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Abstract: As a generalization of several fuzzy tools, picture fuzzy sets (PFSs) hold a special ability
to perfectly portray inherent uncertain and vague decision preferences. The intention of this paper
is to present a Pearson’s picture fuzzy correlation-based model for multi-attribute decision-making
(MADM) analysis. To this end, we develop a new correlation coefficient for picture fuzzy sets, based
on which a Pearson’s picture fuzzy closeness index is introduced to simultaneously calculate the
relative proximity to the positive ideal point and the relative distance from the negative ideal point.
On the basis of the presented concepts, a Pearson’s correlation-based model is further presented to
address picture fuzzy MADM problems. Finally, an illustrative example is provided to examine the
usefulness and feasibility of the proposed methodology.

Keywords: picture fuzzy sets; multi-attribute decision-making; correlation-based closeness index;
Pearson’s correlation

1. Introduction

The process of multi-attribute decision-making (MADM) includes sorting the potential candidate
alternatives and seeking the best one according to the decision-makers’ subjective evaluation of the
attributes [1,2]. In the actual decision-making process, a complex and unpredictable environment
always leads to more complex and difficult subjective assessment, which makes it difficult to measure
or quantify alternatives accurately in the MADM process. Therefore, evaluation information based on
real number expressions may not accurately reflect the inherent uncertainty, vagueness, or fuzziness
of decision information. Thus, dealing with uncertainties to adapt to specific practical problems
and improve the scientificity of decision-making results is an essential issue of MADM tasks in
complex situations.

Rapoport et al. [3] pointed out that a crucial issue in the empirical measurement of membership
functions is whether the degree of fuzziness is invariant under different scaling procedures.
Smarandache [4] recently presented the neutrosophic set as a new stream to deal with uncertainty.
Yager [5] focused on the Pythagorean complement. Using this complement, Yager [5] introduced a
class of nonstandard Pythagorean fuzzy subsets whose membership grades are pairs (a, b) satisfying
the requirement a2 + b2

≤ 1. The theory of picture fuzzy sets (PFSs), initially introduced by Cuong
and Kreinovich [6], was created as a highly efficient tool that enables DMs to handle uncertainty
and ambiguity with ease. PFSs are characterized by the notion of degrees of membership, neutral
membership, and nonmembership that satisfy the condition that the sum of the three degrees is no
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more than 1. Compared with the classic fuzzy set [7], intuitionistic fuzzy set (IFS) [8], and Pythagorean
fuzzy set [5], the main feature of the PFS is that it is distinguished by the three different functions,
which makes it able to fully consider degrees of acceptance, rejection conflict, and refusal; thus, it can
adapt to a higher degree of uncertainty than others.

Owing to its superior ability to handle complex uncertainty, the theory of PFSs has been widely used
in the MADM area up to now. For example, Cuong [9] studied a series of features of PFSs and introduced
several kinds of distance measures between PFSs. Singh [10] presented a correlation coefficient for PFSs
and applied it in MADM problems. Garg [11] developed several picture fuzzy aggregation operations
and used them to solve MADM problems. Son [12] introduced some distance and similarity measures
between PFSs and used them to handle clustering analysis problems. Wei [13] explored the aggregation
methods for picture fuzzy sets. Wei [14] extended several Hamacher aggregation operators to PFS
situations and explored their usefulness in the MADM field. Wei et al. [15] constructed a projection
approach for PFSs and applied it to evaluate emerging technology companies. Wang et al. [16] gave
a normalized picture fuzzy projection and used it to choose a construction project. Zhang et al. [17]
studied a method based on PFSs for selecting offshore wind power stations. Jana et al. [18] established
several Dombi aggregation methods for picture fuzzy decision analysis. Ashraf et al. [19] used t-norm
and t-conorm to establish some picture fuzzy weighted geometric aggregation operators for MADM
problems. Zeng et al. [20] investigated a novel picture fuzzy divergence measure and used it to solve
a decision-making problem. More fuzzy MADM methods are be found in Liu and You [21] and
Zhang et al. [22].

From the previous survey, we can see that a fast-growing number of valuable approaches and
techniques have been presented to address picture fuzzy MADM problems. However, the majority of
them are too complex to be applied. Specifically speaking, current methods often possess numerous
parameters and symbols, which makes the application scope and adaptability of these methods unclear.
This will cause great difficulties for decision-makers to utilize these methods in practical applications.
To provide a simple and efficient method for MADM problems in a picture fuzzy environment, in this
study we present a Pearson’s correlation-based model for solving picture fuzzy MADM problems.
The correlation coefficient (also named Pearson’s correlation coefficient) is a scale-free measurement for
the linear association between two variables and is a popular measurement tool in the decision-making
area. In this study, we aimed to extend the classic correlation conception between real sets to the
picture fuzzy situation and propose a new Pearson-type measure named the picture fuzzy correlation
coefficient, whose prominent feature is that it lies in the interval [−1,1]. This is consistent with the
range of classical correlation coefficients in statistics, whereas the current picture fuzzy correlation
coefficients in the literature are bounded within unit interval [0,1]. Moreover, a novel concept of a
correlation-based picture fuzzy closeness index is proposed to simultaneously calculate the relative
proximity to the picture fuzzy positive ideal point and the relative distance from the picture fuzzy
negative ideal one. A new Pearson’s correlation-based model is then established to address MADM
problems with picture fuzzy evaluation. A practical example concerning selecting emerging technology
enterprises is given to verify the proposed methodology’s practicality and effectiveness.

The rest of this paper is presented as follows: In Section 2, some fundamental concepts are briefly
reviewed. A new correlation coefficient for PFSs and a corresponding weighted correlation coefficient
are presented in Section 3. Subsequently, a Pearson’s correlation-based model for MADM involving
PFS information is constructed in Section 4, and a numerical example concerning emerging technology
commercialization assessment is given to illustrate the effectiveness and feasibility of the proposed
method in Section 5. Finally, the conclusions and future work are summarized in Section 6.

2. Preliminaries

In this section, some essential concepts relating to PFSs are briefly reviewed; these will be used in
the rest of this work.
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Definition 1 [8]. An IFS A in X = {x1, x2, . . . , xn} is defined as

A =
{〈

x, (EA(x), NA(x))
〉
|x ∈ X

}
(1)

where the functions 0 ≤ EA(x) ≤ 1 and 0 ≤ NA(x) ≤ 1 are called the degrees of membership and nonmembership,
respectively, with the condition 0 ≤ EA(x)+NA(x) ≤ 1 .

Definition 2 [6]. A picture fuzzy set (PFS) P in X = {x1, x2, . . . , xn} is defined as

P =
{〈

x, (EP(x), IP(x), NP(x))
〉
|x ∈ X

}
(2)

where EP(x) ∈ [0, 1] is the degree of positive membership, IP(x) ∈ [0, 1] is the degree of neutral
membership, and NP(x) ∈ [0, 1] denotes the degree of negative membership, satisfying the condition
0 ≤ EP(x) + IP(x) + NP(x) ≤ 1, ∀ x ∈ X. The degree of refusal membership for each x ∈ X is given as
TP(x) = 1− (EP(x) + IP(x) + NP(x)).

Obviously, if IP(x) = 0, then the PFS reduces to Atanassov’s IFS, which indicates that the IFS is
a particular case of the PFS. For convenience of calculation, we use p = (E, I, N) to denote a picture
fuzzy value (PFV).

Definition 3. Let p1 = (E1, I1, N1) and p2 = (E2, I2, N2) be two picture fuzzy values (PFVs); some basic
operational rules are defined as follows [13]:

(1) α1 ⊕ α2 = (E1 + E2 − E1 ∗ E2, I1 ∗ I2, N1 ∗N2),

(2) λα1 = (1− (1− E1)
λ, (I1)

λ, (N1)
λ),λ ≥ 0.

3. Pearson’s Picture Fuzzy Correlation Coefficient

The Pearson’s correlation coefficient between exact sets can be used to measure the degree of
their correlation relationship and depicts whether they are positively or negatively correlated. Up
to now, the Pearson’s coefficient has been further applied to some fuzzy environments, such as by
Szmidt et al. [23], who proposed the correlation coefficient for intuitionistic fuzzy sets, and Chen [24],
who introduced the Pearson correlation coefficients between Pythagorean fuzzy and interval-valued
Pythagorean fuzzy sets. Meanwhile, Singh [10] proposed several correlation coefficients for PFSs.
However, the values of correlation coefficients for PFSs introduced by Singh lie in the interval [0,1],
which is inconsistent with traditional correlation coefficients in statistics that lie in range [−1,1]. That
is to say, the present correlation coefficient only considers positive correlations between PFSs and
neglects their negative situation, which reduces the theoretical support and rationality. The coefficient
can be defined as follows.

Definition 4 [10]. Let X be a nonempty fixed set, and let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two
PFSs in X. Then, the correlation coefficient between P and Q is defined as

K(P, Q) =

n∑
i=1

(
EPiEQi + IPi IQi + NPiNQi + TPiTQi

)
{

n∑
i=1

((
EPi

)2
+

(
IPi

)2
+

(
NPi

)2
+

(
TPi

)2
)} 1

2

·

{
n∑

i=1

((
EQi

)2
+

(
IQi

)2
+

(
NQi

)2
+

(
TQi

)2
)} 1

2

(3)

It is easy to verify that the correlation coefficient K(P, Q) lies in the interval [0,1]. Thus, it only
depicts positive relationships and not any negative relationships between PFSs. Analogous to the
former research, we shall develop a new concept of a picture fuzzy correlation coefficient to form a
foundation for the proposed Pearson’s picture fuzzy correlation-based approach. The main property of
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this proposed picture fuzzy coefficient is that it lies in the interval [−1,1], which is in accordance with
the features of classical methods in statistics. The other feature is that it considers all four elements
characterizing the PFSs, thus avoiding any loss of information.

Definition 5. Let X be a nonempty fixed set, and let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two PFSs
in X. Accordingly, the picture fuzzy correlation coefficient r(P, Q) between P and Q is defined as follows:

r(P, Q) =
1
4
(rE(P, Q) + rI(P, Q) + rN(P, Q) + rT(P, Q)) (4)

where

rE(P, Q) =

n∑
i=1

(Epi − Ep)(Eqi − Eq)√
n∑

i=1
(Epi − Ep)

2
√

n∑
i=1

(Eqi − Eq)
2

(5)

rI(P, Q) =

n∑
i=1

(Ipi − Ip)(Iqi − Iq)√
n∑

i=1
(Ipi − Ip)

2
√

n∑
i=1

(Iqi − Iq)
2

(6)

rN(P, Q) =

n∑
i=1

(Npi −Np)(Nqi −Nq)√
n∑

i=1
(Npi −Np)

2
√

n∑
i=1

(Nqi −Nq)
2

(7)

rT(P, Q) =

n∑
i=1

(Tpi − Tp)(Tqi − Tq)√
n∑

i=1
(Tpi − Tp)

2
√

n∑
i=1

(Tqi − Tq)
2

. (8)

Among Equations (5)–(8), the relevant means of the degrees of positive, neutral, negative,
and refusal membership in relation to pi and qi are computed as follows: Ep =

∑n
i=1 Epi /n,

Eq =
∑n

i=1 Eqi /n, Ip =
∑n

i=1 Ipi /n, Iq =
∑n

i=1 Iqi /n, Np =
∑n

i=1 Npi /n, Nq =
∑n

i=1 Nqi /n,
Tp =

∑n
i=1 Tpi /n, and Tq =

∑n
i=1 Tqi /n.

Theorem 1. The positive membership component rE(P, Q) in the picture fuzzy correlation coefficient r(P, Q)

has the following properties:

(i) rE(P, Q) = rE(Q, P);
(ii) rE(P, Q) = 1 if Epi = Eqi , ∀ i ∈ [1, n];
(iii)

∣∣∣rE(P, Q)
∣∣∣ ≤ 1.

Proof.

(i) This is straightforward.
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(ii) If pi = qi, ∀ i ∈ [1, n], it verifies that Ep = Eq; then we have

rE(P, Q) =

n∑
i=1

(Epi − Ep)(Eqi − Eq)√
n∑

i=1
(Epi − Ep)

2
√

n∑
i=1

(Eqi − Eq)
2
=

n∑
i=1

(Epi − Ep)
2

n∑
i=1

(Epi − Ep)
2
= 1.

(iii) Because 0 ≤ Epi , Eqi ≤ 1, ∀ i ∈ [1, n], it follows that 0 ≤ Ep, Eq ≤ 1, and therefore, we get

−1 ≤ Epi − Ep ≤ 1, −1 ≤ Eqi − Eq ≤ 1, (Epi − Ep)
2
≤ 1, and (Eqi − Eq)

2
≤ 1. Thus, we obtain

−n ≤
n∑

i=1
(Epi − Ep)(Eqi − Eq) ≤ n and

√
n∑

i=1
(Epi − Ep)

2
√

n∑
i=1

(Eqi − Eq)
2
≤
√

n ·
√

n = n. It is thus

obviously verified that −1 ≤ rE(P, Q) ≤ 1, which implies that
∣∣∣rE(P, Q)

∣∣∣ ≤ 1. �

Theorems 2–4 can be obtained by a similar analysis.

Theorem 2. The neutral membership component rI(P, Q) in the picture fuzzy correlation coefficient r(P, Q)

has the following properties:

(i) rI(P, Q) = rI(Q, P);
(ii) rI(P, Q) = 1 if Ipi = Iqi , ∀ i ∈ [1, n];
(iii)

∣∣∣rI(P, Q)
∣∣∣ ≤ 1.

Theorem 3. The negative membership component rN(P, Q) in the picture fuzzy correlation coefficient r(P, Q)

has the following properties:

(i) rN(P, Q) = rN(Q, P);
(ii) rN(P, Q) = 1 if Npi = Nqi , ∀ i ∈ [1, n];
(iii)

∣∣∣rN(P, Q)
∣∣∣ ≤ 1.

Theorem 4. The refusal membership component rT(P, Q) in the picture fuzzy correlation coefficient r(P, Q)

has the following properties:

(i) rT(P, Q) = rT(Q, P);
(ii) rT(P, Q) = 1 if Tpi = Tqi , ∀ i ∈ [1, n];
(iii)

∣∣∣rT(P, Q)
∣∣∣ ≤ 1.

On the basis of Theorems 1–4, it is easy to obtain Theorem 5.

Theorem 5. The picture fuzzy correlation coefficient r(P, Q) between P and Q has the following properties:

(i) r(P, Q) = r(Q, P);
(ii) r(P, Q) = 1 if pi = qi, ∀ i ∈ [1, n];
(iii)

∣∣∣r(P, Q)
∣∣∣ ≤ 1.

Proof.

(i) This is trivial.
(ii) If pi = qi, ∀ i ∈ [1, n], it holds that Epi = Eqi , Ipi = Iqi , Npi = Nqi , and Tpi = Tqi ; then we directly

obtain rE(P, Q) = 1, rI(P, Q) = 1, rT(P, Q) = 1, and rT(P, Q) = 1 according to Theorems 1–4.
Therefore, r(P, Q) = 1

4 (1 + 1 + 1 + 1) = 1.
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(iii) This is easy to verify based on the results of Theorems 1–4. �

Sometimes, different importance levels of the elements xi ∈ X shall be incorporated into the
calculation process of the picture fuzzy correlation coefficient in practical applications. In this regard,
we formulate the weighted fuzzy correlation coefficient, which is defined as follows.

Definition 6. Let X be a nonempty fixed set and wi the importance weight of xi, such that
n∑

i=1
wi = 1 and

wi ∈ [0, 1]. Accordingly, the weighted picture fuzzy correlation coefficient rw(P, Q) between P and Q is defined
as follows:

rw(P, Q) =
1
4
(rw

E
(P, Q) + rw

I
(P, Q) + rw

N
(P, Q) + rw

T (P, Q)), (9)

where

rw
E
(P, Q) =

n∑
i=1

wi(Epi − Ep)(Eqi − Eq)√
n∑

i=1
wi(Epi − Ep)

2
√

n∑
i=1

wi(Eqi − Eq)
2

(10)

rw
I
(P, Q) =

n∑
i=1

wi(Ipi − Ip)(Iqi − Iq)√
n∑

i=1
wi(Ipi − Ip)

2
√

n∑
i=1

wi(Iqi − Iq)
2

(11)

rw
N
(P, Q) =

n∑
i=1

wi(Npi −Np)(Nqi −Nq)√
n∑

i=1
wi(Npi −Np)

2
√

n∑
i=1

wi(Nqi −Nq)
2

(12)

rw
T
(P, Q) =

n∑
i=1

wi(Tpi − Tp)(Tqi − Tq)√
n∑

i=1
wi(Tpi − Tp)

2
√

n∑
i=1

wi(Tqi − Tq)
2

. (13)

Theorem 6. The weighted picture fuzzy correlation coefficient rw(P, Q) between P and Q has the following
important properties:

(i) rw(P, Q) = rw(Q, P);
(ii) rw(P, Q) = 1 if pi = qi, ∀ i ∈ [1, n];
(iii)

∣∣∣rw(P, Q)
∣∣∣ ≤ 1;

(iv) rw(P, Q) = r(P, Q) if wi = i/n, ∀ i ∈ [1, n].

Proof.

(i) This is straightforward.
(ii) If pi = qi, ∀ i ∈ [1, n], it follows that Ep = Eq, Ip = Iq, and Np = Nq. Then, it directly follows

that rw
E (P, Q) = 1, rw

I (P, Q) = 1, rw
N (P, Q) = 1, and rw

T (P, Q) = 1. Therefore, we have rw(P, Q) =
1
4 (1 + 1 + 1 + 1) = 1.

(iii) It is easy to prove that
∣∣∣∣rw

E (P, Q)
∣∣∣∣ ≤ 1,

∣∣∣∣rw
I (P, Q)

∣∣∣∣ ≤ 1,
∣∣∣∣rw

N (P, Q)
∣∣∣∣ ≤ 1, and

∣∣∣∣rw
T (P, Q)

∣∣∣∣ ≤ 1. Thus, it is

clearly verified that
∣∣∣rw

E
(P, Q)

∣∣∣ ≤ 1.
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(iv) The proof is trivial. �

4. The Pearson’s Correlation-Based Model for MADM Involving Picture Fuzzy Information

The technique for order preference by similarity to ideal solutions (TOPSIS) [25,26] is one of most
widely used decision-making methods; its main idea is to choose and determine the best alternative
based on the distances between potential candidate schemes and positive and negative ideal solutions.
At present, the TOPSIS approach has been broadly studied and extended to many kinds of areas and
uncertain environments [27–29]. Recently, instead of using distance measures, Chen [24] proposed
a correlation-based TOPSIS method for Pythagorean fuzzy MADM problems. Motivated by Chen’s
work [24], based on the developed concept of the (weighted) picture fuzzy correlation coefficient, in
this paper we provide a novel Pearson’s correlation-based TOPSIS method to handle uncertain MADM
problems in the picture fuzzy context. Moreover, a correlation-based picture fuzzy closeness index is
introduced to rank the potential alternatives.

Consider a MADM problem within the picture fuzzy environment. Let A = {A1, A2, . . . , Am}

denote the discrete set of candidate alternatives, and let S = {S1, S2, . . . , Sn} be a finite set of evaluative

attributes. Assume that the weight vector of the attributes is wT = (w1, w2, . . . , wn)
T, meeting

n∑
j=1

w j = 1

and w j ∈ [0, 1]. The evaluation of alternative Ai ∈ A related to the attribute S j ∈ S is represented by a
PFV p′i j = (E′i j, I′i j, N′i j) such that E′i j, I′i j, N′i j ∈ [0, 1] and 0 ≤ E′i j + I′i j + N′i j ≤ 1. Then, the degree
of refusal membership for each p′i j is calculated as π′i j = 1− (E′i j + I′i j + N′i j). Accordingly, a picture
fuzzy decision matrix can be formed as

R′ =
(
p′

i j

)
m×n

=


p′11 · · · p′1n

...
. . .

...
p′m1 · · · p′mn

. (14)

If all the attributes S j ∈ S ( j = 1, 2, . . . , n) belong to the same type, then there is no need to
normalize their values. However, benefit attributes (the larger the attribute assessment, the better) and
cost attributes (smaller attribute evaluations indicate higher preference) generally appear in MADM
problems. In such situations, we convert the cost attribute evaluations into benefit attribute values,
then the picture fuzzy decision matrix in Equation (14) can be transformed into the following formula:

R =
(
p

i j

)
m×n

=


p11 · · · p1n

...
. . .

...
pm1 · · · pmn

, (15)

where

pi j = (Ei j, Ii j, Ni j) =

{
p′i j, for benefit attribute S j
p′i j, for cos t attribute S j

, (16)

and p′i j is the complement of p′i j such that p′i j = (N′i j, I′i j, E′i j).
Furthermore, the PF characteristic pi for alternative Ai can be precisely represented as the

following vector:

pi =
{
pi1, pi2, . . . , pin

}
=

{
(Ei1, Ii1, Ni1), (Ei2, Ii2, Ni2), . . . , (Ein, Iin, Nin)

}
. (17)

On the basis of the abovementioned information, next we present a novel method based on
Pearson-like correlation for addressing picture fuzzy MADM problems. The decision procedure can be
summarized as follows.
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Step 1. Establish the decision matrix R =
(
p

i j

)
m×n

according to the decision-makers’ evaluation

information. Also, identify the weighting vector wT = (w1, w2, . . . , wn)
T with respect to the n attributes.

Step 2. Establish the picture fuzzy positive ideal decision p+ =
{
p+1 , p+2 , . . . , p+n

}
and picture fuzzy

negative ideal decision p− =
{
p−1 , p−2 , . . . , p−n

}
using Equations (17) and (18):

p+j = (E+
j , I+j , N+

j ) = (max
i

{
Ei j

}
, min

i

{
Ii j

}
, min

i

{
Ni j

}
), (18)

p−j = (E−j , I−j , N−j ) = (min
i

{
Ei j

}
, min

i

{
Ii j

}
, max

i

{
Ni j

}
). (19)

Moreover, the respective refusal degrees relative to p+j and p−j can be calculated as follows:

π+j = 1− (E+
j + I+j + N+

j ) and π−j = 1− (E−j + I−j + N−j ).
Step 3. Utilize Equation (9) to determine the picture fuzzy weighted correlation coefficients

rw(pi, p+) and rw(pi, p−) for each Ai ∈ A.
Step 4. Use Equation (20) to compute the picture fuzzy weighted correlation-based closeness

index CCw(pi) for all Ai ∈ A:

CCw(pi) =
1 + rw(pi, p+)

2 + rw(pi, p+) + rw(pi, p−)
. (20)

Step 5. Sort all the alternatives Ai(i = 1, 2, . . . , n) by descending CCw(pi) values. Obviously, the
alternative(s) with the greatest value CCw(pi) can be considered the best candidate alternative(s).

It is noted that the Equation (20) is originally introduced by Chen [24] to rank the alternatives
in Pythagorean fuzzy MADM problems, whereas in this paper it is extended by using the presented
picture fuzzy weighted correlation coefficients to solve MADM problems within picture fuzzy contexts.
Now we analyze the features of the picture fuzzy weighted correlation-based closeness index defined
in Equation (20). Generally, a positive rw(pi, p+) indicates that the picture fuzzy vectors pi and p+ are
positively correlated, whereas a negative rw(pi, p+) shows a negative correlation. Thus, the greater
rw(pi, p+) is and the smaller rw(pi, p−) is, the better the alternative Ai is. However, the alternative
Ai closest to p+ cannot yield the one that is farthest from p−. The proposed picture fuzzy weighted
correlation-based closeness index CCw(pi) in Equation (20) is useful for addressing this issue because it
can calculate the degree to which pi is simultaneously highly associated to p+ and far from p−. Moreover,
CCw(pi) satisfies the condition 0 ≤ CCw(pi) ≤ 1 as −1 ≤ rw(pi, p+) ≤ 1 and −1 ≤ rw(pi, p−) ≤ 1.

5. Numerical Example

In this section we provide a numerical example for assessing emerging technology
commercialization within the picture fuzzy environment to verify the applicability of the developed
approach. A MADM problem of selecting emerging technology enterprises is defined by five potential
alternatives Ai(i = 1, 2, . . . , 5) and six evaluative attributes [15]: (1) S1 = technical advancement; (2) S2

= development of science and technology; (3) S3 = industrialization infrastructure; (4) S4 = potential
market and market risk; (5) S5 = employment creation; and (6) S6 = financial conditions.

Step 1. To achieve their objective, the experts considered carefully the six evaluative attributes for
each alternative and presented the picture fuzzy decision matrix depicted in Table 1.

Table 1. The picture fuzzy decision matrix.

S1 S2 S3 S4 S5 S6

A1 (0.53,0.33,0.09) (0.89,0.08,0.03) (0.42,0.35,0.18) (0.08,0.89,0.02) (0.33,0.51,0.12) (0.17,0.53,0.13)
A2 (0.85,0.09,0.05) (0.74,0.16,0.10) (0.02,0.89,0.05) (0.08,0.84,0.06) (0.16,0.71,0.05) (0.15,0.73,0.08)
A3 (0.91,0.03,0.02) (0.07,0.09,0.05) (0.04,0.85,0.10) (0.68,0.26,0.06) (0.15,0.76,0.07) (0.31,0.39,0.25)
A4 (0.73,0,12,0.08) (0.13,0.64,0.21) (0.03,0.82,0.13) (0.73,0.15,0.08) (0.52,0.31,0.16) (0.51,0.24,0.21)
A5 (0.90,0.05,0.02) (0.68,0.08,0.21) (0.05,0.87,0.06) (0.13,0.75,0.09) (1.00,0.00,0.00) (0.91,0.03,0.05)
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Note that all the attributes are of the benefit type, so there was no need to convert
them. The weighting vector of the attributes was determined by the experts in advance as
(0.12, 0.25, 0.09, 0.16, 0.20, 0.18)T.

Step 2. Using Equations (18) and (19), the picture fuzzy positive ideal decision
p+ =

{
p+1 , p+2 , . . . , p+n

}
and picture fuzzy negative ideal decision p− =

{
p−1 , p−2 , . . . , p−n

}
were calculated

as follows:

p+ =
{
(0.91, 0.05, 0.02), (0.89, 0.08, 0.03), (0.42, 0.35, 0.05), (0.73, 0.15, 0.02),

(0.52, 0.31, 0.05), (1.00, 0.00, 0.00)
}

p− =
{
(0.53, 0.33, 0.09), (0.07, 0.64, 0.21), (0.02, 0.89, 0.18), (0.08, 0.89, 0.09),

(0.15, 0.76, 0.16), (0.17, 0.53, 0.25)
}

Taking p+1 and p−2 as an example,

p+1 = (0.09, 0.03, 0.02) = (max
{
0.53, 0.73, 0.91, 0.85, 0.90), min

{
0.33, 0.12, 0.03, 0.09, 0.05),

min{0.09, 0.08, 0.02, 0.05, 0.02})

p−2 = (0.07, 0.64, 0.21) = (min
{
0.89, 0.13, 0.07, 0.74, 0.68), max{0.08, 0.64, 0.09, 0.16, 0.08},

max{0.03, 0.21, 0.05, 0.05, 0.10, 0.21})

Step 3. We computed the picture fuzzy weighted correlation coefficient rw(pi, p+) and rw(pi, p−)
for each Ai ∈ A by means of Equation (9). The calculated results are indicated in Table 2.

Step 4. We used Equation (20) to calculate the index CCw(pi) for each Ai ∈ A. The obtained results
are presented in Table 2.

Table 2. Computational results.

rw(pi,p
+) rw(pi,p

−) CCw(pi)

A1 0.0882 0.0669 0.4640
A2 0.7505 0.1142 0.6110
A3 −0.0295 0.0766 0.3666
A4 0.0039 0.4339 0.4118
A5 0.5854 0.0669 0.5977

Step 5. From Table 2, we can observe that the picture fuzzy correlation-based closeness index
values for each Ai ∈ A are

CCw(p1) = 0.4640, CCw(p2) = 0.6110, CCw(p3) = 0.3666, CCw(p4) = 0.4118, CCw(p5) = 0.5977.

As explained previously, the larger the CCw(pi), the better the alternative Ai. Therefore, the ranking
orders of the alternatives are A2 � A5 � A1 � A4 � A3. Thus, the best choice is A2.

To illustrate the effectiveness of the presented Pearson’s picture fuzzy correlation-based method,
next we provide a comparative analysis with other methods. Firstly, if we merely consider the
picture fuzzy positive ideal solution p+ as the reference point, then the obtained ranking result
is A2 � A5 � A1 � A4 � A3, which is consistent with the presented Pearson’s correlation-based
methodology. The obtained ranking order is A1 = A5 � A3 � A2 � A4 if only the picture fuzzy negative
ideal solution p− is considered. Obviously, different reference points may result in different ranking
orders. From this point, one can see that the proposed method can achieve a more scientific and
reasonable result as it fully takes into account the positive ideal and negative ideal solutions.

If we construct the correlation-based TOPSIS method by using Singh’s correlation coefficient [10]
and use it in the calculation and analysis of this example, then we can get the results listed in Table 3.
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From Table 3, one can see that the ranking orders of the alternatives are A4 � A5 � A1 � A2 � A3,
and the best choice is A4. Therefore, a different ranking of the alternatives and a different optimal
scheme were produced by the different correlation coefficient used. In fact, our correlation-based
TOPSIS model employing the new correlation coefficient is more effective and reasonable than the
existing method.

Wei et al. [15] proposed a picture fuzzy projection concept to solve the same question presented in
this paper, in which the projection PrjA+(Ai) between the alternative Ai and the idea point A+ was
applied to assess the potential candidates. The computational results based on this projection model are

PrjA+(A1) = 0.235, PrjA+(A2) = 0.297, PrjA+(A3) = 0.156, PrjA+(A4) = 0.194, PrjA+(A5) = 0.283.

Therefore, the sorting order according to the descending values of PrjA+(Ai) is A2 � A5 � A1 �

A4 � A3, which renders the same ranking as that obtained by our presented Pearson’s correlation-based
method. By the comparative discussions, one can see that the developed methodology yields a
reasonable result for experts to address uncertain MADM problems in a picture fuzzy environment.

Table 3. Results rendered by the correlation-based technique for order preference by similarity to ideal
solutions (TOPSIS) based on Singh’s correlation coefficient.

rw(pi,p
+) rw(pi,p

−) CCw(pi)

A1 0.6863 0.3672 0.5523
A2 0.7161 0.4426 0.5433
A3 0.5576 0.6452 0.4863
A4 0.8159 0.4045 0.5639
A5 0.8184 0.4403 0.5580

6. Conclusions

With MADM problems growing more and more complicated under uncertain environments,
the conception of the picture fuzzy set equipped decision-makers with an effective method to
portray a high degree of vagueness and ambiguity during multiple attribute assessing processes.
This study presented a novel decision-making model using an effective and simple picture fuzzy
approach to address picture fuzzy MADM problems in uncertain environments. More specifically,
the classic Pearson’s correlation coefficient was applied to picture fuzzy contexts. For doing so,
a new correlation index formula for PFSs was presented to overcome the flaws in the existing
method; the main feature of the new index is that it lies in the interval [−1,1]. Moreover, a weighted
Pearson’s picture fuzzy correlation coefficient was presented to establish the central structure of the
developed methodology. Some important properties possessed by these coefficients were discussed
and investigated. Furthermore, a weighted correlation-based picture fuzzy closeness index was
developed to portray a certain degree of the correlations with the picture fuzzy positive and negative
ideal points. A novel Pearson’s picture fuzzy correlation-based model was further constructed for
addressing uncertain MADM problems involving picture fuzzy evaluation. The usefulness of the
proposed methodology was validated through a numerical example and comparative discussions.

In our future work, we expect to study its application in other decision-making areas, such as
academical evaluation and credit risk assessment. Further extensions and applications of this
approach by considering more general formulations such as induced variables and probability will
also be considered.
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