
mathematics

Article

Hybrid Contractions on Branciari Type
Distance Spaces

Kamaleldin Abodayeh 1 , Erdal Karapınar 2 , Ariana Pitea 3 and Wasfi Shatanawi 1,4,*
1 Department of Math and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia;

kamal@psu.edu.sa
2 Department of Medical Research, China Medical University, Taichung 40402, Taiwan;

erdalkarapinar@yahoo.com
3 Department of Mathematics and Informatics, University Polithenica of Bucharest,

060042 Bucharest, Romania; arianapitea@yahoo.com
4 Department of Medical Research, China Medical University Hospital China Medical University,

Taichung 40402, Taiwan
* Correspondence: wshatanawi@psu.edu.sa

Received: 12 September 2019; Accepted: 14 October 2019; Published: 19 October 2019
����������
�������

Abstract: In this manuscript, we consider some hybrid contractions that merge linear and nonlinear
contractions in the abstract spaces induced by the Branciari distance and the Branciari b-distance.
More precisely, we introduce the notion of a (p, c)-weight type ψ-contraction in the setting of Branciari
distance spaces and the concept of a (p, c)-weight type contraction in Branciari b-distance spaces.
We investigate the existence of a fixed point of such operators in Branciari type distance spaces and
illustrate some examples to show that the presented results are genuine in the literature.

Keywords: Branciari type metric space; hybrid contraction; (p, c)-weight type ψ-contraction;
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1. Introduction

The notion of metric spaces has many generalizations, in which each puts in the limelight the
importance of the conditions that define them. Most of the generalizations of metric are obtained
by relaxing one of its three axioms: self-distance, symmetry and the triangle inequality. In the
literature, there are several extensions of metric spaces, such as symmetric, quasi-metric, fuzzy
metric, cone-metric, G-metric, b-metric and so on. In this manuscript, we prefer to investigate
hybrid contractions in the abstract spaces induced by Branciari distance. Indeed, Branciari distance [1]
(respectively, Branciari b-distance [2]) is obtained by replacing the triangle inequality axiom with the
quadrilateral inequality (quadrilateral inequality multiplied by a constant s) axiom in the definition of
a standard metric. Despite the apparent similarity between the definitions of the standard metric and
Branciari distance (respectively, Branciari b-distance), the corresponding topologies are quite different.
Therefore, we name this abstract space as Branciari distance space instead of Branciari metric space.
In addition, in the literature, this space has been called a rectangular metric space or a generalized
metric space. We assert that the abstract space is described perfectly by Branciari distance spaces.
Furthermore, despite the appearance purpose, Branciari distance is neither a generalization nor an
extension of the standard metric space. On the other hand, interesting fixed point features have been
appointed in these frameworks, see e.g., [3–31].

In this manuscript, we aim to give two hybrid contractions, namely the (p, c)-weight type
ψ-contraction and the (p, c)-weight type contraction in the setting of two abstract constructions:
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Branciari distance spaces and Branciari b-distance spaces. We obtain the existence of a fixed point for
these hybrid contractions and we consider examples to support our obtained results.

Definition 1 ([1]). Let X 6= ∅ and d : X ×X → [0, ∞) a function which fulfills the next assumptions for
each s, t ∈ X and all distinct u, v ∈ X each of which is different from s and t

(b1) d(s, t) = 0 if and only if s = t;
(b2) d(s, t) = d(t, s);
(b3) d(s, t) ≤ d(s, u) + d(u, v) + d(v, t)(the quadrilateral inequality) .

Then d is a Branciari distance (a generalized metric). The pair (X , d) is called a Branciari distance
space (BDS).

Throughout the paper, the couple letters (X , d) refers to a Branciari distance space.
Herein after, the symbol R+

0 represents the set of non-negative real numbers. Further, the symbol
N0 denotes the non-negative integers.

In what follows, we recollect the important tools of topology in the framework of Branciari
distance spaces.

Definition 2.

1. {κn} in (X , d) is convergent to κ if and only if d(κn,κ)→ 0 as n→ ∞.
2. {κn} in (X , d) is Cauchy if and only if for each ε > 0 we may find N(ε) such that d(κn,κm) < ε for all

n > m > N(ε).
3. A Branciari distance space (X , d) is complete if each Cauchy (fundamental) sequence in (X , d) is

convergent.
4. A mapping T : (X , d)→ (X , d) is continuous if for any sequence {κn} in X such that d(κn,κ)→ 0 as

n→ ∞, we have d(Tκn, Tκ)→ 0 as n→ ∞.

Branciari introduced the open ball, the closed ball (and hence the corresponding topology) which
are different than that of metric spaces. In addition, the structures of these two abstract notions are
quite different from each other. Indeed, the following interesting properties of the Branciari distance
space are the main motivation why we consider our new hybrid contractions in these abstract spaces

1. The limit of a sequence in a Branciari distance space is not necessarily unique.
2. A convergent sequence in a Branciari distance space may not be a Cauchy sequence.
3. A Branciari distance space may not be continuous.
4. The topologies of a Branciari distance space and a metric space are incompatible.

For more details, see e.g., [13,26,28–31].
Next, we provide an example of a genuine BDS.

Example 1 ([28]). Let X = {(0, 0)} ∪ ((0, 1]× [0, 1]). Define a function d : X ×X → R+
0 by

d((κ, ω), (κ, ω)) = 0,
d((0, 0), (κ, 0)) = d((κ, 0), (0, 0)) = κ, κ ∈ (0, 1],

d((κ, 0), (ω, η)) = d((ω, η), (κ, 0))) = |κ −ω|+ η, κ, ω, η ∈ (0, 1]
d((κ, θ), (ω, η)) = 3, otherwise.

It is evident that (X , d) forms a Branciari distance space.

Proposition 1 ([19]). Suppose that {κn} is a Cauchy sequence in a BDS (X , d) with lim
n→∞

d(κn, u) = 0,

where u ∈ X . Then lim
n→∞

d(κn, z) = d(u, z) for all z ∈ X . In particular, the sequence {κn} does not converge
to z if z 6= u.
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Lemma 1 (See e.g., [15]). Let (X , d) be a BDS and let {κn} be a Cauchy sequence in X such that κm 6= κn

whenever m 6= n. Then the sequence {κn} converges to at most one point.

2. Results on Branciari Distance Spaces

We start this section by giving a definition of the set Ψ of auxiliary functions, known as
(c)-comparison function, (see e.g., [8,24]) that shall be used in the main result.

c := {ψ : [0, ∞)→ [0, ∞) : ψ satisfies (Ψ1)− (Ψ2)},

where

(Ψ1) ψ is nondecreasing;
(Ψ2) there are i0 ∈ N and δ ∈ (0, 1) and a convergent series ∑∞

i=1 vi such that vi ≥ 0 and

ψi+1 (t) ≤ δψi (t) + vi,

for i ≥ i0 and t ≥ 0.

Lemma 2 ([24]). If ψ ∈ Ψ, then

(i) ψ (t) < t, for any t ∈ R+;
(ii) ψ is continuous at 0;
(iii) (ψn (t))n∈N converges to 0 as n→ ∞ for t ≥ 0;
(iv) the series ∑∞

k=1 ψk (t) is convergent for t ≥ 0.

First, by utilizing a (c)-comparison function, we introduce a new type contraction that combines
both the linear and nonlinear type contractions in the context of Branciari distance spaces.

Definition 3. A self-mapping T on (X , d) is said to be a (p, c)-weight type ψ-contraction, if there exists ψ ∈ Ψ
so that the following inequality holds for any s, t ∈ X which are not fixed points of T

d(Ts, Tt) ≤ ψ(W p,c
T (s, t)), (1)

where p ≥ 0, c = (c1, c2, c3), and c1, c2, and c3 are positive numbers such that c1 + c2 + c3 = 1, and

W p,c
T (s, t) =

{
(c1dp(s, t) + c2dp(s, Ts) + c3dp(t, Tt))

1
p , if p > 0

dc1(s, t)dc2(s, Ts)dc3(t, Tt), if p = 0.

Note that such contractions, defined in Definition 3, were initiated in the recent paper [21] in the
setting of b-metric spaces.

Theorem 1. Let (X , d) be a complete BDS and T : X → X be a (p, c)-weight type ψ-contraction mapping.
Then the mapping T possesses a fixed point κ∗.

Proof. Starting with κ ∈ X , put κ0 = κ and define κn+1 = Tκn. Without loss of generality, we may
assume that for any n ∈ N0, κn 6= κn+1. Indeed, in case of κn0 = κn0+1 = Tκn0 for some n0 ∈ N, then
κn0 is a fixed point of T that finalize the proof.

Let us take into consideration the situation in which p > 0. The proof of this situation consists of
three steps.

First step: We shall indicate that

lim
n→∞

d(κn,κn+1) = 0 and lim
n→∞

d(κn,κn+2) = 0.
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Using the contraction condition, we get, for n ≥ 1,

d(κn,κn+1) ≤ ψ(W p,c
T (κn,κn+1))

= ψ

(
[c1dp(κn−1,κn) + c2dp(κn,κn+1) + c3dp(κn−1,κn)]

1
p

)
.

If d(κn0−1,κn0) ≤ d(κn0 ,κn0+1) for some n0 ∈ N, then we get

d(κn0 ,κn0+1) ≤ ψ

([
c1dp(κn0 ,κn0+1) + c2dp(κn0 ,κn0+1) + c3dp(κn0−1,κn0)

] 1
p

)
= ψ

([
(c1 + c2 + c3)dp(κn0+1,κn0)

] 1
p

)
= ψ

(
d(κn0+1,κn0)

)
< d(κn0+1,κn0),

a contradiction. Consequently, we find that d(κn,κn+1) ≤ d(κn−1,κn), n ∈ N, and further,

d(κn,κn+1) ≤ ψ(d(κn−1,κn)) ≤ d(κn−1,κn). (2)

In addition, we find that
d(κn,κn+1) ≤ ψn(d(κ0,κ1)).

On account of Lemma 2,
lim

n→∞
d(xn, xn+1) = 0. (3)

We prove that
lim

n→∞
d(κn,κn+2) = 0. (4)

Regarding (1), we find that

d(κn,κn+2) = d(Txn−1, Txn+1) ≤ ψ(W p,c
T (κn−1,κn+1)), (5)

for all n ≥ 1, where

W p,c
T (κn−1,κn+1) = (c1dp(κn−1,κn+1) + c2dp(κn−1, Tκn−1) + c3dp(κn+1, Tκn+1))

1
p . (6)

Now, we shall consider the possible cases. If

max{d(κn−1,κn+1), d(κn−1,κn), d(κn,κn+2)} = d(κn,κn+2).

as in the above case, we get d(κn,κn+2) ≤ ψ(d(κn,κn+2)) < d(κn,κn+2), a contradiction. Thus, we
have the following estimation

W p,c
T (κn−1,κn+1) ≤ [(c1 + c2 + c3)max{dp(κn−1,κn+1), dp(κn−1,κn)}]

1
p ,

= [max{dp(κn−1,κn+1), dp(κn−1,κn)}]
1
p .

Take an = d(κn,κn+2) and bn = d(κn,κn+1). Thus, from (6) and (5)

an = d(κn,κn+2) ≤ ψ(M(κn−1,κn+1)) = ψ([max{ap
n−1, bp

n−1}]
1
p ) for all n ∈ N. (7)

Again, by (2)

bn ≤ bn−1 ≤ [max{ap
n−1, bp

n−1}]
1
p .



Mathematics 2019, 7, 994 5 of 11

Therefore,

max{an, bn} ≤ [max{ap
n−1, bp

n−1}]
1
p = max{an−1, bn−1} for all n ∈ N.

The sequence {max{an, bn}} is monotone nonincreasing, so it converges to some t ≥ 0. Taking
the limit as n→ ∞, we get

t = lim sup
n→∞

max{an, bn} ≤ lim sup
n→∞

ψ(max{an−1, bn−1}) ≤ ψ( lim
n→∞

max{an−1, bn−1}) = ψ(t) < t,

which is a contradiction; that is, (4) is proved.

Second step: We aim to indicate that the sequence {xn} is not periodic; that is,

κn 6= κm for all n 6= m.

We shall use the method of Reductio ad Absurdum. We presume that κn = κm for some m, n ∈ N
with m 6= n. Regarding that d(κp,κp+1) > 0 for each p ∈ N, without loss of generality, we may
assume that m > n + 1.

By employing the contraction inequality, we find

d(κn,κn+1) = d(κn, Tκn) = d(κm, Tκm)

= d(Tκm−1, Tκm) ≤ ψ(W p,c
T (κm−1,κm)),

(8)

where

W p,c
T (κm−1,κm) = [c1dp(κm−1,κm) + c2dp(κm−1, Txm−1) + c3dp(κm, Txm)]

1
p

= [c1dp(κm−1,κm) + c2dp(κm−1, xm) + c3dp(κm,κm+1)]
1
p

(9)

Since d(κm,κm+1) ≤ d(κm−1,κm), then from (8) we get

d(κn,κn+1) = d(κn, Txn) = d(κm, Txm)

= d(κm,κm+1)

≤ ψ(W p,c
T (κm−1,κm))

≤ ψ(d(κm−1,κm))

≤ ψm−n(d(κn,κn+1)).

(10)

Since ψ is monotone, inequality (10) yields

d(κn,κn+1) ≤ ψm−n(d(κn,κn+1)) < d(κn,κn+1), (11)

a contradiction.

Third and last step: We assert that the recursive sequence {κn} is a Cauchy sequence, i.e.

lim
n→∞

d(κn,κn+k) = 0 for all k ∈ N. (12)

Note that the above inequality holds for k = 1 and k = 2 due to (12) and (4). So, we investigate
relation (12) for k ≥ 3. Owing to the nature of Branciari distances, we need to examine the following
two possibilities.
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Case (I): Assume that k = 2m + 1 where m ≥ 1. Then, by utilizing the second step together with
relation (3) and the quadrilateral inequality, we observe

d(κn,κn+k) = d(κn,κn+2m+1) ≤ d(κn,κn+1) + d(κn+1,κn+2) + . . . + d(κn+2m,κn+2m+1)

≤
n+2m

∑
p=n

ψp(d(κ0,κ1))

≤
+∞

∑
p=n

ψp(d(κ0,κ1))→ 0 as n→ ∞.

(13)
Case (II): Assume that k = 2m where m ≥ 2. Again by (3) and employing the quadrilateral

inequality and keeping second step in mind, we derive

d(κn,κn+k) = d(κn,κn+2m) ≤ d(κn,κn+2) + d(κn+2,κn+3) + . . . + d(κn+2m−1,κn+2m)

≤ d(κn,κn+2) +
n+2m−1

∑
p=n+2

ψp(d(κ0,κ1))

≤ d(κn,κn+2) +
+∞

∑
p=n

ψp(d(κ0,κ1))→ 0 as n→ ∞.

(14)

By combining relations (13) and (14), we have

lim
n→∞

d(κn,κn+k) = 0 for all k ≥ 3.

We conclude that {κn} is a Cauchy sequence in (X , d). From the completeness of X , the iterative
sequence {κn} is convergent to κ.

Observe that c3
1
p < 1. Suppose Tκ 6= κ.

Going back now to the contractive condition, it follows

d(Tκn, Tκ) ≤ ψ
(
W p,c

T (κn,κ)
)
<W p,c

T (κn,κ)

= (c1dp(κn,κ) + c2dp(κn,κn+1) + c3dp(κ, Tκ))
1
p .

Consider n→ ∞; we get that d(κ, Tκ) ≤ c3
1
p d(κ, Tκ), a contradiction. Hence Tκ = κ.

Having now in view the case p = 0, we have

d(κn,κn+1) ≤ ψ(dc1(κn−1,κn)dc2(κn−1,κn)dc3(κn,κn+1)).

As it is mentioned above, in case of d(κn−1,κn) ≤ d(κn,κn+1) we get

d(κn,κn+1) ≤ ψ(d(κn,κn+1)) < d(κn,κn+1),

a contradiction. Accordingly, we conclude that

d(κn,κn+1) ≤ ψ(d(κn−1,κn)) < d(κn−1,κn).

In addition, we have
d(κn,κn+1) ≤ ψn−1(d(κ0,κ1)).

By following the necessary steps as above, we obtain that κn → κ. It follows that

d(Tκn, Tκ) ≤ dc1(κn,κ)dc2(κn−1,κn)dc3(κ, Tκ).

Letting n→ ∞, we find that d(κ, Tκ) = 0 and hence this case is also proved.
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In what follows, we define the second hybrid contraction in BDS as follows:

Definition 4. A self-mapping T on (X , d) is said to be a (p, c)-weight type contraction, if there is a constant q
in (0, 1) so that the following inequality holds for any s, t ∈ X which are not fixed points of T

d(Ts, Tt) ≤ qW p(T, s, t, c),

where p ≥ 0, c = (c1, c2, c3), and c1, c2, and c3 are positive numbers such that c1 + c2 + c3 = 1, and

W p(T, s, t, c) =

{
(c1dp(s, t) + c2dp(s, Ts) + c3dp(t, Tt))

1
p , if p > 0

dc1(s, t)dc2(s, Ts)dc3(t, Tt), if p = 0.

Note that such contractions, as in Definition 4, were initiated in the recent paper [21] in the setting
of b-metric space.

Example 2. Consider the set X = {0, 1, 2, 3}, and the BDS d : X ×X → [0, ∞), defined by

d(κ, ω) =


0, ifκ = ω;
3, if (κ, ω) ∈ {(1, 2), (2, 1)};
1, otherwise.

(X , d) is a BDS, but not a usual metric space, since d(1, 2) > d(1, 0) + d(0, 2). Furthermore, consider
T : X ×X → X , T0 = 1, T1 = 2, T2 = 2, T3 = 3. T is a (p, c)-weight type contraction with q ≥

√
11

11 , and
c1 = c2 = c3 = 1

3 , fact which can be easily checked.

Corollary 1. Let (X , d) be a complete BDS and T : X → X be a (p, c)-weight type ψ-contraction mapping.
Then the mapping T possesses a fixed point κ∗.

Proof. It is sufficient to take ψ(t) = qt where q ∈ (0, 1).

Remark 1. It is clear that by a proper choice of c1, c2, c3, q and p > 0, several existing results are found in
the literature. Among them we can list the original Branciari contraction and Kannan-type, Chatterjea type,
Ćirić-Reih-Rus type linear contractions as well as nonlinear (interpolative) contractions for p = 0 with a suitable
choice of c1, c2, c3.

The uniqueness is not a feature of such kind of a generalized contraction; for a counterexample see [6].

3. Results on Branciari b-Distance Spaces

We start by the recollecting definition of Branciari b-metric spaces.

Definition 5 (See e.g., [18]). Let S be a nonempty set, s ≥ 1, and δ : S ×S → [0, ∞) a function which fulfills
the following conditions for all w, t ∈ S and all distinct u, v ∈ S each of which is different from s and t

(b1) δ(w, t) = 0 if and only if w = t;
(b2) δ(w, t) = δ(t, w);
(b3) δ(w, t) ≤ s[δ(w, u) + δ(u, v) + δ(v, t)], (the extended quadrilateral inequality).

Then δ is a Branciari b-distance. The pair (S , δ) is called a Branciari b-distance space (in short, BbDS).

Throughout the paper, (S , δ) refers to a Branciari b-distance space.
For an example of such a space, we cite [23].
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Example 3. Let (S , D) be a BDS. Consider the mapping δ : S × S → [0, ∞), δ(κ, ρ) = Dp(κ, ρ) for any
p ∈ (0, ∞) \ {1}. Then δ is a BbDS.

Convergence, Cauchy property and completeness are defined as in the case of BDS. More precisely,

Definition 6.

1. {κn} in a (S , δ) is convergent to κ if and only if δ(κn,κ)→ 0 as n→ ∞.
2. {κn} in a (S , δ) is Cauchy if and only if for each ε > 0 we may find N(ε) such that δ(κn,κm) < ε for all

n > m > N(ε).
3. A Branciari b-distance space (S , δ) is complete if each Cauchy (fundamental) sequence in (S , δ) is

convergent.
4. A mapping T : (S , δ)→ (S , δ) is continuous if for any sequence {κn} in X such that δ(κn,κ)→ 0 as

n→ ∞, we have δ(Tκn, Tκ)→ 0 as n→ ∞.

Definition 7. Consider (S , δ) a BbDS. T : S → S is a (p, c)-weight type contraction if there is a constant q
in (0, 1) so that the following inequality holds for any s, t ∈ S which are not fixed points of the mapping T

δ(Ts, Tt) ≤ qW p(T, s, t, c),

where p ≥ 0, c = (c1, c2, c3), and c1, c2, and c3 are positive numbers such that c1 + c2 + c3 = 1, and

W p(T, s, t, c) =


(c1δp(s, t) + c2δp(s, Ts) + c3δp(t, Tt))

1
p , if p > 0

δc1(s, t)δc2(s, Tt)δc3(t, Tt), if p = 0.

Example 4. Consider the set X = {0, 1, 2, 3}, and the BbDS d : X ×X → [0, ∞), defined by

d(κ, ω) =


0, ifκ = ω;
4, if (κ, ω) ∈ {(1, 3), (3, 1)};
1, otherwise.

d is a BbDS with s = 2, but not an BbDS metric space, since d(1, 3) > d(1, 0) + d(0, 1) + d(1, 3). Furthermore,
consider T : S → S , defined by T0 = 0, T1 = 3, T2 = 0, T3 = 3. Then T is a (p, c)-weight type contraction,
which can be easily checked.

Theorem 2. Suppose that a self-mapping T on a complete BbDS (S , δ) forms a (p, c)-weight type contraction

mapping for which spq2pc2
1 < 1, qpc3s < 1, sC2 < 1, where C = q

(
c1+c3

1−qpc2

) 1
p
< 1. If T is a continuous

mapping, then the Picard iteration sequence {Tnκ0}, κ0 ∈ S , is convergent to a fixed point κ.

Proof. Consider κn+1 = Tκn, for any κ ∈ S . We may assume that for any n ∈ N0, κn 6= κn+1. Let us
take into consideration the situation in which p > 0. By the use of the contraction condition, we get,
for n ≥ 1,

δ(κn,κn+1) ≤ q (c1δp(κn−1,κn) + c2δp(κn,κn+1) + c3δp(κn−1,κn))
1
p ,

that is, for n ≥ 1,

δ(κn,κn+1) ≤
(

qp(c1 + c3)

1− qpc2

) 1
p

δ(κn−1,κn).

By the same means as in the previous theorem, we get, for n ∈ N0,

δ(κn,κn+2) ≤ Cnpqp(1− c1)
Cp

Cp − qpc1
δp(x0, x1) + qnpcn

1 δp(x0, x2).
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Let us now consider n ∈ N0, m ≥ 2. Taking advantage of the quadrilateral inequality, we obtain

δ(κn,κn+2m+1) ≤
m−1

∑
k=0

sk+1(δ(κn+2k,κn+2k+1) + δ(κn+2k+1,κn+2k+2)
)
+ smδ(κn+2m,κn+2m+1)

≤ 2
m

∑
k=0

Cn+2ksk+1δ(κ0,κ1)

≤ 2s
1− sC2 Cnsδ(κ0,κ1). (15)

On the other hand, it can be observed that

δ(κn,κn+2m) ≤ s(δ(κn,κn+1) + δ(κn+1,κn+2) + δ(κn+2,κn+2m))

≤
m−2

∑
k=0

sk+1(δ(κn+2k,κn+2k+1) + δ(κn+2k+1,κn+2k+2)
)

+sm−1δ(κn+2m−2,κn+2m)

≤ 2
m−2

∑
k=0

sk+1Cn+kδ(κ0,κ1) + sm−1
(

C(n+2m−2)pqp(1− c1)
Cp

Cp − qpc1
δp(κ0,κ1)

+q(n+2m−2)pcn+2m−2
1 δp(x0, x2)

) 1
p

≤ 1
1− sC

sCnδ(κ0,κ1) +
(
Cn−1qp(1− c1)

Cp

Cp − qpc1
δp(κ0,κ1)

+qnpcn
1 δp(κ0,κ2)

) 1
p . (16)

Having in mind inequalities (15) and (16), it follows that {κn} is a Cauchy sequence. The
completeness of X implies that the sequence {κn} is convergent to κ ∈ X .

Going back now to the contractive condition, it follows

δ(Tκn, Tκ) ≤ qMp(T,κn,κ, c)

= q (c1δp(κn,κ) + c2δp(κn,κn+1) + c3δp(κ, Tκ))
1
p .

Having in mind also that

δ(κ, Tκ) ≤ s (δ(κ,κn) + δ(κn,κn+1) + δ(κn+1, Tκ)) ,

consider n→ ∞; we get that δ(κ, Tt∗) ≤ qc3
1
p sδ(t∗, Tκ), hence Tκ = κ.

In the case p = 0 might be treated in a similar way as in the proof of the previous theorem.

Here, we underline the importance of Remark 1 and can easily derive the analog of it.

Remark 2. On account of a proper choice of c1, c2, c3, q and p > 0, several results are extracted in the
framework of the linear contractions as well as nonlinear (interpolative) contractions for p = 0 with a suitable
choice of c1, c2, c3.

4. Conclusions

Regarding the basic three axioms (self-distance, symmetry and the triangle inequality) of the
standard metric space, we notice that almost all generalization and extension presume the first of
them. The distance function is called symmetric if it satisfies the axioms of self-distance and symmetry.
This crucial notion is very weak to construct a topology on which we can consider nonlinear analysis
problems. Investigation of Branciari distance space has a crucial role in order to comprehend the
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possibility and the impossibility of the fundamental notion: semimetric spaces. The presented results
are considered a stone in construction of this road. On the other hand, this result may lead to new
research topics. For example considering the following publications, [3,4,10,12,16,25,27] one can
consider the characterization of these results in the Branciari type distance spaces.
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