
mathematics

Article

Merging the Spectral Theories of Distance Estrada and
Distance Signless Laplacian Estrada Indices of Graphs

Abdollah Alhevaz 1,*, Maryam Baghipur 1 and Yilun Shang 2

1 Faculty of Mathematical Sciences, Shahrood University of Technology, P.O. Box 316-3619995161 Shahrood, Iran;
maryamb8989@gmail.com

2 Department of Computer and Information Sciences, Northumbria University, Newcastle NE1 8ST, UK;
yilun.shang@northumbria.ac.uk

* Correspondence: a.alhevaz@gmail.com or a.alhevaz@shahroodut.ac.ir

Received: 14 August 2019; Accepted: 16 October 2019; Published: 19 October 2019
����������
�������

Abstract: Suppose that G is a simple undirected connected graph. Denote by D(G) the distance matrix of
G and by Tr(G) the diagonal matrix of the vertex transmissions in G, and let α ∈ [0, 1]. The generalized
distance matrix Dα(G) is defined as Dα(G) = αTr(G) + (1− α)D(G), where 0 ≤ α ≤ 1. If ∂1 ≥ ∂2 ≥
. . . ≥ ∂n are the eigenvalues of Dα(G); we define the generalized distance Estrada index of the graph

G as DαE(G) = ∑n
i=1 e

(
∂i−

2αW(G)
n

)
, where W(G) denotes for the Wiener index of G. It is clear from the

definition that D0E(G) = DEE(G) and 2D 1
2
E(G) = DQEE(G), where DEE(G) denotes the distance

Estrada index of G and DQEE(G) denotes the distance signless Laplacian Estrada index of G. This shows
that the concept of generalized distance Estrada index of a graph G merges the theories of distance
Estrada index and the distance signless Laplacian Estrada index. In this paper, we obtain some lower
and upper bounds for the generalized distance Estrada index, in terms of various graph parameters
associated with the structure of the graph G, and characterize the extremal graphs attaining these
bounds. We also highlight relationship between the generalized distance Estrada index and the other
graph-spectrum-based invariants, including generalized distance energy. Moreover, we have worked out
some expressions for DαE(G) of some special classes of graphs.

Keywords: generalized distance matrix (spectrum); distance (signless Laplacian) Estrada index; distance
(signless Laplacian) matrix; generalized distance Estrada index; generalized distance energy

MSC: 05C50, 05C12, 15A18

1. Introduction

In this paper, we are concerned only with simple, finite, connected and undirected graphs with vertex
set V(G) = {v1, v2, . . . , vn} and edge set E(G). The order and the size of G is, respectively, the number of
vertices and the number of edges of G. The degree of a vertex v, denoted by dG(v) (or simply dv) is the
cardinality of the set of vertices adjacent to v in a graph G. The distance between two vertices u, v ∈ V(G),
denoted by duv, represents the number of edges in a shortest path between these two end nodes in G.
The diameter of G is the maximum distance between any pair of vertices of G. The distance matrix D(G) of
a graph G is a square symmetric matrix defined as D(G) = (duv)u,v∈V(G). The transmission of a vertex v,
denoted by TrG(v), is defined as the sum of the distances from v to all other vertices in G, in other words,
TrG(v) = ∑

u∈V(G)
duv. A graph G is referred to as k-transmission regular when the matrix D(G) has the
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constant row sum equal to k. The Wiener index (also called the transmission) of a graph G, denoted by W(G),
is the sum of distances between all unordered pairs of vertices in G. Apparently, W(G) = 1

2 ∑
v∈V(G)

TrG(v).

For any vertex vi ∈ V(G), the transmission TrG(vi) is also called the transmission degree, shortly denoted
by Tri, and the sequence {Tr1, Tr2, . . . , Trn} is called the transmission degree sequence of the graph G.

Let Tr(G) = diag(Tr1, Tr2, . . . , Trn) be the diagonal matrix of vertex transmissions of G. Following
Aouchiche and Hansen [1,2], the distance Laplacian matrix and the distance signless Laplacian matrix of
a graph G are defined, respectively, as DL(G) = Tr(G)− D(G) and DQ(G) = Tr(G) + D(G). Recently,
the spectral properties of the distance Laplacian matrix, distance matrix, as well as distance signless
Laplacian matrix have attracted attention of the many researchers and a large number of papers have
been published regarding their spectral properties, like spectral radius, energy, Estrada index, second
largest eigenvalue, smallest eigenvalue, etc. For some recent works, we refer to [3–5] and the references
cited therein.

Motivated by [6], Cui et al. [7] introduced the generalized distance matrix Dα(G) as a convex
combinations of Tr(G) and D(G), defined as Dα(G) = αTr(G) + (1− α)D(G), for 0 ≤ α ≤ 1. Noting
that D0(G) = D(G), 2D 1

2
(G) = DQ(G), D1(G) = Tr(G), and Dα(G)−Dβ(G) = (α− β)DL(G), any result

regarding the spectral properties of generalized distance matrix has its counterpart for each of these
particular graph matrices, and these counterparts following immediately from a single proof. In fact,
this matrix reduces to merging the distance Laplacian spectral, distance spectral, as well as distance
signless Laplacian spectral theories. As the matrix Dα(G) is real symmetric, all its eigenvalues are real.
Therefore, we can arrange them as ∂1 ≥ ∂2 ≥ · · · ≥ ∂n. The largest eigenvalue ∂1 of the matrix Dα(G) is
called the generalized distance spectral radius of G (We will denote ∂1(G) by ∂(G)).

Based upon some geometric characteristics of biomolecules, Ernesto Estrada [8,9] investigated
an expression taking the form

EE(G) =
n

∑
i=1

eλi ,

where λ1, λ2, . . . , λn represent all eigenvalues of the adjacency matrix of a molecular graph G. Analytical
studies on this quantity was performed later in [10] and the name “Estrada index” was proposed in [11].
The properties of the Estrada index have been intensively explored, see, for example [11–14]. There exists
a vast literature related to Estrada index and its bounds and we refer the reader to the nice surveys [15,16].

This graph-spectrum-based invariant has also an important role in chemistry, biology, as well as
network science. It has been applied for instance to gauge the extent of folding of long chain polymeric
molecules, encompassing some proteins [8,17,18]. It has found a number of applications in complex
networks and characterizes the centrality [9]. EE offers a unique metric to characterize the robustness
of complex networks [19]; namely, it is a monotonic measure with respect to the edge deletion and
addition. For more applications of the Estrada index in network science, see the monograph in [20]
and papers [19,21].

The pioneering papers [8,9] further investigate varied versions of Estrada index with respect to
other graph associated matrices. Because of the evident success of the graph Estrada index, this proposal
has been put into effect, and Estrada index-based on the eigenvalues of more graph matrices have been
introduced subsequently: Estrada index-based invariant with respect to distance matrix [22], Estrada
index-based invariant with respect to Laplacian matrix [23,24], Estrada index-based invariant with respect
to signless Laplacian matrix [25,26], and Estrada index-based invariant with respect to distance signless
Laplacian matrix [27] have been introduced and studied. For some other interesting papers, we direct the
reader to works [28–31].
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The distance matrix graph has shown its importance in a wide range of areas across science and
engineering. The distance matrix contains information on the number of walks and self-avoiding walks of
chemical graphs, which adjacency matrix fails to show. Distance matrix has been used to calculate many
topological indices, including the Wiener index, and thermodynamic properties involving temperature
and pressure coefficients. In the design of communication infrastructure network, molecular stability,
and graph embedding theory, distance matrix has played an important role. Distance eigenvalues of
graphs have attracted huge attention for mathematicians for decades. For more information regarding
distance spectrum, we refer to the survey [1] and the references therein.

We observe that the distance matrix and its eigenvalues are of importance not only from a chemistry
point of view, but also because they are very useful in other branches of science and social science. Clearly,
the information one gets regarding the graph from the distance matrix is also visible from the distance
Laplacian and the distance signless Laplacian matrices of a graph. As these matrices use more structural
properties of a graph than the distance matrix, these matrices may contain a wealth of information about
the graph. In addition to its formal analogy to the Estrada index, the distance and the distance signless
Laplacian Estrada indices are arguably of prominent significance in physical chemistry. Distance turns out
to be rooted deeply in the molecular graphs.

Therefore, here we define the generalized distance Estrada index DαE(G), based on the generalized
distance matrix of the graph G, as

DαE(G) =
n

∑
i=1

e
(

∂i−
2αW(G)

n

)
, (1)

where ∂1 ≥ ∂2 ≥ · · · ≥ ∂n are the eigenvalues of Dα(G) (the generalized distance eigenvalues of a graph G).
It follows from the definition that D0E(G) = DEE(G) and 2D1/2E(G) = DQEE(G), where DEE(G)

denotes the distance Estrada index of a graph G and DQEE(G) denotes the distance signless Laplacian
Estrada index of a graph G. This shows that the concept of generalized distance Estrada index of a graph
G merges the theories of distance Estrada index and the distance signless Laplacian Estrada index of
a graph G. Let

Uk =
n

∑
i=1

(
∂i −

2αW(G)

n

)k
.

Then, U0 = n, U1 = 0 and U2 = 2(1− α)2 ∑1≤i<j≤n(dij)
2 + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n . Recalling the

power series expansion of ex, we can write the generalized distance Estrada index as

DαE(G) = ∑
k≥0

Uk
k!

. (2)

The rest of the paper is structured as follows. In Section 2, we mention some preliminary results
which will be helpful throughout the paper. In Section 3, we obtain some lower bounds for the generalized
distance Estrada index DαE(G), in terms of various graph parameters associated with structure of the
graph G, and identify the extremal graphs attaining these bounds. In Section 4, we obtain some upper
bounds for the generalized distance Estrada index DαE(G) and delineate the extremal graphs. In Section 5,
we derive some relations between the generalized distance Estrada index and the generalized distance
energy of G. Finally, in Section 6, we obtain some results about generalized distance Estrada index of some
elementary graphs and give an expression for DαE(G) of a (transmission) regular graph G, in terms of the
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distance eigenvalues as well as adjacency eigenvalues of G, and describe the generalized distance Estrada
index of some graphs obtained by operations.

2. Preliminary Results

In this section, we give some preliminary results which will be utilized in the subsequent sections.
The following lemma can be found in [7].

Lemma 1 ([7]). Suppose that G is a connected graph of order n. We have

∂(G) ≥ 2W(G)

n
,

where the equality holds if and only if G is transmission regular.

By a similar way as used in the proof of ([32], Lemma 2), we can prove the following lemma.

Lemma 2. A connected graph G admits two distinct generalized distance eigenvalues if and only if G is
a complete graph.

The proof of the following lemma is similar to that of ([4], Theorem 2.2) and is omitted here.

Lemma 3. Let the transmission degree sequence of G be {Tr1, Tr2, . . . , Trn}. Then,

∂(G) ≥

√
∑n

i=1 Tr2
i

n
,

where the equality holds if and only if G is transmission regular.

Given two nonincreasing real sequences (x) = (x1, x2, . . . , xn) and (y) = (y1, y2, . . . , yn) of length n,
(x) is said to be majorized by (y) or (y) majorizes (x), denoted by (x) � (y) if

n

∑
i=1

xi =
n

∑
i=1

yi and
k

∑
i=1

xi ≤
k

∑
i=1

yi, for all k = 1, 2, . . . , n− 1.

The relation (x) ≺ (y) means that (x) � (y) and (x) is not the rearrangement of (y).
The following observation can be found in [23].

Lemma 4 ([23]). Let (x) = (x1, x2, . . . , xn) and (y) = (y1, y2, . . . , yn) be nonincreasing sequences of real
numbers of length n. If (x) � (y), then for any convex function ψ, we have ∑n

i=1 ψ(xi) ≤ ∑n
i=1 ψ(yi). Equality

holds if and only if xi = yi for all i = 1, 2, . . . , n. In addition, when (x) ≺ (y) and ψ is strictly convex,
∑n

i=1 ψ(xi) < ∑n
i=1 ψ(yi) holds.

The majorization relation between the spectrum and diagonal elements of Hermitian matrices
perfectly links the spectrum of a generalized distance matrix Dα(G) with majorization. The relation
given below immediately follows.
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Lemma 5. Assume that G is a connected graph of order n admitting generalized distance eigenvalues ∂1, ∂2, . . . , ∂n

and transmission degrees Tr1, Tr2, . . . , Trn. Then,

(αTr1, αTr2, . . . , αTrn) � (∂1, ∂2, . . . , ∂n).

Theorem 1. Assume that G is any connected graph of order n ≥ 2 with transmission degree sequence
{Tr1, Tr2, . . . , Trn}.
(i) If k < 0 or k > 1, then Uk ≥

n
∑

i=1

(
αTri − 2αW(G)

n

)k
;

(ii) If 0 < k < 1, then Uk ≤
n
∑

i=1

(
αTri − 2αW(G)

n

)k
.

Equality occurs in both parts, if and only if ∂i = αTri, for i = 1, 2, . . . , n.

Proof. (i) For x > 0, it follows that the function f (x) = xk is a convex function if
k < 0 or k > 1. Let (X) =

(
αTr1 − 2αW(G)

n , αTr2 − 2αW(G)
n , . . . , αTrn − 2αW(G)

n

)
and (Y) =(

∂1 − 2αW(G)
n , ∂2 − 2αW(G)

n , . . . , ∂n − 2αW(G)
n

)
. By Lemma 5, we have (X) � (Y). It then follows by

Lemma 4 that

Uk =
n

∑
i=1

(
∂i −

2αW(G)

n

)k
≥

n

∑
i=1

(
αTri −

2αW(G)

n

)k
. (3)

Therefore, by Lemma 4, equality occurs in the inequality (3) if and only if (X) = (Y). That is, if and only if
∂i = αTri, for all i = 1, 2, . . . , n.
(ii) For x > 0, it follows that the function f (x) = −xk is a convex function if 0 < k < 1. Therefore,
proceeding similarly as in part (i), we arrive at part (ii). �

3. Lower Bounds for the Generalized Distance Estrada Index of Graphs

In this section, we obtain some lower bounds for the generalized distance Estrada index DαE(G) of
a connected graph G. These bounds are characterized in terms of the order n, the Wiener index W(G),
the transmission degree and the parameter α ∈ [0, 1]. We also investigate the extremal graph attaining
these bounds.

Our first result gives a lower bound for the generalized distance Estrada index DαE(G), in terms of
the order n, the transmission degrees and the parameter α.

Theorem 2. Suppose G is a connected graph of order n. Then,

DαE(G) ≥ 1 +

√√√√(n− 1)2 + 2(1− α)2 ∑
1≤i<j≤n

(dij)2 + α2

(
n

∑
i=1

Tr2
i −

4W2(G)

n

)
, (4)

with equality if and only if G ∼= K1.

Proof. Starting with Equation (1), we have

DαE2(G) =
n

∑
i=1

e2
(

∂i−
2αW(G)

n

)
+ 2 ∑

i<j
e
(

∂i−
2αW(G)

n

)
e
(

∂j−
2αW(G)

n

)
. (5)
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Thanks to the arithmetic–geometric mean inequality, we have

2 ∑
i<j

e
(

∂i−
2αW(G)

n

)
e
(

∂j−
2αW(G)

n

)
≥ n(n− 1)

(
∏
i>j

e(∂i−
2αW(G)

n )e(∂j−
2αW(G)

n )

) 2
n(n−1)

= n(n− 1)

( n

∏
i=1

e(∂i−
2αW(G)

n )

)n−1
 2

n(n−1)

= n(n− 1)(eU1)
2
n

= n(n− 1). (6)

Using a power-series expansion, and as U0 = n, U1 = 0 and U2 = 2(1 − α)2 ∑1≤i<j≤n d2
ij +

α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n , we get

n

∑
i=1

e2(∂i−
2αW(G)

n ) =
n

∑
i=1

∑
k≥0

[
2
(

∂i − 2αW(G)
n

)]k

k!
= n + 4(1− α)2 ∑

1≤i<j≤n
(dij)

2 + 2α2
n

∑
i=1

Tr2
i

− 8α2W2(G)

n
+

n

∑
i=1

∑
k≥3

[
2
(

∂i − 2αW(G)
n

)]k

k!
.

We apply a multiplier r ≥ 2 to arrive at

n

∑
i=1

e2(∂i−
2αW(G)

n ) ≥ n + 4(1− α)2 ∑
1≤i<j≤n

(dij)
2 + 2α2

n

∑
i=1

Tr2
i −

8α2W2(G)

n

+ r
n

∑
i=1

∑
k≥3

(
∂i − 2αW(G)

n

)k

k!
= n + 4(1− α)2 ∑

1≤i<j≤n
(dij)

2 + 2α2
n

∑
i=1

Tr2
i

− 8α2W2(G)

n
− rn− r(1− α)2 ∑

1≤i<j≤n
(dij)

2 − rα2

2

n

∑
i=1

Tr2
i +

2rα2W2(G)

n

+ rDαE(G) = (1− r)n +
2α2W2(G)

n
(r− 4) + (4− r)(1− α)2 ∑

1≤i<j≤n
(dij)

2

+
(

2− r
2

)
α2

n

∑
i=1

Tr2
i + rDαE(G), (7)

where we have used the fact that g(x) := e2x − 1− 2x − 2x2 − r(ex − 1− x − x2

2 ) ≥ 0 for r ≥ 2 since
g(0) = 0, g′(x) ≤ 0 for x ≤ 0 and g′(x) ≥ 0 for x ≥ 0 when r ≥ 2.

Let P = ∑n
i=1 Tr2

i −
4W2(G)

n . By substituting (6) and (7) in (5), and solving it for DαE(G), we get

DαE(G) ≥ 1
2

r +
√
(r− 2n)2 + 4(4− r)(1− α)2 ∑

1≤i<j≤n
(dij)2 + 2α2(4− r)P

 .
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The function

f (x) =
1
2

x +
√
(x− 2n)2 + 4(4− x)(1− α)2 ∑

1≤i<j≤n
(dij)2 + 2α2(4− x)P

 ,

monotonically decreases for x ≥ 2. Consequently, the best lower bound for DαE(G) is attained for r = 2.
This gives us the first part of the proof.

From the derivation of (4), we observe readily that the equality holds if and only if G has no non-zero
Dα-eigenvalues. Recall that G is connected. Therefore, this can only happen when G ∼= K1. The proof is
then complete. �

The following result is an immediate consequence of Theorem 2.

Corollary 1. Assume that G is a connected graph of order n. We have

DαE(G) ≥ 1 +
√
(n− 1)(n− 1 + n(1− α)2),

where the equality holds if and only if G ∼= K1.

Proof. As ∑1≤i<j≤n(dij)
2 ≥ n(n−1)

2 , from the lower bound of Theorem 2, we obtain

DαE(G) ≥ 1 +

√√√√(n− 1)2 + 2(1− α)2 ∑
1≤i<j≤n

(dij)2 + α2

(
n

∑
i=1

Tr2
i −

4W2(G)

n

)

≥ 1 +

√√√√(n− 1)2 + 2(1− α)2 n(n− 1)
2

+ α2

(
n

∑
i=1

Tr2
i −

n

∑
i=1

Tr2
i

)

= 1 +
√
(n− 1)(n− 1 + n(1− α)2).

Thus, the result, �
The next result gives a complementary lower bound for the generalized distance Estrada index

DαE(G). The bound is characterized by the order n of graph, its Wiener index W(G) as well as the
parameter α.

Theorem 3. Suppose that G is a connected graph of order n. Then,

DαE(G) ≥ e
2(1−α)W(G)

n + (n− 1)e
−2(1−α)W(G)

n(n−1) , (8)

where the equality holds if and only if G = Kn.

Proof. Thanks to Equation (1) and the well-known arithmetic–geometric mean inequality, we have

DαE(G) = e∂1−
2αW(G)

n + e∂2− 2αW(G)
n + · · ·+ e∂n− 2αW(G)

n

≥ e∂1−
2αW(G)

n + (n− 1)

(
n

∏
i=2

e∂i−
2αW(G)

n

) 1
n−1

(9)

= e∂1−
2αW(G)

n + (n− 1)
(

e
2αW(G)

n −∂1

) 1
n−1

. (10)
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Consider the following function,

f (x) = ex + (n− 1)e
−x

n−1 (11)

for x ≥ 0. We have

f ′(x) = ex − e
−x

n−1 ≥ 0

for x ≥ 0. It is not difficult to see that f (x) is increasing for x ≥ 0. Using Equation (10) and Lemma 1,
we obtain

DαE(G) ≥ e
2(1−α)W(G)

n + (n− 1)e
−2(1−α)W(G)

n(n−1) .

Moreover, from the derivation of (8), it is clear that equality holds if and only if the equality holds in
the inequality (9). Also, equality holds in (9) if and only if ∂2 = ∂3 = · · · = ∂n. Therefore, G has exactly
two distinct generalized distance eigenvalues; then, by Lemma 2, we see that G is the complete graph Kn.

Conversely, it is easy to see that the equality holds in (8) for Kn. �
We will make use of the following lemma in our next results.

Lemma 6 ([33]). Let a1, a2, . . . , an be non-negative numbers. Then,

n

 1
n

n

∑
i=1

ai −
(

n

∏
i=1

ai

) 1
n
 ≤ n

n

∑
i=1

ai −
(

n

∑
i=1

a
1
2
i

)2

.

Let M(G) =
(

∏n
i=1 Tri

) 1
n

be the geometric mean of the transmission degrees sequence. Clearly,

M(G) ≤ 2W(G)
n , and equality is attained if and only if Tr1 = Tr2 = · · · = Trn (i.e., G is a transmission

regular graph).
Our next result gives a lower bound for DαE(G) in terms of the order n, the Wiener index W(G),

the geometric mean of the transmission degrees sequence M(G) and the parameter α. It also gives an
upper bound for DαE(G) in terms of the order n, the diameter d and the parameter α.

Theorem 4. Assume that G is a connected graph of order n ≥ 2 with diameter d. Then,

e

√
4W2(G)−M2(G)n

n(n−1) − 2αW(G)
n + (n− 1)

e
2αW(G)

n −
(√

4W2(G)−M2(G)n
n(n−1)

)
1

n−1

≤ DαE(G) ≤ (12)

n− 1 + e

√
n(n−1)

(
1−α)2d2+ α2n2(n−1)

4 −α2(n−1)
)

.

The equality on the left-hand side of (12) holds if and only if G = Kn. The equality on the right hand side of
(12) holds if and only if G = K1.
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Proof. We will deal with the left part inequality first. Thanks to the arithmetic–geometric mean inequality,
we arrive at

DαE(G) = e∂1−
2αW(G)

n + e∂2− 2αW(G)
n + · · ·+ e∂n− 2αW(G)

n

≥ e∂1−
2αW(G)

n + (n− 1)

(
n

∏
i=2

e∂i−
2αW(G)

n

) 1
n−1

(13)

= e∂1−
2αW(G)

n + (n− 1)
(

e
2αW(G)

n −∂1

) 1
n−1

.

By Lemma 3, ∂1 ≥
√

∑n
i=1 Tr2

i
n . Setting

√
ai = Tri in Lemma 6, we get

n2

[
∑n

i=1 Tr2
i

n
−
(

2W(G)

n

)2
]
≥

n

∑
i=1

Tr2
i − n

(
n

∏
i=1

Tr2
i

) 1
n

.

Combining this with Lemma 3 yields

∂1 ≥

√
4W2(G)−M2(G)n

n(n− 1)
. (14)

Clearly,
√

4W2(G)−M2(G)n
n(n−1) ≥ 2W(G)

n , and so

√
4W2(G)−M2(G)n

n(n− 1)
− 2αW(G)

n
≥ (1− α)

2W(G)

n
≥ 0.

Similar to Theorem 3, we obtain the desired result. If G = Kn, we have ∂1 = n − 1, ∂2 = · · · =
∂n = αn− 1, W(G) = n(n−1)

2 , and M(G) = n− 1. Therefore, DαE(G) = e(1−α)(n−1) + (n− 1)eα−1 and the
equality holds.

Conversely, assume that the equality holds true. In view of (13), we have ∂2 = · · · = ∂n. Clearly,
4W2(G) = M2(G)n if and only if n = 1. From (14), it follows that ∂1 > 0 for n ≥ 2. Thus, G has exactly
two distinct generalized distance eigenvalues, and so Lemma 2 implies that G is the complete graph Kn.

Next, we prove the right inequality. We have
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DαE(G) = n +
n

∑
i=1

∑
k≥1

(
∂i − 2αW(G)

n

)k

k!

≤ n +
n

∑
i=1

∑
k≥1

∣∣∣∂i − 2αW(G)
n

∣∣∣k
k!

= n + ∑
k≥1

1
k!

n

∑
i=1

[(
∂i −

2αW(G)

n

)2
] k

2

≤ n + ∑
k≥1

1
k!

[
n

∑
i=1

(
∂i −

2αW(G)

n

)2
] k

2

= n + ∑
k≥1

1
k!

[
2(1− α)2 ∑

1≤i<j≤n
d2

ij + α2
n

∑
i=1

Tr2
i −

4α2W2(G)

n

] k
2

= n− 1 + ∑
k≥0

(√
2(1− α)2 ∑1≤i<j≤n d2

ij + α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n

)k

k!

= n− 1 + e

√
2(1−α)2 ∑1≤i<j≤n d2

ij+α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n .

As dij ≤ d for i 6= j and there are n(n−1)
2 pairs of vertices in G, we have

2(1− α)2 ∑1≤i<j≤n d2
ij + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n ≤ 2(1− α)2 n(n−1)

2 d2 + α2n3(n−1)2

4 − α2n(n− 1)2, so that

DαE(G) ≤ n− 1 + e

√
n(n−1)

(
1−α)2d2+ α2n2(n−1)

4 −α2(n−1)
)

.

Therefore, we arrive at the right-hand side of the inequality (12).
In the above proof, it can be seen that the equality holds if and only if G has no non-zero

Dα-eigenvalues. Recall that G is connected. This can only happen when G ∼= K1. The proof is complete. �

Remark 1. In view of the inequality 2W(G)
n ≥ M(G), we obtain√

4W2(G)−M2(G)n
n(n− 1)

≥ 2W(G)

n
.

Recall that the function f (x) defined in (11) is increasing. The given lower bound in (12) turns out to be
sharper than the lower bound in (8).

Given a k-transmission regular graph G, we have W(G) = nk
2 and M(G) = k. Therefore, the following

result follows immediately from Theorem 4.

Corollary 2. Suppose that G is k-transmission regular. We have

DαE(G) ≥ e(1−α)k + (n− 1)e
(α−1)k

n−1 ,

where the equality holds if and only if G = Kn.
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The next result provides a lower bound for DαE(G) involving the order n and the Wiener index W(G).

Theorem 5. Suppose that G is a connected graph of order n. We have

DαE(G) > n + 2
(
(1− α)W(G)

n

)2

.

Proof. Applying the Cauchy–Schwartz inequality we have
(

∑n
i=1 Tri

)2 ≤ n ∑n
i=1 Tr2

i , therefore

n

∑
i=1

Tr2
i ≥

4W2(G)

n
. (15)

It follows again by the Cauchy–Schwartz inequality that

Tr2
i =

(
n

∑
j=1

dij

)2

≤ n
n

∑
j=1

d2
ij.

Thus

n

∑
i=1

Tr2
i ≤ n

n

∑
i=1

n

∑
j=1

d2
ij,

and then, by (15), we obtain

∑
1≤i<j≤n

d2
ij ≥

1
2n

n

∑
i=1

Tr2
i ≥

1
2n

.
4W2(G)

n
=

2W2(G)

n2 .

Consequently, we have

DαE(G) > n + (1− α)2 ∑
1≤i<j≤n

(dij)
2 +

α2

2

n

∑
i=1

Tr2
i −

2α2W2(G)

n

≥ n + (1− α)2 2W2(G)

n2 +
2α2W2(G)

n
− 2α2W2(G)

n

= n + 2
(
(1− α)W(G)

n

)2

.

�

Corollary 3. Suppose that G is connected with order n. We have

DαE(G) > n +
1
2
(1− α)2(n− 1)2.

Proof. As dij ≥ 1 for i 6= j and there are n(n−1)
2 pairs of vertices in G, by Theorem 5, we obtain

DαE(G) > n + 2
(
(1− α)W(G)

n

)2

≥ n + 2

(
( (1−α)n(n−1)

2
n

)2

= n +
1
2
(1− α)2(n− 1)2,
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and the result follows. �

4. Upper Bounds for the Generalized Distance Estrada Index of Graphs

In this section, we obtain some upper bounds for the generalized distance Estrada index DαE(G)

of a connected graph G involving the order n, the Wiener index W(G), the transmission degrees as well as
the parameter α ∈ [0, 1]. We also characterize the extremal graphs attaining these bounds.

The next result gives an upper bound for the generalized distance Estrada index DαE(G) using the
order n, the Wiener index W(G), the transmission degrees as well as the parameter α.

Theorem 6. Suppose that G is connected with order n. For any integer k0 ≥ 2,

DαE(G) ≤ n− 1−

√√√√2(1− α)2 ∑
1≤i<j≤n

d2
ij + α2

n

∑
i=1

Tr2
i −

4α2W2(G)

n

+
k0

∑
k=2

Uk(G)−
(√

2(1− α)2 ∑1≤i<j≤n d2
ij + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n

)k

k!

+ e

√
2(1−α)2 ∑1≤i<j≤n d2

ij+α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n , (16)

where the equality holds if and only if G = K1.

Proof. By definition of DαE(G), we have

DαE(G) =
k0

∑
k=0

Uk(G)

k!
+ ∑

k≥k0+1

1
k!

n

∑
i=1

(
∂i −

2αW(G)

n

)k

≤
k0

∑
k=0

Uk(G)

k!
+ ∑

k≥k0+1

1
k!

n

∑
i=1

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣k

≤
k0

∑
k=0

Uk(G)

k!
+ ∑

k≥k0+1

1
k!

(
n

∑
i=1

(
∂i −

2αW(G)

n

)2
) k

2

=
k0

∑
k=0

Uk(G)

k!
+ ∑

k≥k0+1

(√
2(1− α)2 ∑1≤i<j≤n d2

ij + α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n

)k

k!

=
k0

∑
k=0

Uk(G)

k!
+ e

√
2(1−α)2 ∑1≤i<j≤n d2

ij+α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n

−
k0

∑
k=0

(√
2(1− α)2 ∑1≤i<j≤n d2

ij + α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n

)k

k!
,

and (16) follows. Thanks to (16), the equality is attained in (16) if and only if G has no non-zero
Dα-eigenvalues, i.e., G ∼= K1. The proof is complete. �

Remark 2. Notice that we have
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Uk(G) =
n

∑
i=1

(
∂i −

2αW(G)

n

)k

≤
n

∑
i=1

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣k ≤
(

n

∑
i=1

(
∂i −

2αW(G)

n

)2
) k

2

= (U2(G))
k
2 ,

where the second inequality can be derived from the following fact:
For non-negative integers a1, a2, . . . , an and integer k ≥ 2,

n

∑
i=1

ak
i ≤

(
n

∑
i=1

a2
i

) k
2

. (17)

Therefore, Uk(G)−
(√

U2(G)
)k
≤ 0. Then,

k0

∑
k=2

Uk(G)−
(√

2(1− α)2 ∑1≤i<j≤n d2
ij + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n

)k

k!
≤ 0.

It follows from Theorem 6 that

DαE(G) ≤ n− 1−

√√√√2(1− α)2 ∑
1≤i<j≤n

d2
ij + α2

n

∑
i=1

Tr2
i −

4α2W2(G)

n

+ e

√
2(1−α)2 ∑1≤i<j≤n d2

ij+α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n .

Putting α = 0, we get the following upper bound for the distance Estrada index,

DEE(G) = D0E(G) ≤ n− 1−
√

2 ∑
1≤i<j≤n

d2
ij + e

√
2 ∑1≤i<j≤n d2

ij . (18)

Remark 3. The following upper bound for the distance Estrada index DEE(G) was obtained in [22]. Let G be
a connected graph of order n and diameter d. Then,

DEE(G) ≤ n− 1 + ed
√

n(n−1). (19)

It is easily seen that the upper bound given in (18) is better than the upper bound given in (19).

The last upper bound is as follows.

Theorem 7. Suppose that G is connected with order n. For any integer k0 ≥ 2,

DαE(G) ≤ n− 2− ∂1 +
2αW(G)

n
−
√

ξ

+
k0

∑
k=2

Uk(G)−
(

∂1 − 2αW(G)
n

)k
−
(√

ξ
)k

k!
+ e∂1−

2αW(G)
n + e

√
ξ , (20)
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where ξ = 2(1− α)2 ∑1≤i<j≤n d2
ij + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n −

(
∂1 − 2αW(G)

n

)2
, with equality if and only if G =

K1.

Proof. Notice that
n

∑
i=2

(
∂i −

2αW(G)

n

)k
≤

n

∑
i=2

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣k .

Using the inequality (17), we have

DαE(G)− e∂1−
2αW(G)

n

=
k0

∑
k=0

Uk(G)−
(

∂1 − 2αW(G)
n

)k

k!
+ ∑

k≥k0+1

1
k!

n

∑
i=2

(
∂i −

2αW(G)

n

)k

≤
k0

∑
k=0

Uk(G)−
(

∂1 − 2αW(G)
n

)k

k!
+ ∑

k≥k0+1

1
k!

n

∑
i=2

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣k

≤
k0

∑
k=0

Uk(G)−
(

∂1 − 2αW(G)
n

)k

k!
+ ∑

k≥k0+1

1
k!

(
n

∑
i=2

(
∂i −

2αW(G)

n

)2
) k

2

=
k0

∑
k=0

Uk(G)−
(

∂1 − 2αW(G)
n

)k

k!

+ ∑
k≥k0+1

(√
2(1− α)2 ∑1≤i<j≤n d2

ij + α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n − (∂1 − 2αW(G)
n )2

)k

k!

=
k0

∑
k=0

Uk(G)−
(

∂1 − 2αW(G)
n

)k

k!

+e

√
2(1−α)2 ∑1≤i<j≤n d2

ij+α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n −
(

∂1−
2αW(G)

n

)2

−
k0

∑
k=0

(√
2(1− α)2 ∑1≤i<j≤n d2

ij + α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n − (∂1 − 2αW(G)
n )2

)k

k!
,

where by the power-series expansion of ex = ∑k≥0
xk

k! , we have

e

√
2(1−α)2 ∑1≤i<j≤n d2

ij+α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n −
(

∂1−
2αW(G)

n

)2

=
k0

∑
k=0

(√
2(1− α)2 ∑1≤i<j≤n d2

ij + α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n − (∂1 − 2αW(G)
n )2

)k

k!

+ ∑
k≥k0+1

(√
2(1− α)2 ∑1≤i<j≤n d2

ij + α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n − (∂1 − 2αW(G)
n )2

)k

k!
,

and the last equality holds. This completes the proof. �
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5. Relationship between the Generalized Distance Estrada Index and Generalized Distance Energy
of Graphs

The energy E(G) of a graph G, first introduced in [34], is defined as the sum of absolute values of
eigenvalues of the adjacency matrix of G. Since then, E(G) has found a wide range of applications in
chemical mathematics and has been investigated extensively by mathematicians. In addition to adjacency
matrix, the energy of Laplacian, distance Laplacian, signless Laplacian as well as distance signless Laplacian
has also been studied; see works [4,32,33,35–37] and the references therein for more details. Recently,
the authors of [38] considered a novel energy with respect to the generalized distance matrix of a graph.
The generalized distance energy, denoted by EDα(G), is defined as

EDα(G) =
n

∑
i=1

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣ .

It is clear from the definition that ED0(G) = ED(G) and 2E
D 1

2 (G) = EQ(G), where ED(G) and
EQ(G) denotes, respectively, the distance energy and the distance signless Laplacian energy of a graph G.
This shows that the concept of generalized distance energy of a graph G merges the theories of distance
energy and the distance signless Laplacian energy of a graph G. Therefore, it will be interesting to study
the quantity EDα(G) and explore some properties like the bounds, the dependence on the structure of
graph G, and the dependence on the parameter α and its relation with other graph-spectrum-based
invariants. The authors of [38] give some bounds for EDα(G) and have investigated its dependence on the
graph topology as well as the parameter α. Our aim in this section is to explore the relationship between
generalized distance Estrada index DαE(G) and generalized distance energy EDα(G) of a simple connected
graph G.

Theorem 8. Suppose that G is a connected graph with order n and diameter d. We have

DαE(G)− EDα(G) ≤ n− 1−

√
n(n− 1)

(
(1− α)2d2 +

α2n2(n− 1)
4

− α2(n− 1)
)

+ e

√
n(n−1)

(
(1−α)2d2+ α2n2(n−1)

4 −α2(n−1)
)

, (21)

and

DαE(G) ≤ n− 1 + eEDα
(G). (22)

Equality holds in (21) and (22) if and only if G ∼= K1.

Proof. Starting with Equation (2), we have

DαE(G) = n +
n

∑
i=1

∑
k≥1

(
∂i − 2αW(G)

n

)k

k!
≤ n +

n

∑
i=1

∑
k≥1

∣∣∣∂i − 2αW(G)
n

∣∣∣k
k!

.

Taking into account the definition of the generalized distance energy, we obtain

DαE(G) ≤ n + EDα(G) +
n

∑
i=1

∑
k≥2

∣∣∣∂i − 2αW(G)
n

∣∣∣k
k!

,
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which leads to

DαE(G)− EDα(G) ≤ n +
n

∑
i=1

∑
k≥2

∣∣∣∂i − 2αW(G)
n

∣∣∣k
k!

≤ n− 1−

√√√√2(1− α)2 ∑
1≤i<j≤n

d2
ij + α2

n

∑
i=1

Tr2
i −

4α2W2(G)

n

+e

√
2(1−α)2 ∑1≤i<j≤n d2

ij+α2 ∑n
i=1 Tr2

i −
4α2W2(G)

n .

Notice that the function f (x) = ex − x monotonically increases for x ≥ 0. Therefore, the minimum

upper bound for DαE(G)− EDα(G) is attained for 2(1− α)2 ∑1≤i<j≤n d2
ij + α2 ∑n

i=1 Tr2
i −

4α2W2(G)
n ≤ 2(1−

α)2 n(n−1)
2 d2 + α2n3(n−1)2

4 − α2n(n− 1)2, and we have

DαE(G)− EDα(G) ≤ n− 1−

√
n(n− 1)

(
(1− α)2d2 +

α2n2(n− 1)
4

− α2(n− 1)
)

+ e

√
n(n−1)

(
(1−α)2d2+ α2n2(n−1)

4 −α2(n−1)
)

.

Another way to obtain the relation between DαE(G) and EDα(G) is as follows,

DαE(G) ≤ n +
n

∑
i=1

∑
k≥1

∣∣∣∂i − 2αW(G)
n

∣∣∣k
k!

≤ n + ∑
k≥1

1
k!

(
n

∑
i=1

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣
)k

= n + ∑
k≥1

(
EDα(G)

)k

k!

= n− 1 + ∑
k≥0

(
EDα(G)

)k

k!
,

implying

DαE(G) ≤ n− 1 + eEDα
(G).

Moreover, equality holds in (21) and (22) if and only if G ∼= K1. �

Theorem 9. Assume that G is connected with order n and 0 ≤ α < 1. Then,

DαE(G) ≤ n− 1− EDα(G) + eEDα (G),

where the equality holds if and only if G = K1.



Mathematics 2019, 7, 995 17 of 24

Proof. Notice that it holds ∑n
i=1

(
∂i − 2αW(G)

n

)
= 0 and ∂1 ≥ 2W(G)

n . From the definition of DαE(G), we get

DαE(G) =
n

∑
i=1

e
(

∂i−
2αW(G)

n

)
= n + ∑

k≥2

1
k!

n

∑
i=1

(
∂i −

2αW(G)

n

)k

≤ n + ∑
k≥2

1
k!

(
n

∑
i=1

∣∣∣∣∂i −
2αW(G)

n

∣∣∣∣
)k

= n + ∑
k≥2

1
k!

(
EDα(G)

)k

= n− 1− EDα(G) + eEDα (G),

with equality attained if and only if ∑n
i=1

(
∂i − 2αW(G)

n

)k
=
(

∑n
i=1

∣∣∣∂i − 2αW(G)
n

∣∣∣)k
holds for all integers

k ≥ 2, i.e., if and only if at most one of ∂i − 2αW(G)
n for i = 1, 2, . . . , n is positive and all others are equal to

zero, i.e., ∂2 = · · · = ∂n = 2αW(G)
n . As ∑n

i=1 ∂i = 2αW(G), then ∂1 = 2αW(G)
n , which is in contradiction with

∂1 ≥ 2W(G)
n . Therefore G = K1, and the proof is complete. �

Remark 4. The following upper bound for the distance Estrada index DEE(G) was obtained in [22],

DEE(G) ≤ n− 1 + eED(G). (23)

Putting α = 0 in the upper bound of Theorem 9, we can easily see that the resulting upper bound for the
distance Estrada index is better than the upper bound given by (23).

Theorem 10. Assume that G is connected with order n. We have

1
2

EDα(G)(e− 1) + n− t ≤ DαE(G) ≤ n− 1 + e
EDα (G)

2 , (24)

where t means the number of eigenvalues with ∂t >
2αW(G)

n . Furthermore, the equality holds on both sides of (24) if
and only if G = K1.

Proof. We will first prove the left inequality. Suppose that t is an integer such that ∂t > 2αW(G)
n and

∂t+1 ≤ 2αW(G)
n . As ex ≥ ex, equality holds if and only if x = 1 and ex ≥ 1 + x, equality holds if and only if

x = 0. We have

DαE(G) =
n

∑
i=1

e
(

∂i−
2αW(G)

n

)
=

t

∑
i=1

e
(

∂i−
2αW(G)

n

)
+

n

∑
i=t+1

e
(

∂i−
2αW(G)

n

)

≥
t

∑
i=1

e
(

∂i −
2αW(G)

n

)
+

n

∑
i=t+1

(
1 + ∂i −

2αW(G)

n

)
= e

(
∂1 + ∂2 + · · ·+ ∂t −

2αtW(G)

n

)
+ (n− t) +

(
∂t+1 + · · ·+ ∂n −

2α(n− t)W(G)

n

)
= (e− 1)

(
∂1 + ∂2 + · · ·+ ∂t −

2αtW(G)

n

)
+ (n− t) +

n

∑
i=1

(
∂i −

2αW(G)

n

)
=

1
2

EDα(G)(e− 1) + n− t.
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Next, we want to prove the right inequality. Since f (x) = ex monotonically increases in the interval
(−∞, ∞), we obtain

DαE(G) =
n

∑
i=1

e∂i−
2αW(G)

n ≤ n− t +
t

∑
i=1

e∂i−
2αW(G)

n

= n− t +
t

∑
i=1

∑
k≥0

(
∂i − 2αW(G)

n

)k

k!

= n + ∑
k≥1

1
k!

t

∑
i=1

(
∂i −

2αW(G)

n

)k

≤ n + ∑
k≥1

1
k!

(
t

∑
i=1

(
∂i −

2αW(G)

n

))k

= n− 1 + e
EDα (G)

2 .

We observe that the equality holds on both sides of (24) if and only if EDα(G) = 0. This only happens
when G = K1 since G is a connected graph. �

Remark 5. We observe that the upper bound given in (24) is better than the upper bound given in (22). Also, putting
α = 0 in the upper bound of Theorem 10, we can easily see that the resulting upper bound for the distance Estrada
index is also better than the upper bound given by (23).

6. Examples

In this section, we obtain some results about the generalized distance Estrada index of some typical
graphs. This would be instrumental in interpreting this measure further in the case of more complex
graphs. We also give an expression for DαE(G) of a (transmission) regular graph G, in terms of the distance
eigenvalues as well as adjacency eigenvalues of G, and describe the generalized distance Estrada index of
some graphs obtained by operations.

As mentioned in introduction of the paper, for α = 0 the generalized distance matrix Dα(G) is
equivalent to the distance matrix D(G) and for α = 1

2 , twice the generalized distance matrix Dα(G) is the
same as the distance signless Laplacian matrix DQ(G). Therefore, if in particular we put α = 0 and α = 1

2
in all the results obtained in this paper, we obtain the corresponding bounds for the distance Estrada index
DEE(G) and the distance signless Laplacian Estrada index DQ

E E(G), respectively.

Theorem 11. Suppose that G is a k-transmission regular graph of order n having distance eigenvalues
µ1, µ2, . . . , µn. Then,

DαE(G) =
n

∑
i=1

e(1−α)µi .

Proof. Note that the generalized distance spectrum of the graph G consists of αk + (1− α)µ1 ≥ αk + (1−
α)µ2 ≥ · · · ≥ αk + (1− α)µn, where µ1 ≥ · · · ≥ µn is the distance spectrum of G. Also, it is easy to see
that W(G) = nk

2 . Then, DαE(G) = ∑n
i=1 eαk+(1−α)µi−αk = DEE(G) = ∑n

i=1 e(1−α)µi . �
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Theorem 12. Let G be an r-regular graph of order n, size m and diameter at most 2. If {r, λ2, . . . , λn} are the
eigenvalues of the adjacency matrix A(G) of G, then

DαE(G) = en(2n−r−2)−2α(n2−n−m) +
n

∑
i=2

eα(nλi+rn+2n+2m)−n(λi+2).

Proof. The transmission of each vertex v ∈ V(G) can be computed as Tr(v) = d(v) + 2(n− d(v)− 1) =
2n− d(v)− 2 and the Wiener index W(G) of G becomes W(G) = n2 − n−m. Also,

Dα(G) = αTr(G) + (1− α)D(G) = α(2n− r− 2)I + (1− α)(2J − 2I − A(G))

= α((2n− r− 2)I − 2J + 2I + A(G)) + 2J − 2I − A(G),

where J is the all ones matrix. Then,

DαE(G) =
n

∑
i=1

e∂i−
2αW(G)

n = e(2n−r−2)− 2α(n2−n−m)
n +

n

∑
i=2

e(α(2n+λi−r)−λi−2)− 2α(n2−n−m)
n

= en(2n−r−2)−2α(n2−n−m) +
n

∑
i=2

eα(nλi+rn+2n+2m)−n(λi+2).

�
We denote by G × H the cartesian product of two graphs G and H. It is the graph with vertex set

V(G)×V(H) and two vertices (u1, u2) and (v1, v2) are adjacent if and only if u1 = v1 and u2v2 ∈ E(H) or
u2 = v2 and u1v1 ∈ E(G).

Corollary 4. Let G be an r-regular graph of diameter at most 2 with an adjacency matrix A and spec(G) =

{r, λ2, . . . , λn}. Then, the generalized distance Estrada index of H = G× K2 is

DαE(H) = n− 1 + e(1−α)(5n−2r−4) + e(α−1)n +
n

∑
i=2

e(α−1)(2λi+4).

Proof. Let V(G) = {v1, v2, . . . , vn}, V(K2) = {w1, w2}. As
dH((vi, wj), (vs, wt)) = dG(vi, vs) + dK2(wj, wt) = dG(vi, vs) + 1, we see that all vertices of H
have the same transmission and TrH(vi, wj) = 5n − 2r − 4. So Tr(H) = (5n − 2r − 4)I.

Then W(H) = n(5n−2r−4)
2 . Note that H = G × K2 has distance spectrum (see in [37]) spec(H) ={

5n− 2(r + 2),−2(λi + 2),−n, 0[n−1]
}

, for i = 2, . . . , n.
Then,

DαE(H) = n− 1 + e(1−α)(5n−2r−4) + e(α−1)n +
n

∑
i=2

e(α−1)(2λi+4).

�
The graph G∇G is obtained by joining each vertex of G to each vertex of a second copy of G.

Corollary 5. Let G be an r-regular graph with an adjacency matrix A and spec(G) = {r, λ2, . . . , λn}. Then,
the generalized distance Estrada index of G∇G is

DαE(G∇G) = e(1−α)(3n−r−2) + e(1−α)(n−r−2) + 2
n

∑
i=2

e(α−1)(2λi+4).
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Proof. For v ∈ G∇G, it is easy to see that Tr(v) = d(v) + 2(n− d(v)− 1) + n = 3n− d(v)− 2 = 3n− r− 2.
Then, G∇G is a transmission regular graph and Tr(G∇G) = (3n− r− 2)I. Note that the G∇G has distance
spectrum (see in [37]) spec(G∇G) =

{
3n− r− 2, n− r− 2,−2(λi + 2)[2]

}
, for i = 2, . . . , n. Then,

DαE(G∇G) = e(1−α)(3n−r−2) + e(1−α)(n−r−2) + 2
n

∑
i=2

e(α−1)(2λi+4).

�
Next, we study the generalized distance Estrada index of the lexicographic product G[H] of two

graphs G and H. The lexicographic product of G and H can be defined as follows.

Definition 1 ([39]). Let G and H be two graphs on vertex sets V(G) = {u1, u2, . . . , up} and V(H) =

{v1, v2, . . . , vn}, respectively. Their lexicographic product G[H] is a graph defined by V(G[H]) = V(G)×
V(H), the cartesian product of V(G), and V(H), where u = (u1, v1) is adjacent to v = (u2, v2) if and only
if either
(a) u1 is adjacent to v1 in G, or
(b) u1 = v1 and u2 is adjacent to v2 in G.

Theorem 13. Given a k-transmission regular graph G of order p. If H is an r-regular graph of order n with
adjacency eigenvalues {r, λ2, . . . , λn}, then

DαE(G[H]) = e(1−α)(2n−r−2)
p

∑
i=1

e(1−α)nµi + ne4(α−1)
n

∑
j=2

e2λj(α−1),

where {µ1, . . . , µp} are the eigenvalues of the distance matrix D(G).

Proof. For v ∈ G[H], it is easy to see that Tr(v) = r + 2(n− r− 1) + kn = kn + 2n− r− 2. Then G[H] is
a transmission regular graph and Tr(G[H]) = (kn + 2n− r− 2)I. Note that G[H] has distance spectrum
(see [40]) spec(G[H]) =

{
nµi + 2n− r− 2,−2(λj + 2)[n]

}
, for i = 1, . . . , p and j = 2, . . . , n. Then,

DαE(G[H]) = e(1−α)(2n−r−2)
p

∑
i=1

e(1−α)nµi + ne4(α−1)
n

∑
j=2

e2λj(α−1).

�

Example 1. Let Cn be a cycle of order n and K2 be the complete graph of order 2. Then, the closed fence graph is
defined as G = Cn[K2], and depicted in Figure 1. Applying Theorem 13, we will be able to compute the generalized
distance Estrada index of closed fence G = Cn[K2]. It is well known ([41], Theorem 3) that Cn is a k-transmission
regular graph, with k = b n2

4 c. It is also clear tht the adjacency spectrum of the graph K2 is spec(K2) = {1,−1}.
Then, applying Theorem 13, the generalized distance Estrada index of closed fence Cn[K2], according to the parity of
n, is as follows.

If n = 2z (i.e., n is even), then following [2] the distance spectrum of Cn is

spec(Cn) =

{
0[z−1],

n2

4
,− csc2

(
π(2j− 1)

n

)}
for j = 1, . . . , z.
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Thus, applying Theorem 13 we have

DαE(Cn[K2]) = e1−α

(
z− 1 + e(1−α) n2

2 +
z

∑
j=1

e2(α−1) csc2
(

π(2j−1)
n

))
+ 2e2(α−1).

If n = 2z + 1 (i.e., n is odd), then following [2] the distance spectrum of Cn is

spec(Cn) =

{
n2 − 1

4
,−1

4
sec2

(
π j
n

)
,−1

4
csc2

(
π(2j− 1)

2n

)}
for j = 1, . . . , z.

Thus, applying Theorem 13 we have

DαE(Cn[K2]) = e1−α

(
e(1−α) n2−1

2 +
z

∑
j=1

e
1
2 (α−1) sec2

(
π j
n

)
+

z

∑
j=1

e
1
2 (α−1) csc2

(
π(2j−1)

2n

))
+ 2e2(α−1).

Figure 2 shows DαE(Cn[K2]) versus n for different values of α.

Figure 1. The closed fence graph.
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7. Conclusions

The concept of Estrada index of a graph was first motivated by Ernesto Estrada in [9] as the sum of
the exponential of the eigenvalues of adjacency matrix assigned to graphs. In recent years, because of the
apparent success of the graph Estrada index, many variations of Estrada index have been proposed and
varied Estrada indices based on the eigenvalues of other graph matrices have, one-by-one, been introduced:
Estrada index-based invariant with respect to distance matrix, Laplacian matrix, signless Laplacian matrix,
distance Laplacian matrix and also distance signless Laplacian matrix, etc.

As the distance and distance signless Laplacian matrices of graphs play an essential role in
mathematics and are more informative than ordinary adjacency matrix, in this paper, the Estrada index
of generalized distance matrix is firstly defined and investigated. In fact, this is a natural generalization
of distance Estrada and distance signless Laplacian Estrada indices. Thus all properties about them can
be handled by this new index, and any result regarding the spectral properties of generalized distance
Estrada index, has its counterpart for each of these particular indices, and these counterparts follow
immediately from a single proof. As characterization of DαE(G) turns out to be highly desirable in
mathematics as well as engineering, it is interesting to study the quantity DαE(G) and explore some
properties including the bounds, the dependence on the structure of graph G, and the dependence on
the parameter α. We established some bounds for the generalized distance Estrada index DαE(G) of
a connected graph G, in terms of the different graph parameters including the order n, the Wiener index
W(G), the transmission degree, and the parameter α ∈ [0, 1]. We have also characterized the extremal
graphs attaining these bounds. We worked out some expressions for DαE(G) of some special classes
of graphs.
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18. Estrada, E.; Rodriguez-Velázguez, J.A.; Randić, M. Atomic branching in molecules. Int. J. Quantum Chem. 2006,

106, 823–832. [CrossRef]
19. Shang, Y. Local natural connectivity in complex networks. Chin. Phys. Lett. 2011, 28, 068903. [CrossRef]
20. Estrada, E. The Structure of Complex Networks-Theory and Applications; Oxford University Press: New York,

NY, USA, 2012.
21. Shang, Y. Perturbation results for the Estrada index in weighted networks. J. Phys. A Math. Theor. 2011, 44, 075003.

[CrossRef]
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