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Abstract: In this article, we define an extended version of the Pochhammer symbol and then introduce
the corresponding extension of the τ-Gauss hypergeometric function. The basic properties of the
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1. Introduction

Throughout this article, we denote the sets of positive integers, negative integers, and complex
numbers by N, Z−, and C, respectively. We also set

N0 = N∪ {0} and Z−0 = Z− ∪ {0}.

During the past few decades, various extensions and generalizations of well-known special
functions have been studied by various researchers (see, for example, [1–6]). For example,
a two-parameter extension of the gamma function Γ(ξ) with the parameters p and v) was defined
in [2] by

Γv(ξ; p) =


√

2p
π

∫ ∞

0
tξ− 3

2 e−t Kv+ 1
2

( p
t

)
dt

(
min{<(p),<(v)} > 0; ξ ∈ C

)
,

Γp(ξ)
(
v = 0; <(ξ) > 0

)
,

(1)
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where Kv(z) is the modified Bessel function (or the Macdonald function) of order v and Γp(ξ) was
studied in [2,7]. Indeed, if we set v = 0 in (1) and make use of the following relationship:

K 1
2
(z) =

√
π

2z
e−z,

then this extended gamma function Γp(ξ) is given by (see [2,7])

Γp(ξ) =
∫ ∞

0
tξ−1 e−t− p

t dt
(
<(p) > 0; <(ξ) > 0

)
. (2)

In the year 2012, Srivastava et al. [8] (see also [9]) defined the incomplete Pochhammar symbols
in terms of the incomplete gamma functions. Another generalization of the Pochhammer symbol was
defined in [10] by

(ξ; p)µ =


Γp(ξ + µ)

Γ(ξ)
(
<(p) > 0; ξ, µ ∈ C

)
,

(ξ)µ (p = 0; ξ, µ ∈ C \ {0}).

(3)

Here, in our present investigation, we first introduce a new extension (ξ; p, v)µ of the Pochhammer
symbol (ξ; p)µ in (3), which is defined by

(ξ; p, v)µ =


Γv(ξ + µ; p)

Γ(ξ)
(

min{<(p),<(v)} > 0; ξ, µ ∈ C
)
,

(ξ; p)µ

(
v = 0; ξ, µ ∈ C \ {0}

)
,

(4)

where, as we mentioned above in connection with (3), the generalized Pochhmmer symbol (ξ; p)µ was
studied by Srivastava et al. [10]. The integral representation of the extended Pochhammer symbol
(ξ; p, v)µ is given by

(ξ; p, v)µ =

√
2p
π

1
Γ(ξ)

∫ ∞

0
tξ+µ− 3

2 e−t Kv+ 1
2

( p
t

)
dt, (5)

which, in the special case when v = 0, yields the following result due to Srivastava et al. [10]):

(ξ; p, 0)µ = (ξ; p)µ =
1

Γ(ξ)

∫ ∞

0
tξ+µ−1 e−t− p

t dt (6)

(
<(p) > 0; <(ξ + µ) > 0 when p = 0

)
.

By using the definition (4), we now define an extension of the generalized hypergeometric function
pFq (with p numerator parameters and q denominator parameters) as follows:

pFq

 (ρ1; p, v), ρ2, · · · , ρp;

σ1, · · · , σq;
z

 =
∞

∑
n=0

(ρ1; p, v)n (ρ2)n · · · (ρp)n

(σ1)n · · · (σq)n

zn

n!
, (7)

where
ρj ∈ C (j = 1, · · · , p) and σj ∈ C \Z−0 (j = 1, · · · , q).

Another interesting extension of the Pochhammer symbol and the associated hypergeometric
functions was recently given by Srivastava et al. in [11].
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We next recall that Virchenko et al. [12] studied the following τ-Gauss hypergeometric function
2Rτ

1(z) defined by (see also [13,14])

2Rτ
1(z) = 2R1(δ1, δ2; δ3; τ; z) =

Γ(δ3)

Γ(δ2)

∞

∑
n=0

(δ1)n Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!
(8)

(
τ > 0; |z| < 1; <(δ3) > <(δ2) > 0 when |z| = 1

)
,

for which they derived an integral representation in the form

2R1(δ1, δ2; δ3; τ; z) =
1

B(δ2; δ3 − δ2)

∫ ∞

0
tδ2−1 (1− t)δ3−δ2−1 (1− ztτ)−δ1 dt (9)

(
τ > 0; | arg(1− z)| < π; <(δ3) > <(δ2) > 0

)
in terms of the classical beta function B(α, β) defined by

B(α, β) :=



∫ 1

0
tα−1 (1− t)β=a dt

(
min{<(α),<(β)} > 0

)
,

Γ(α)Γ(β)

Γ(α + β)

(
α, β ∈ C \Z−0

)
.

(10)

Remark 1. For τ = 1, (8) and (9) would immediately yield the definition of the Gauss hypergeoemtric function
2F1(δ1, δ2; δ3; z) and its Eulerian integral representation (see, for details, [15]).

Remark 2. The so-called τ-Gauss hypergeometric function in (8) is, in fact, a rather specialized case of the
widely-studied Fox-Wright extension pΨq of the generalized hypergeometric function pFq in (7) involving p

numerator and q denominator parameters (see, for example, [16]).

2. An Extension of the τ-Gauss Hypergeometric Function

In this section, we first introduce the following extension of the τ-Gauss hypergeometric function
2Rτ

1(z) in terms of the Pochhammer symbol (ξ; p, v)µ defined by (4) for δ1, δ2 ∈ C and δ3 ∈ C \Z−0 :

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
=

Γ(δ3)

Γ(δ2)

∞

∑
n=0

(δ1; p, v)n Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!
(11)

(
p = 0; v > 0; τ > 0; |z| < 1; <(δ3) > <(δ2) > 0 when |z| = 1 and p = 0

)
.

Remark 3. The following are some of the special cases of τ-Gauss hypergeometric functions defined by (11).
(i) When v = 0, (11) reduces to the following extended τ-Gauss hypergeometric function (see [17]):

2R1
[
(δ1; p), δ2; δ3; τ; z

]
=

Γ(δ3)

Γ(δ2)

∞

∑
n=0

(δ1; p)n Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!
(12)

(
p = 0; τ > 0; |z| < 1; <(δ3) > <(δ2) > 0 when |z| = 1 and p = 0

)
.

(ii) When τ = 1, (11) will yield the following extended Gauss hypergeometric function:

2F1
[
(δ1; p, v); δ2; δ3; z

]
=

∞

∑
n=0

(δ1; p, v)n (δ2)n

(δ3)n

zn

n!
.
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(iii) When v = 0 and τ = 1, (11) will reduce to the following extended Gauss hypergeometric function (see [10]):

2F1
[
(δ1; p); δ2; δ3; z

]
=

∞

∑
n=0

(δ1; p)n (δ2)n

(δ3)n

zn

n!
.

3. Integral Representations and Derivative Formulas

In this section, we obtain the Eulerian and Laplace-type integral representations and some
derivative formulas of the extended τ-Gauss hypergeometric function defined by (11).

Theorem 1. The following Eulerian representation holds true for (11):

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
=

1
B(δ2, δ3 − δ2)

∫ 1

0
tδ2−1 (1− t)δ3−δ2−1

1F0[(δ1; p, v); ; ztτ ] dt (13)

(
<(p) > 0; v > 0; τ > 0; |z| < 1; <(δ3) > <(δ2) > 0

)
,

where B(α, β) denotes the classical beta function defined by (10).

Proof. Using the following well-known identity involving the beta function B(α, β):

(δ2)τn

(δ3)τn
=

B(δ2 + τn, δ3 − δ2)

B(δ2; δ3 − δ2)
=

1
B(δ2, δ3 − δ2)

∫ 1

0
tδ2+τn−1 (1− t)δ3−δ2−1 dt

(
<(δ3) > <(δ2) > 0

)
in (11) and using the definition (7), we get the desired assertion (13) of Theorem 1.

Theorem 2. The following Laplace-type representation holds true for (11):

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
=

√
2p
π

Γ(δ1)

∫ ∞

0
tδ1− 3

2 e−t Kv+ 1
2

( p
t

)
1Φτ

1
[
δ2; δ3; zt

]
dt (14)

(
<(p) > 0; v > 0; τ > 0; <(z) < 1; <(δ1) > 0

)
,

where 1Φτ
1
[
δ2; δ3; zt

]
is the τ-Kummer hypergeometric function defined by

1Φτ
1(z) = 1Φτ

1 [δ2; δ3; zt] =
Γ(δ3)

Γ(δ2)

∞

∑
n=0

Γ(δ2 + τn)
Γ(δ3 + τn)

zn

n!
(15)

(τ > 0; δ2 ∈ C; δ3 ∈ C \Z−0 ).

Proof. By first utilizing (5) in (11) and then applying (15), we obtain the assertion (14) of Theorem 2.

Remark 4. When τ = 1, (13) and (14) yield the following special cases:

2F1
[
(δ1; p, v); δ2; δ3; z

]
=

1
B(δ2, δ3 − δ2)

∫ 1

0
tδ2−1 (1− t)δ3−δ2−1

1F0
[
(δ1; p, v); ; zt

]
dt (16)
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and

2F1
[
(δ1; p, v); δ2; δ3; z

]
=

√
2p
π

Γ(δ1)

∫ ∞

0
tδ1− 3

2 e−tKv+ 1
2

( p
t

)
1F1[δ2; δ3; zt] dt, (17)

respectively. Similarly, when v = 0, our integral representations (13) and (14) reduce to the following known
results (see [17]):

2R1
[
(δ1; p), δ2; δ3; τ; z

]
=

1
B(δ2, δ3 − δ2)

∫ 1

0
tδ2−1(1− t)δ3−δ2−1

1F0
[
(δ1; p); ; ztτ

]
dt

and

2R1
[
(δ1; p), δ2; δ3; τ; z

]
=

1
Γ(δ1)

∫ ∞

0
tδ1−1 e−t− p

t 1Φτ
1 [δ2; δ3; zt] dt,

respectively. Moreover, when τ = 1 and v = 0, (13) and (14) yield the following known results (see [10]):

2F1
[
(δ1; p), δ2; δ3; z

]
=

1
B(δ2, δ3 − δ2)

∫ 1

0
tδ2−1 (1− t)δ3−δ2−1

1F0[(δ1; p); ; zt] dt

and

2F1
[
(δ1; p, v), δ2; δ3; z

]
=

1
Γ(δ1)

∫ ∞

0
tδ1−1 e−t− p

t 1F1
[
δ2; δ3; zt

]
dt,

respectively.

Theorem 3. Each of the following derivative formulas holds true for the extended τ-Gauss hypergeometric
function defined by (11):

dn

dzn

{
2R1[(δ1; p, v), δ2; δ3; τ; z]

}
=

(δ1)n Γ(δ2 + nτ)Γ(δ3)

Γ(δ3 + nτ)Γ(δ2)
2R1

[
(δ1 + n; p, v), δ2 + nτ; δ3 + nτ; τ; z

]
(18)

and

dn

dzn

{
zδ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ωzτ

]}
=

zδ3−n−1Γ(δ3)

Γ(δ3 − n) 2R1
[
(δ1; p, v), δ2; δ3 − n; τ; ωzτ

]
. (19)

Proof. Upon differentiating both sides of (11) with respect to z, we get

d
dz

{
2R1

[
(δ1; p, v), δ2; δ3; τ; z

]}
=

Γ(δ3)

Γ(δ2)

∞

∑
n=1

(δ1; p, v)n Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn−1

(n− 1)!
. (20)

Replacing n by n + 1 in (20), we have

d
dz

{
2R1

[
(δ1; p, v), δ2; δ3; τ; z

]}
=

Γ(δ3)

Γ(δ2)

∞

∑
n=0

(δ1; p, v)n+1 Γ
(
δ2 + (n + 1)τ

)
Γ
(
δ3 + (n + 1)τ

) zn

n!
,
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which, after simplification, yields

d
dz

{
2R1

[
(δ1; p, v), δ2; δ3; τ; z

]}
=

δ1Γ(δ3)Γ(δ2 + τ)

Γ(δ3 + τ)Γ(δ2)

∞

∑
n=0

(δ1 + 1; p, v)n Γ(δ2 + τ + nτ)

Γ(δ3 + τ + nτ)

zn

n!

=
δ1 Γ(δ3)Γ(δ2 + τ)

Γ(δ3 + τ)Γ(δ2)
2R1[(δ1 + 1; p, v), δ2 + τ; δ3 + τ; τ; z].

By iterating this differentiation process n times, we are led to the desired assertion (18) of
Theorem 3.

Similarly, in order to prove the assertion (19) of Theorem 3, we observe that

dn

dzn

{
zδ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ωzτ

]}
=

Γ(δ3)

Γ(δ2)

∞

∑
m=0

(δ1; p, v)m Γ(δ2 + mτ)

Γ(δ3 + mτ)

ωm

m!
dn

dzn

{
zδ3+τm−1

}
=

Γ(δ3)

Γ(δ2)

∞

∑
m=0

(δ1; p, v)m Γ(δ2 + mτ)

Γ(δ3 + mτ)

ωm

m!

·
[
(δ3 + τm− 1)(δ3 + τm− 2) · · · (δ3 + τm− n− 1)

]
zδ3+τm−n−1

=
zδ3−n−1 Γ(δ3)

Γ(δ2)

∞

∑
m=0

(δ1; p, v)m Γ(δ2 + mτ)

Γ(δ3 + mτ)

(ωzτ)m

m!
Γ(δ3 + mτ)

Γ(δ3 + τm− n)

=
zδ3−n−1Γ(δ3)Γ(δ3 − n)

Γ(δ3 − n)Γ(δ2)

∞

∑
m=0

(δ1; p, v)m Γ(δ2 + mτ)

Γ(δ3 + τm− n)
(ωzτ)m

m!
,

which, in view of (11), gives the derivative formula (19) asserted by Theorem 3.

4. Application of the Mellin Transform

The well-known Mellin transform of a given integrable function f (t) is defined by

M{ f (t) : t→ s} =
∫ ∞

0
ts−1 f (t) dt, (21)

provided that the improper integral in (21) exists.

Theorem 4. The Mellin transform of the extended τ-Gauss hypergeometric function,

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
,

is given by

M
{

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
: p→ s

}
=

2s−1
√

π
(δ1)s Γ

(
s− v

2

)
Γ
(

s + v + 1
2

)
2R1(δ1 + s; δ2, δ3; τ; z) (22)

(
<(s− v) > 0; <(δ1 + s) > −1

)
.

Proof. Applying the definition (21) of the Mellin transform on both sides of (11), we get

M
{

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
: p→ s

}
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=
∫ ∞

0
ps−1

(
Γ(δ3)

Γ(δ2)

∞

∑
n=0

(δ1; p, v)nΓ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!

)
dp

=
Γ(δ3)

Γ(δ2)

∞

∑
n=0

Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!
1

Γ(δ1)

∫ ∞

0
ps−1 Γv(δ1 + n; p) dp. (23)

Using the following result given by Chaudhry and Zubair ([2], Eq. 4.105),

∫ ∞

0
ps−1 Γv(δ1 + n; p)dp =

2s−1
√

π
Γ
(

s− v
2

)
Γ
(

s + v + 1
2

)
Γ(δ1 + n + s), (24)

in (23), we find that

M
{

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
: p→ s

}
=

2s−1
√

π
Γ
(

s− v
2

)
Γ
(

s + v + 1
2

)
Γ(δ3)Γ(δ1 + s)

Γ(δ1 + s)Γ(δ1)Γ(δ2)

·
∞

∑
n=0

Γ(δ1 + n + s)Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!

=
2s−1
√

π
(δ1)s Γ

(
s− v

2

)
Γ
(

s + v + 1
2

)
Γ(δ3)

Γ(δ2)

·
∞

∑
n=0

(δ1 + s)n Γ(δ2 + nτ)

Γ(δ3 + nτ)

zn

n!
, (25)

which, in view of (8), yields the Mellin transform formula (22) asserted by Theorem 4.

5. Use of the Operators of Fractional Calculus

In this section, we recall the operators Iρ+ and Dρ+ of the fractional integral and fractional
derivatives of order µ ∈ C

(
<(µ) > 0

)
, which are defined by (see [18,19])

(
I

µ
ρ+ f

)
(x) =

1
Γ(µ)

∫ x

0

f (t)
(x− t)1−µ

dt
(
µ ∈ C; <(µ) > 0

)
(26)

and (
D

µ
ρ+ f

)
(x) =

dn

dxn

{(
I

n−µ
ρ+ f

)
(x)
} (

µ ∈ C; <(µ) > 0; n = [<(µ)] + 1
)
, (27)

respectively.
We now prove the following fractional integral and fractional derivative formulas associated with

the extended τ-Gauss hypergeometric function:

2R1
[
(δ1; p, v), δ2; δ3; τ; z

]
.

Theorem 5. Let ρ ∈ R+ = [0, ∞), δ1, δ2, δ3, ω ∈ C, and min{<(mu),<(δ3),<(τ) > 0}. Then the
following formulas hold true for x > ρ:(

I
µ
ρ+

[
(t− ρ)δ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ω(t− ρ)τ

]])
(x)

=
(x− ρ)δ3+µ−1 Γ(δ3)

Γ(δ3 + µ) 2R1
[
(δ1; p, v), δ2; δ3 + µ; τ; ω(x− ρ)τ

]
(28)
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and (
D

µ
ρ+

[
(t− ρ)δ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ω(t− ρ)τ

]])
(x)

=
(x− ρ)δ3−µ−1 Γ(δ3)

Γ(δ3 − µ) 2R1
[
(δ1; p, v), δ2; δ3 − µ; τ; ω(x− ρ)τ

]
. (29)

Proof. Using the following well-known relation (see [18,19]),(
I

µ
ρ+

[
(t− ρ)δ3−1])(x) =

Γ(δ3)

Γ(δ3 + µ)
(x− ρ)δ3+µ−1 (x > ρ), (30)

we have (
I

µ
ρ+

[
(t− ρ)δ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ω(t− ρ)τ

]])
(x)

=
(
I

µ
ρ+

[Γ(δ3)

Γ(δ2)

∞

∑
n=0

(δ1; p, v)n Γ(δ2 + nτ)

Γ(δ3 + nτ)

ωn

n!
(t− ρ)δ3+τn−1

])
=

(x− ρ)δ3+µ−1Γ(δ3)

Γ(δ3 + µ) 2R1
[
(δ1; p, v), δ2; δ3 + µ; τ; ω(x− ρ)τ

]
,

which proves the assertion (28) of Theorem 5.
Next, in view of (27) and (11), we have(

D
µ
ρ+

[
(t− ρ)δ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ω(t− ρ)τ

]])
(x)

=
dn

dxn

{(
I

n−µ
ρ+

[
(t− ρ)δ3−1

2R1
[
(δ1; p, v), δ2; δ3; τ; ω(t− ρ)τ

]])
(x)
}

=
dn

dxn

{
(x− ρ)δ3+n−µ−1 Γ(δ3)

Γ(δ3 − µ + n) 2R1
[
(δ1; p, v), δ2; δ3 + n− µ; τ; ω(x− ρ)τ

]}
. (31)

Finally, by applying (19) to the equation (31), we are led to the assertion (29) of Theorem 5.

6. Concluding Remarks

In our present investigation, we have first introduced an extension of the τ-Gauss hypergeometric
function in terms of a certain extended Pochhammer symbol. We have then derived its various
properties, including (for example) integral representations, derivative formulas, Mellin transform
formulas, as well as the fractional integral and fractional derivative formulas. We have observed that
by letting v = 0, the various results derived in this paper will reduce to the corresponding results
proved earlier in [17]. Moreover, if we set τ = 1, then we get several interesting new or known
formulas for the extended Gauss hypergeometric function. Finally, we have observed that, if v = 0
and τ = 1, then we get some new or known results for the extended Gauss hypergeometric function
defined and studied by Srivastava et al. [10].
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