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Abstract: In this paper, noise removing of the well test data is considered. We use the Legendre
expansion to approximate well test data and a truncated strategy has been employed to reduce noise.
The parameter of the truncation will be chosen by a discrepancy principle and a corresponding
convergence result has been obtained. The theoretical analysis shows that a well numerical
approximation can be obtained by the new method. Moreover, we can directly obtain the stable
numerical derivatives of the pressure data in this method. Finally, we give some numerical tests to
show the effectiveness of the method.
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1. Introduction

Well test analysis is an important branch of reservoir engineering. In well test analysis, we can
obtain some reservoir characteristics (reservoir permeability, wellbore storage coefficient, skin factor,
drainage radius, etc.) by downhole pressure data which collected by permanent downhole gauges
(PDG). Due to various reasons such as problems in gauges that occur by physical changes in reservoir,
the original data from PDG usually contains large amounts of noise. Distorted data may cause high
degree of uncertainty in well test interpretations and hence, PDG data have to be pre-processed before
further analysis.

Noise removing is important in the process of analyzing well test data. The Butterworth digital
filter method has been used by Osman and Stewart [1] to subtract noise in the data but it has poor
performance in some cases such as have been shown by Kikani and He in Reference [2]. Instead,
a wavelet analysis has been employed to remove noise. In Reference [3], Athichanagorn et al.
proposed a seven-step procedure combining wavelet transform for the PDG data processing.
Since then, numerous de-noising methods based on wavelet analysis have been present [4,5].
The main disadvantage of these methods is that their effect depend heavily on the selected wavelet
types. In Reference [6], Nomura investigated a smoothing algorithm which utilized the derivative
constraints to deal with PDG data. The data has been processed in log interval owing to the high
degree of smoothness of the data in the log interval. He compared the constraint smoother and
unconstrained regression splines and concluded that the former have better performance. But with the
order of derivative constraints increases, the processing becomes more complex and the computational
complexity increases greatly.

It is well known that using only pressure data for well test analysis may be insufficient and
even may lead to misleading results. So the pressure derivative is useful in well test analysis. Up to
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now, all the existing methods need to redesign the calculation method of derivative on the basis of
de-noising data. In recent years, numerical tools for inverse problems have been well developed [7,8]
and we can obtain more stable approximation of derivatives. In this paper, we develop a method based
on Legendre approximation for de-noising of well test pressure data which has been used to deal with
the numerical differentiation problem [9]. The merit of the method is that we can directly obtain the
approximation of derivatives. Because of its higher smoothness than the original interval, the data will
be de-noised in logarithmic interval. We first obtain the Legendre approximation of the data and then
the noise is eliminated by truncation. The parameter of the truncation will be chosen by a discrepancy
principle. The method is implemented with Matlab and some numerical tests are utilized to verify the
validity of the method.

2. The Theory of De-Nosing Based on Legendre Approximation

We first introduce some basic concepts and conclusions of Legendre approximation. Let Λ = [−1, 1]
and denote by L2(Λ) and Hr(Λ) the usual Lebesgue and Sobolev spaces and by ‖v‖, ‖v‖r their
corresponding norms. The inner products of L2(Λ) and Hm(Λ) are denoted by 〈u, v〉 and 〈u, v〉m
respectively. Let N be any positive integer and PN be the set of all algebraic polynomials of degree at
most N in Λ. PN : L2(Λ)→ (P)N is the L2(Λ)−orthogonal projection operator, that is,

〈v− PNv, φ〉 = 0, ∀φ ∈ PN . (1)

Let Ll(x) be the Legendre polynomial of degree l which can be defined by

Ll(x) =
(−1)l

2l l!
∂l

x(1− x2)l . (2)

It well known that ∫
Λ

Ll(x)Lm(x)dx =

(
l +

1
2

)−1
δl,m. (3)

So for any f ∈ L2(Λ), we may write

f (x) =
∞

∑
l=0

fl Ll(x) (4)

with

fl =

(
l +

1
2

) ∫
Λ

f (x)Ll(x)dx. (5)

Lemma 1. [10] Let r > 0, then for any φ ∈ PN ,

‖φ‖r ≤ cN−2r‖φ‖. (6)

Lemma 2. [10] For any v ∈ Hr(Λ), r > 0 and µ ≤ r

‖v− PNv‖µ ≤ cNσ(µ,r)‖v‖r, (7)

where

σ(µ, r) =


2µ− r− 1

2 , µ ≥ 1,
3
2 µ− r, 0 ≤ µ ≤ 1,
µ− r, µ < 0.

(8)

Let x0 = −1, xN = 1 and xj
N−1
j=1 are the zeros of L

′
N(x) and

ωj =
2

N(N + 1)[LN(xj)]2
, 0 ≤ j ≤ N. (9)
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ΩN is the set of all xj. The discrete inner product in C(Ω) and its associated norm can be defined by

〈u, v〉N,ω = ∑
j=0

Nu(xj)v(xj)ωj, ‖u‖N,ω = 〈u, u〉1/2
N,ω. (10)

The Legendre interpolation INv(x) ∈ PN of a function v ∈ C(Ω) is defined by

INv(xj) = v(xj), ∀xj ∈ ΩN . (11)

Lemma 3. [10] For any v ∈ Hr(Λ), 0 ≤ µ ≤ 1, µ < 2r− 1,

‖v− INv‖µ ≤ cNµ−r‖v‖r. (12)

Now we present a noise removal algorithm base on Legendre expansion. Consider a signal
g(hi), i = 1, 2, . . . , n which is polluted by noise e(hi). That is to say, we only obtain its perturbed data:

gδ(hi) = g(hi) + e(hi). (13)

The process of de-noising involves obtaining approximate signal g(hi) from noisy data gδ(hi).
Our de-noising process is divided into the following steps:

• Transform the interval [h1, hn] to the interval [−1, 1]

ĥi =
2hi − (h1 + hn)

hn − h1
(14)

and an intermediate data ĝδ is obtained by

ĝδ(ĥi) = gδ(hi), i = 1, 2, . . . , n. (15)

• Calculate the knots ΩN and obtain the data gδ(xj) by piecewise linear interpolation :

gδ(x0) = ĝδ(−1), gδ(xN) = ĝδ(1), gδ(xj) = ĝδ(ĥj0)
xj − ĥj1

ĥj0 − ĥj1
+ ĝδ(ĥj1)

xj − ĥj0

ĥj1 − ĥj0
, (16)

where ĥj0 and ĥj1 are the two nearest points of xj in ĥi, i = 1, 2, . . . , n.
• Obtain the Legendre interpolation function ĝδ by

ĝδ = INgδ. (17)

• Given the control parameter δ(which can usually be estimated by the error distribution),
the approximate signal gδ obtain by

gδ = (Pm INgδ), (18)

where the parameter m = m(δ, INgδ) is determined by the following discrepancy principle

‖(I − Pm)INgδ)‖N ≤ τδ ≤ ‖(I − Pm−1)INgδ)‖N (19)

with τ > 1.

Now, we derive convergence result for above Legendre approximation.



Mathematics 2019, 7, 989 4 of 10

Theorem 4. Suppose that g ∈ Hr(Λ) and the data gδ satisfy

‖gδ − g‖N ≤ δ, ‖gδ‖N > τδ (20)

and g is defined by (18) and (19), then we have

‖Dk(gδ − g)‖ = O(δ
r−2k

r + N2k−r). (21)

Proof. In terms of (19), (20) and the triangle inequality

‖IN g− Pm−1 IN g‖ = ‖(I − Pm−1)IN gδ − (I − Pm−1)(INgδ − IN g)‖
≥ ‖(I − Pm−1)INgδ‖ − ‖(I − Pm−1)(INgδ − IN g)‖
≥ (τ − 1)δ.

(22)

On the other hand, from Lemma 2, 3 and note that m ≤ N

‖IN g− Pm−1 IN g‖ = ‖IN g− g + g− Pm−1g + Pm−1g− Pm−1 IN g‖
= ‖(I − Pm−1)(IN g− g) + (I − Pm−1)g‖
≤ ‖(I − IN)g‖+ ‖(I − Pm−1)g‖
≤ cN−r‖g‖r + c(m− 1)−r‖g‖r

≤ 2c(m− 1)−r‖g‖r.

(23)

Combining (22) with (23), we have

m ≤
(

2c‖g‖r

τ − 1

) 1
r

δ−
1
r + 1. (24)

Moreover, by using the triangle inequality, Lemma 1, 2 and 3

‖gδ − g‖ r
2

= ‖Pm INgδ − Pm IN g + Pm IN g− IN g + IN g− g‖ r
2

≤ ‖Pm(INgδ − IN g)‖ r
2
+ ‖(I − Pm)IN g‖ r

2
+ ‖IN g− g‖ r

2

≤ mrδ + m−
1
2 ‖IN g‖r + cN−

r
2 ‖g‖r

(25)

And from Lemma 3,
‖IN g‖r ≤ ‖g− IN g‖r + ‖g‖r ≤ (c + 1)‖g‖r. (26)

By (24), (25) and (26), there exist a constant M such that

‖gδ − g‖ r
2
≤ M. (27)

Moreover,

‖gδ − g‖ ≤ ‖Pm INgδ − INgδ‖+ ‖INgδ − IN g‖+ ‖IN g− g‖ ≤ (τ + 1)δ + cN−r‖g‖r. (28)

By interpolation inequality in [10]

‖Dk(gδ − g)‖ ≤ ‖gδ − g‖k ≤ ‖gδ − g‖
2k
r
r
2
‖gδ − g‖

r−2k
r . (29)

From (27), (28) and (29), the approximation order (21) is proved.
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3. Numerical Tests

3.1. Preliminary Check for Approximation Capability of Legendre Expansion with Various Numbers of Knots

In general, more knots tends to give more approximation quality but this is unfavorable due to
the increased model complexities and also for the computational burden. So we first check the effect of
knots N number to approximate accurate data for three reservoir models [11]; the homogeneous-infinite
model, the closed-circular model and the composite reservoir model. Their dimensionless well bore
pressures in the Laplace space are respectively

• Homogeneous-infinite model:

p̄D =
K0(
√

z) + S
√

zK1(
√

z)
z
[√

zK1(
√

z) + CDz
(
K0(
√

z) + S
√

zK1(
√

z)
)] , (30)

where p̄D is the dimensionless well-bore pressure in the Laplace space, z is the Laplace-transform
parameter, Kα is the modified Bessel function of second-kind, of order α, S is the skin factor, CD is
the dimensionless wellbore storage coefficient.

• Closed-circular model:

p̄D = AI0(rD
√

z) + BK0(rD
√

z)− s
√

z(AI1(
√

z)− BK1(
√

z)) (31)

with

A =
K1(rDe

√
z)

z
{

CD z
[
K1(rDe

√
z)I0(rD

√
z) + K0(rD

√
z)I1(rDe

√
z) + s

√
z(−K1(rDe

√
z)I1(

√
z) + K1(

√
z)I1(rDe

√
z))
]
+
√

z(−K1(rDe
√

z)I1(
√

z) + K1(
√

z)I1(rDe
√

z))
} (32)

B =
I1(rDe

√
z)

z
{

CD z
[
K1(rDe

√
z)I0(rD

√
z) + K0(rD

√
z)I1(rDe

√
z) + s

√
z(−K1(rDe

√
z)I1(

√
z) + K1(

√
z)I1(rDe

√
z))
]
+
√

z(−K1(rDe
√

z)I1(
√

z) + K1(
√

z)I1(rDe
√

z))
} (33)

where rDe is the dimensionless outer radius and Iα is the modified Bessel function of the first-kind,
of order α.

• Composite reservoir model:

p̄D = A1 I0(
√

z) + B1K0(
√

z)− S
[
A1
√

zI1(
√

z)− B1
√

zK1(
√

z)
]

(34)

with
A1 =

dh− eg
z[a(dh− eg)− b(ch− e f )]

, (35)

B1 =
e f − ch

z[a(dh− eg)− b(ch− e f )]
, (36)

and

a = CDzI0(
√

z)− (1 + SCDz)
√

zI1(
√

z) , b = CDzK0(
√

z)− (1 + SCDz)
√

zK1(
√

z),
c = I0(rα

√
z), d = K0(rα

√
z) , e = −K0(rα

√
σz), f = I1(rα

√
z),

g = −K1(rα
√

z), h = λ
√

σK1(rα
√

σz).
(37)

where rα is the dimensionless radius inner zone, λ is the Flow ratio and σ is the storage
capacity ratio.

The inversion form p̄D to pD (the exact function g) is done using the Gaver-Stehfest algorithm [12].
We give the accurate data g(hi) at hi = 10−2+ 4i

n , i = 0, 1, 2, . . . , n, n = 800. Further, an interpolation
function is given, similar to the one given in Formulas (15)–(18) (δ = 0). Figures 1–3 show the fitting
results of three models for N = 16, 32, and 64. In the figures, the circles show the estimates at the
knot locations. As shown here, more knots can give a better approximation quality and all the models
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are already fitted well to the true solution when N = 32. So for the rest of examples, we always take
N = 32.

10-2 10-1 100 101 102 103
10-1

100

101

102

(a) homogeneous-infinite model

10-2 10-1 100 101 102
103

104

105

(b) closed-circular model

10-2 10-1 100 101 102
100

101

102

103

104

(c) composite reservoir model

Figure 1. Results of N = 16.
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(a) homogeneous-infinite model

10-2 10-1 100 101 102
103

104

105

(b) closed-circular model

10-2 10-1 100 101 102
100

101

102

103

104

(c) composite reservoir model

Figure 2. Results of N = 32.
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10-1

100

101

102

(a) homogeneous-infinite model

10-2 10-1 100 101 102
103

104

105

(b) closed-circular model

10-2 10-1 100 101 102
100

101

102

103

104

(c) composite reservoir model

Figure 3. Results of N = 64.

3.2. Tests for Validity of Method

We added noise to the data as follows:

gδ(hi) = g(hi) + εi, i = 0, 1, . . . , n, (38)

where {εi}N
j=0 are obtained by Matlab function randn(n + 1, 1)× δ1.

Figures 4–6 show the fitting results of three models respectively. In each Figure, the first sub-figure
gives a comparison between the noisy function and the de-noised one. The solid blue curves represents
the noisy functions and the red dotted curves indicate the de-noised ones and we only took a partial
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of the curves to make the contrast more obvious. The second sub-figure shows that the comparisons
of de-noised solution and its derivative with their corresponding accurate data. As can be seen,
the performance of the method is satisfactory.

101 102
9.5

10

10.5

11

11.5

(a)

10-2 10-1 100 101 102 103
10-1

100

101

102

(b)

Figure 4. Results of homogeneous-infinite model. (a) Comparison of the noisy function and de-noised
function. (b) The exact solution and its approximation.

100

3.8

4

4.2

4.4

4.6

4.8

5

5.2
104

(a)

10-2 10-1 100 101 102
103

104

105

(b)

Figure 5. Results of closed-circular model. (a) Comparison of the noisy function and de-noised function.
(b) The exact solution and its approximation.
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1360

1380

1400

1420

1440

1460

1480

1500

(a)

10-2 10-1 100 101 102
100

101

102

103

104

(b)

Figure 6. Results of composite reservoir model. (a) Comparison of the noisy function and de-noised
function. (b) The exact solution and its approximation.
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4. Conclusions

A new method to remove the noise of well test data based on the Legendre approximation is
present in this paper. Benefit from the high accuracy of Legendre approximation, we can give a well
approximation of well test data. The convergence result has been obtained and numerical tests have
also verified the effectiveness of the method.
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