Zn(i))xi.

From the two equations above and (ii) of Lemma 10, we have(
∆Y ∗ ∆X](−X)

)
(i) =

λ− µ

2
∆Y(i) +

µ

2
∆Zn(i),

for i ∈ Zn. By Equation (2), we have

F
(

∆Y ∗ ∆X](−X)

)
(i) = F (∆Y)F (∆X](−X))(i) = t(r + r)(i),

and

F (λ− µ

2
∆Y)(i) +F (

µ

2
∆Zn)(i) =

λ− µ

2
F∆Y(i) +

µ

2
F∆Zn(i) = (

λ− µ

2
t +

µ

2
n∆0)(i).
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Then by the two equations above, we have

t(r + r) =
µn
2

∆0 +
λ− µ

2
t.

Using the same method, by (iii) of Lemma 10, we have

(∆X ∗ ∆X)
2 (i) + (∆Y ∗ ∆−Y) (i) =

λ− µ

2
∆X(i) +

µ

2
∆Zn(i),

for i ∈ Zn. Moveover, by applying the Fourier transformation, we have

r2 + |t|2 =
µn
2

∆0 +
λ− µ

2
r.

When X = Y, we have the following lemma.

Lemma 13. The Cayley graph C(M4n, aX ∪ aXb ∪ aXb2 ∪ aXb3) is a DSRCG with parameters
(4n, 4|X|, µ, λ, t) if and only if t = µ and

r(r + r) =
µn
2

∆0 +
λ− µ

2
r. (6)

Let q def
= r + r = F∆X](−X). Then we have

Lemma 14. The Cayley graph C(M4pα , aX ∪ aXb ∪ aXb2 ∪ aXb3) is a DSRCG with parameters
(4pα, 4|X|, µ, λ, t) then

(1) The function q satisfies

q(z) = (r + r)(z) =
(
F∆X](−X)

)
(z) ∈ {0,

λ− µ

2
},

for any 0 6= z ∈ Zpα .
(2) There are some integers r1, r2, · · · , rs with β + 1 6 r1 < r2 < · · · < rs 6 α satisfy

X ] (−X) = (Or1 ∪Or2 ∪ · · · ∪Ors) ]
(
Zpα\pα−βZpα

)
,

where 0 6 β 6 α− 1.
(3) If p is an odd prime, then

X ] (−X) = Zpα\pα−βZpα .

(4) If p = 2 and X ∩ (−X) 6= ∅, then

X ] (−X) = Oβ+1 ] (Z2α\2α−βZpα).

Proof. Taking conjugate on Equation (6), we have

r(r + r) =
µpα

2
∆0 +

λ− µ

2
r. (7)

Then the sum of Equations (6) and (7) leads to

(r + r)2 = µpα∆0 +
λ− µ

2
(r + r).
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Thus we have

(r + r)(z) =

{
2|X|, z = 0;
0 or λ−µ

2 , z 6= 0.

By Lemmas 6, 7 and 8, we can prove Equations (2), (3) and (4) respectively.

Next we will present several classes of DSRCGs when X = Y or X ⊂ Y from the above results.
In the remainder of this section, v is always assumed to be a positive divisor of n and l = n

v .

Theorem 1. Let T be a subset of {1, · · · , v− 1} ⊆ Zn, where v is an odd positive divisor of n, and X be a
subset of Zn satisfy the following conditions:

(i) X = T + vZn;
(ii) X ∪ (−X) = Zn\vZn.

Then the Cayley graph C(T4n, aX ∪ aXb ∪ aXb2 ∪ aXb3) is a DSRCG with parameters (4n, 2(n− l), n−
l, n− 3l, n− l).

Proof. From (ii), note that |X| = | − X| = n−l
2 . Thus, we have 2aXΛ1 = 2aXaX](−X) = 2aXaZn\vZn =

2aX(aZn − avZn) = 2aX(Cn − avZn) = −2laX + (n− l)Cn. Therefore, by Lemma 11, we get the desired
result.

Example 1. For n = 6, we have T24 = {a, b | a6 = b4 = 1, b−1ab = a−1}. Let T = {1} and v = 3. Then we
have X = T + 3Z6 = {1, 4} and X ∪ (−X) = {1, 4, 2, 5} = Z6 \ 3Z6, where 3Z6 = {0, 3}. Thus X satisfies
the conditions (i) and (ii) of the Theorem 1. So we have the Cayley graph C(T24, aX ∪ aXb ∪ aXb2 ∪ aXb3) is a
DSRCG with parameters (24, 8, 4, 0, 4), where X = {1, 4}.

Theorem 2. Let T be a subset of {1, · · · , v− 1} ⊆ Zn, where v > 2 is an even positive divisor of n. The subset
X ⊆ Zn satisfies the following conditions:

(i) X = T + vZn;
(ii) X ∪ (−X) = (Zn \ vZn) ]

( v
2 + vZn

)
;

(iii) X ∪
( v

2 + X
)
= Zn.

Then the Cayley graph Γ = C(M4n, aX ∪ aXb ∪ aXb2 ∪ aXb3) is a DSRCG with parameters (4n, 2n, n +

2l, n− 2l, n + 2l).

Proof. By (ii) and (iii), we have |X| = n
2 and Λ1 = Cn − xvZn + x

v
2 +vZn . Therefore, 2aX∆1 = −2laX +

nCn + 2aXa
v
2 +vZn = −2laX + nCn + 2la

v
2 +X = −2laX + nCn + 2lCn − 2laX = (n + 2l)Cn − 4laX.

The result follows from Lemma 11 directly.

Example 2. For n = 12, we have T48 = {a, b | a12 = b4 = 1, b−1ab = a−1}. Let T = {1, 2} and v = 4.
Then we have X = T + 4Z12 = {1, 2, 5, 6, 9, 10}. Thus X ∪ (−X) = {1, 2, 5, 6, 9, 10, 2, 3, 6, 7, 10, 11} =

(Z12 \ 4Z12) ] (2 + 3Z12), where Z12 \ 4Z12 = {1, 2, 3, 5, 6, 7, 9, 10, 11}, 4Z12 = {2, 6, 10}, and X ∪ (2 +

X) = Z12. The set X satisfies the conditions (i) (ii) and (iii) of Theorem 2. So we have the Cayley graph
C(T48, aX ∪ aXb ∪ aXb2 ∪ aXb3) is a DSRCG with parameters (48, 24, 18, 6, 18), where X = {1, 2, 5, 6, 9, 10}.

Theorem 3. Let T be a subset of {0, 1, · · · , v− 1} ⊆ Zn, where v is an odd positive divisor of n, with 0 ∈ T.
The two subsets X, Y ⊆ Zn satisfy the following conditions:

(i) Y = T + vZn = X ∪ vZn;
(ii) Y ∪ (−Y) = Zn ] vZn.

Then the Cayley graph Γ = C(T4n, aX ∪ aYb ∪ aXb2 ∪ aYb3) is a DSRCG with parameters (4n, 2n, n +

l, n− l, n + l).
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Proof. Notice that |X| = |Y| − l = n−l
2 , Λ1 = Cn − avZn and Λ2 = avZn Λ1 + lavZn = lCn. Therefore,

2aYΛ1 = −2laY + (n + l)Cn and 2(aXΛ1 + Λ2) = −2laX + (n + l)Cn. Thus the result follows from
Lemma 10 directly.

Example 3. For n = 6, we have T24 = {a, b | a6 = b4 = 1, b−1ab = a−1}. Let T = {0, 1} and v = 3. Then
we have Y = T + 3Z6 = {0, 1, 3, 4} and X = {1, 4}. Thus we have Y ∪ (−Y) = {0, 1, 3, 4, 0, 5, 3, 2} =

Z6 ] 3Z6, where 3Z6 = {0, 3}. Thus the set X satisfies the conditions (i) and (ii) of Theorem 3. So we have the
Cayley graph C(T24, aX ∪ aYb∪ aXb2 ∪ aYb3)) is a DSRCG with parameters (24, 12, 8, 4, 8), where X = {1, 4}
and Y = {0, 1, 3, 4}.

4. Characterization of DSRG C(T4pα , aX ∪ aXb ∪ aXb2 ∪ aXb3)

Firstly, we characterize the DSRCGs C(T4pα , aX ∪ aXb ∪ aXb2 ∪ aXb3) with p > 2.

Theorem 4. Let p be an odd prime and α be a positive integer. Then the Cayley graph C(T4n, aX ∪ aXb∪ aXb2 ∪
aXb3) is a DSRCG if and only if there is one β with 0 ≤ β ≤ α− 1 and a subset T ⊆

{
1, · · · , pα−β − 1

}
satisfying the following conditions:

(i) X = T + pα−βZpα ;
(ii) X ∪ (−X) = Zpα\pα−βZpα .

Proof. By Theorem 1, we have that C(T4pα , aX ∪ aXb ∪ aXb2 ∪ aXb3) satisfies conditions (i) and (ii) is
a DSRCG.

Conversely, suppose that the Cayley graph C(T4n, aX ∪ aXb ∪ aXb2 ∪ aXb3) is a DSRCG with
parameters (4n, k, µ, λ, t), where k = 4|X|. From (3) of Lemma 14, we have

X ] (−X) = Zpα\pα−βZpα ,

for some 0 ≤ β ≤ α− 1, proving (ii).
Therefore,

r(z) + r(z) = pα∆0(z)− pβ∆pβZpα
(z).

Thus Equation (6) becomes

pα∆0(z)r(z)− pβ∆pβZpα
(z)r(z) =

µ

2
n∆0(z) +

λ− µ

2
r(z).

This implies that
r(z) = 0, ∀z /∈ pβZpα .

By Lemma 9, we have X = T + pα−βZpα , where T is a subset of
{

1, · · · , pα−β − 1
}

, proving (i).

We now focus on the directed strongly regular Cayley graphs C(T2α+2 , aX ∪ aXb ∪ aXb2 ∪ aXb3).

Lemma 15. A DSRCG cannot be a Cayley graphs of the form C(T2α+2 , aX ∪ aXb ∪ aXb2 ∪ aXb3) with X ∩
(−X) = ∅.

Proof. Suppose X ∩ (−X) = ∅. By Lemma 14 (2), we have

X ] (−X) = Z2α\2α−βZ2α .

Similar to the proof of Theorem 4, there is β with 0 ≤ β ≤ α− 1 and a subset T ⊆ {1, · · · , 2α−β− 1}
such that X = T + 2α−βZ2α and X∪ (−X) = Z2α\2α−βZ2α . Thus we have that 2|X| = 2|H|2β = 2α− 2β.
Then 2|H| = 2α−β − 1, this is impossible.
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Theorem 5. The Cayley graphs C(T2α+2 , aX ∪ aXb ∪ aXb2 ∪ aXb3) is a DSRCG if and only if there exist one
β with 0 ≤ β ≤ α− 1 and a subset T ⊆ {1, · · · , 2α−β − 1} satisfying the following conditions:

(i) X = T + 2α−βZ2α ;
(ii) X ∪ (−X) = (Z2α\2α−βZ2α) ] (2α−β−1 + 2α−βZ2α);

(iii) X ∪ (2α−β−1 + X) = Z2α .

Proof. It follows from Theorem 2 that the Cayley graph C(T2α+2 , aX ∪ aXb ∪ aXb2 ∪ aXb3) satisfying
the conditions (i), (ii) and (iii) is a DSRCG.

Conversely, suppose that the Cayley graph C(T2α+2 , aX ∪ aXb ∪ aXb2 ∪ aXb3) is a DSRCG with
parameters (4n, k = 4|X|, µ, λ, t), then we have X ∩ (−X) 6= ∅ by Lemma 15. By Lemma 14 (4) and
Equation (3), we have

q(z) = (r + r)(z)
(
F∆Oβ+1

)
(z) + ∑

i=β+1

(
F∆Oi

)
(z) ∈ {0,

λ− µ

2
}

for some 0 ≤ β ≤ α− 1. Hence k = q(0) = 2α and q(2β) = −2β+1 = λ−µ
2 . Since k(k + (µ− λ)) =

t + (n− 1)µ and t = µ by Lemma 11, we have µ = 2α−2 + 2β. Since µ < k, we have β ≤ α− 1. Thus,
by Lemma 11 and Equation (6), we have

r
(
F∆Oβ+1 + 2α∆0 − 2β∆2βZ2α

)
= µ2α∆0 − 2β+1r. (8)

Since (F∆Oβ+1)(z) = 0, we have r(z) = (F∆X)(z) = 0 for z /∈ 2βZ2α . Thus, by Lemma 9, we have
X = T + 2α−βZ2α , where T ⊆ {1, · · · , 2α−β − 1}, proving (i). Thus we have

r(z) = (F∆X) (z) = 2β∆2βZ2α
(F∆T) .

So by Equation (8), we have, for z ∈ 2βZ2α,

(F∆H) (z)
(
(F∆T) (z) + (F∆T) (z)

)
= 2α−β

(
1 + 2α−β−1

)
∆0(z)− 2 (F∆T) (z). (9)

Let T′ = ψ2α−β(T) and ∆(
2α−β)

T′ = ∆̃T′ . Then T′ ⊆ Z2α−β . Thus, by Lemmas 4, 8 and Equation (9),
we have

T′ ]
(
−T′

)
=
(
Z2α−β ]O′1

)
\{0} =

(
Z2α−β ]

{
2α−β−1

})
\{0}.

Since ker ψ2α−β = 2α−βZpα , we have

T ] (−T) =
{

i + xi : 1 6 i 6 2α−β − 1
}
]
{

2α−β−1 + y
}

,

for x1, x2, · · · , x2α−β−1, y ∈ 2α−βZpα . So

X ∪ (−X) =
(

T + 2α−βZpα

)
]
(
−T + 2α−βZpα

)
=
(
Z2α\2α−βZ2α

)
]
(

2α−β−1 + 2α−βZ2α

)
,

proving (ii). By Lemma 11, we have

aZ2α = aX + x2α−β−1+X ,

then X ∪ (2α−β−1 + X) = Z2α , proving (iii).

5. Characterization of DSRCG C(T4pα , aX ∪ aY b∪ aX b2 ∪ aY b3) with X ⊆ Y

Throughout this section, p is assumed to be an odd prime. Let w = r− t. Then we have
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Lemma 16. Suppose the Cayley graph C(T4pα , aX ∪ aYb ∪ aXb2 ∪ aYb3) is a DSRCG with X ⊆ Y. Then
Im(w) ∈ R if and only if Y \X is the union of some Z∗pα -orbits in Zpα . Moreover, if C(T4pα , aX ∪ aYb∪ aXb2 ∪
aYb3) is a DSRCG with X ⊆ Y and Im(w) ∈ R, then Im(w) ∈ {0, λ−µ

2 } and Y\X = Or1 ∪Or1 ∪ · · · ∪Ors ,
for some 0 = r1 < r2 < · · · < rs 6 α.

Proof. Suppose the Cayley graph C(T4pα , aX ∪ aYb ∪ aXb2 ∪ aYb3) is a DSRG with X ⊆ Y. If Y \ X is a
union of some Z∗pα -orbits in Zpα , then Im(w) ∈ R clearly. If Im(w) ∈ R, by Lemma 12, we have

w2 =
λ− µ

2
w.

Thus we have the two eigenvalues 0, λ−µ
2 are two roots of the quadratic Equation x2 = λ−µ

2 x,
so we can get Im(w) ∈ {0, λ−µ

2 } ⊆ Q. Therefore, by Lemma 3, we have ∆X − ∆Y = ∑α
r=0 αr∆Or , for

some αr ∈ {0,−1} and α0 = −1. Thus we have Y\X = Or1 ∪Or1 ∪ · · · ∪Ors , for some 0 = r1 < r2 <

· · · < rs 6 α.

In the following theorem, we characterize certain DSRCG C(T4pα , aX ∪ aYb ∪ aXb2 ∪ aYb3) with
X ⊆ Y.

Theorem 6. Let X, Y be subsets of Zpα with X ⊆ Y and Y \ X is a union of some Z∗pα -orbits with Y \ X 6=
{0}. Then the Cayley graph C(T4pα , aX ∪ aYb ∪ aXb2 ∪ aYb3) is a DSRCG if and only if the following
conditions holds:

(i) Y = T + pβZpα = X ∪ pβZpα ,
(ii) Y ] (−Y) = Zpα ] pβZpα ,

where 0 < β < α and T is a subset of {0, 1, · · · , pβ − 1}.

Proof. By Construction 3, we have that the Cayley graph C(T4pα , aX ∪ aYb ∪ aXb2 ∪ aYb3) with
conditions (i) and (ii) is a DSRCG.

Conversely, suppose that the Cayley graph C(T4pα , aX ∪ aYb∪ aXb2 ∪ aYb3) is a DSRG with X ⊆ Y
and Y \ X is a union of some Z∗pα -orbits with Y \ X 6= {0}. By Lemma 16, we have Im(w) ∈ {0, λ−µ

2 }
and Y\X = Or1 ∪Or1 ∪ · · · ∪Ors , for some 0 = r1 < r2 < · · · < rs 6 α. Thus w = −∑s

i=1 F∆Oi .
We claim that {0 = r1, r2, · · · , rs} = {0, 1, · · · , s− 1}. To prove this claim, we first assume s > 1

since this claim holds for s = 1. In fact, if there is an integer u such that ru+1 > ru + 1 for some
1 ≤ u ≤ s− 1, by Equation (3), we have

w (pru) = −
u

∑
i=1

µ

(
pri

(pri , pru)

)
ϕ (pri )

ϕ
(

pri

(pri ,pru )

) = −
u

∑
i=1

ϕ (pri ) < 0,

but

w (prs) = −
s

∑
i=1

µ

(
pri

(pri , prs)

)
ϕ (pri )

ϕ
(

pri

(pri ,prs )

) = −
u

∑
i=1

ϕ (pri )

= −
s

∑
i=1

ϕ (pri ) < −
u

∑
i=1

ϕ (pri ) = w (pru) < 0,

a contradiction.
Thus r = t + w = t−

(
F∆pβZpα

)
= t− pα−β∆pα−βZpα

.
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By Lemma 12, we have

t2 + |t|2 − 2pα−βt∆pα−βZpα
= µ

2 pα∆0 +
λ−µ

2 t,(
t− pα−β∆pα−βZpα

)2
+ |t|2 = µ

2 pα∆0 +
λ−µ

2

(
t− pα−β∆pα−βZpα

)
.

The difference of these two equations gives

p2(α−β)∆pα−βZpα
=

λ− µ

2
pα−β∆pα−βZpα

.

Since Y \ X 6= {0}, then we have 0 < β < α. Thus we have λ−µ
2 = pα−β. Similar to the proof

about Case 2 of Theorem 7.2 in [6], we can get the conditions (i) and (ii).
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