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Abstract: Understanding ecosystem response to drier climates calls for modeling the dynamics
of dryland plant populations, which are crucial determinants of ecosystem function, as they
constitute the basal level of whole food webs. Two modeling approaches are widely used in
population dynamics, individual (agent)-based models and continuum partial-differential-equation
(PDE) models. The latter are advantageous in lending themselves to powerful methodologies of
mathematical analysis, but the question of whether they are suitable to describe small discrete
plant populations, as is often found in dryland ecosystems, has remained largely unaddressed.
In this paper, we first draw attention to two aspects of plants that distinguish them from most other
organisms—high phenotypic plasticity and dispersal of stress-tolerant seeds—and argue in favor
of PDE modeling, where the state variables that describe population sizes are not discrete number
densities, but rather continuous biomass densities. We then discuss a few examples that demonstrate
the utility of PDE models in providing deep insights into landscape-scale behaviors, such as the onset
of pattern forming instabilities, multiplicity of stable ecosystem states, regular and irregular, and the
possible roles of front instabilities in reversing desertification. We briefly mention a few additional
examples, and conclude by outlining the nature of the information we should and should not expect
to gain from PDE model studies.

Keywords: continuum models; partial differential equations; individual based models; plant
populations; phenotypic plasticity; vegetation pattern formation; desertification; homoclinic snaking;
front instabilities

1. Introduction

Global warming and the concomitant increased frequency of intense droughts threaten the
viability of plant populations and communities throughout the world [1–3]. As plants are primary
producers that constitute the basal levels of whole food webs, that threat extends to ecosystem
function as well. Understanding ecosystem response to drier climates, therefore, calls for unraveling
mechanisms by which plant populations tolerate water stress. Such mechanisms operate at the
organism level through various forms of phenotypic changes, but also at higher organization levels
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through self-organization in spatial patterns. These response forms are particularly relevant in dryland
ecosystems, where both phenotypic changes and spatial self-organization are highly significant.

Empirical studies of plant-community dynamics are hampered by the long time-scales of plant
growth and the yet longer time scales of self-organization in space. A powerful methodology that
complements empirical studies and compensates for the time-scale limitation is the construction and
study of dynamic mathematical models. These models can be divided into two major groups. The first
group consists of individual-based models (IBM) (also called agent-based models), which are stochastic
computational algorithms for interacting individual organisms. Each individual is described by a set of
time-dependent attributes, often including its spatial location on a grid and various physiological and
behavioral traits [4–6]. The second group of models consists of continuum partial differential equations
(PDE) that do not address discrete individual organisms, but rather deterministic processes at small
spatial scales. The population is then described by a variable that represents the population size, such
as the population number density, and is considered to be continuous in time and space [7–9].

The advantage of PDE models over IBM is that they lend themselves to the powerful methods
of dynamical-system and pattern-formation theories, and therefore can provide deeper insights
into the mechanisms that drive ecosystem dynamics and ecosystem response to environmental
variability [8,10,11]. However, the application of the PDE modeling approach to plant populations in
drylands should first be justified, as these populations are typically small, especially in arid regions,
where the vegetation is sparse. This inherent character of drylands questions the use of continuous
variables to describe population sizes; variables, such as number densities, become highly discrete,
and demographic noise and extinction may become important aspects of the dynamics [12,13].

In this paper, we first argue that the discrete nature of small plant populations may still be
discarded in modeling their dynamics owing to the high phenotypic plasticity of plants. That calls
for a different description of the population size; rather than describing it by a discrete number
density, we describe it by a biomass variable, which remains continuous even at the level of a single
plant. We further demonstrate with a few examples the advantage of continuum PDE modeling
over discrete IBM and discuss the ecological significance of this advantage. The examples include the
use of linear stability analysis to calculate thresholds for the emergence of periodic patterns, the use
of numerical continuation to calculate bifurcation diagrams, and a study of a transverse instability
of desertification fronts. We conclude the paper with a brief discussion of additional examples that
demonstrate the utility of continuum PDE models in gaining mechanistic information and insights
about large, landscape-scale behaviors.

2. Distinctive Aspects of Plant Populations

Population size is often described by the number density of the individuals that constitute the
population. We describe here two distinctive properties of plants, not shared by most other organisms:
high phenotypic plasticity and seed dispersal, that will be used in Section 3 to motivate a better way of
describing plant population size, especially in drylands where the vegetation is often sparse.

2.1. Phenotypic Plasticity and Plant Adaptation to Variable Environments

Phenotypic plasticity is defined as the ability of an organism (or a given genotype) to give rise
to distinct observable traits (phenotypes) when exposed to variable environmental conditions [14].
Two basic, distinct developmental approaches have been evolved in plants and animals reflecting
different degrees of phenotypic plasticity. Animals have a relatively short period of embryonic phase
prior to birth, whereby all major organs are formed and postnatal development is essentially restricted
to expansion and growth of existing organs. By contrast, plants spend most of their life, from weeks
and months to hundreds and often thousands of years, at the embryonic phase, in the sense that they
can produce new organs (stems, leaves, flowers) throughout their life, depending on environmental
conditions. The higher phenotypic plasticity of plants can be attributed to their sessile nature and their
inability to migrate to less stressful conditions as mobile animals do.
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A plant embryo has only a small fraction of the organs an adult body has, consisting of two
apical meristems located at the tip of the shoot and the root, which are responsible for growth and
expansion of the shoot and the root systems. Both meristems consist of pluripotent cells (cells capable
of differentiation into multiple cell types that make up the plant body) that are functionally equivalent
to animal stem cells [15]. The shoot apical meristem (SAM) gives rise to the production of the aerial
part of the plant including leaves and axillary buds (from which new stems emerge) as well as flowers.
The root apical meristem (RAM) allows the growth and development of the root system and its
expansion below ground. Thus, while the SAM activity leads to the expansion of the photosynthetic
activity, which is carbon fixation by light energy, the RAM activity enhances uptake and mobilization
of water and minerals to the canopy.

The proportion between aboveground (shoot system) biomass and belowground (root system)
biomass, the so-called root-to-shoot ratio, is dynamic and needs to be balanced to achieve optimal
performance (and therefore survival) under variable environmental conditions. Commonly there
is a positive correlation between shoot growth and root growth, and both are interconnected [16].
Accordingly, shoot growth provides ample energy for the expansion of the root system, which in
turn increases water and nutrient uptake from a larger belowground domain to feed and enable the
expansion of the shoot system, a mechanism that plays an important role in the development of
vegetation patterns (see root-augmentation feedback in Section 3.1.2).

The capacity of plants to dynamically change the allocation of biomass to different organs is
central to plant response to variable environments and crucial for plant survival. A well-known
example of periodic change in above-ground (shoot) biomass is the shedding of leaves in temperate
deciduous forests during the winter (when leaves are susceptible to cold and are not photosynthetically
active) as a mechanism to tolerate low winter temperature, e.g., saving energy via remobilization and
storage of leaf nutritional constituents in stems. Shedding of leaves may also occur during the dry
season in tropical and subtropical deciduous forests as a mechanism to tolerate seasonal drought by
reducing the loss of water through transpiration.

Plants thriving in variable desert environments show many additional mechanisms to cope with
seasonal climate variations that involve changes in above-ground biomass. A good example of such
mechanisms is found in Zygophyllum dumosum Boiss (bushy bean caper), which is well adapted to a
variable, desert environment [17,18]. Its root system is composed mostly of lateral, rapidly growing
roots in the upper soil layer that constitute the major active elements in absorbing water [19], but also a
few roots that can extend several meters in depth [20]. The shrub develops new stems with compound
leaves during the wet season, where each leaf consists of two leaflets carried on a thick, fleshy petiole
(Figure 1A). On entry into the summer, the above-ground biomass is altered due to the shedding
of leaflets (to reduce whole plant transpiration) while the fleshy, wax-covered petioles remain alive
(Figure 1B,C) [18].

Another strategy employed by Z. dumosum, particularly in successive drought years, is splitting
the main axis (Figure 1D,E), a common phenomenon in desert shrubs [21] that enables the survival
of certain units at the expense of others [22]. Also, certain desert shrubs such as Artemisia sieberi
Besser (synonym name: A. herba-alba) and Encelia farinosa can change their mode of development and
produce new leaf types on the transition from the wet to dry season, which is better adapted to dry
conditions [23,24].
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Figure 1. Phenology of Zygophyllum dumosum Boiss growing on a southeast-facing slope at Sede Boqer
research area (30o 51′ N 34o 46′ E; elevation 498 m). (A) A typical branch of Zygophyllum plant during
the wet season (March 2008). Note the coumpond leaf composed of two leaflets (LL) carried on a fleshy,
cylindrical petiole (P). 1YOP, 1-year-old petiole. (B) A typical Z. dumosum branch during the dry season
carrying petioles (P). (C) A closer look at emerging new bud from the axil of a 1YOP at the beginning
of the winter. (D) Axis splitting resulting in a dual appearance of a Z. dumosum plant showing healthy
branches carrying new leaves and flowers (right from the broken line) and unhealthy branches (left
from the broken line). (E) A Z. dumosum plant with the main axis divided into several distinct units.

2.2. Seed Persistence in the Soil

Seeds persist in the soil until they germinate or die as a result of aging, predation or decay by
fungi or bacteria [25]. Based on their longevity in soil, soil seed banks are divided into transient
and persistent types, whereby the latter refers to seeds that remain viable for more than one year
(Thompson and Grim, 1979) and often persist for decades [26] and even centuries [27]. There are several
attributes that assist in seed persistence and longevity in the soil including dormancy, the capacity
to repair accumulated damages and to possess active and/or passive defense mechanisms against
potential predators and pathogens (reviewed in Ref. [28]).

Seed persistence is an important factor controlling the survival of a species long after the death
of the mother plant. It avoids germination under unfavorable conditions (bet-hedging strategy, [29])
and allows for genetic preservation and distribution in time and space [30,31]. The capacity of seed
persistence in the soil has implications for weed management, flora restoration and for understanding
plant community dynamics, particularly in light of global climate change [31,32]. Persistence in the soil
varies significantly between plant species and is dependent on the physical, physiological, chemical
and biochemical properties of the dispersal unit and its capacity to withstand variable biotic and
abiotic conditions [28].

These persistence characteristics may be altered upon exposure of mother plants to various biotic
and abiotic stress conditions during seed development and prior to dispersal. Some dispersal unit
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characteristics underlying seed persistence in the soil are of maternal origin, embedded within the
dead organs enclosing the embryos (DOEEs) including the seed coat (dry, dehiscent fruits), the pericarp
(dry, indehiscent fruits) and dead floral bracts (glumes, lemmas, paleas) in grasses [33]. DOEEs are
thought to function in seed dispersal and in protecting the embryo from mechanical and physical
damages. However, detailed study of DOEEs revealed their capacity to store substances such as
proteins (e.g., hydrolytic enzymes), growth factors (e.g., phytohormones) and various metabolites that
might affect various aspects of seed biology including longevity, germination, and seedling vigor [33].

3. Modeling Dryland Vegetation

The high phenotypic plasticity of plants and the consequent wide range of above-ground biomass
values a single plant can assume, suggest a description of plant-population sizes in terms of a
biomass density variable, continuously varying in time and space, rather than in terms of a discrete
number-density variable, as is often done in studies of animal populations. Since overland water flow
and soil–water diffusion are continuous processes too, a natural way of describing dryland-vegetation
dynamics is in terms of systems of partial differential equations (PDE) for biomass and water variables.
This continuum modeling approach avoids the introduction of factitious demographic noise, which is
a concern in small, low-plasticity animal populations. It is also consistent with the little relevance
of extinction events in small plant populations, unlike animal populations. Such events are unlikely
because of dispersed seeds that can remain viable long after plant mortality takes place, and are
capable of reviving the plant population once favorable environmental conditions resume. The residual
exponentially-small biomass that follows vegetation decay and convergence to bare soil in model
solutions can be viewed as representing long-lived seeds.

PDE models of dryland vegetation describe the size of a plant population by a biomass-density
variable, B(X, Y, T), which stands for the above-ground biomass of plants per unit area. Here, X, Y are
the spatial coordinates in the plane (in units of meters), T is time (in units of years), and B has units of
kg/m2. The biomass BdXdY in a small area element dXdY may represent the contribution of a single,
several or many plants, depending on the particular plant species and on the spatial scale over which
B varies. Several PDE models for dryland vegetation have been proposed. The simplest of which is a
single-variable model for the vegetation biomass [34], while more detailed models also include a water
variable [35–37], or two water variables representing below-ground water per unit area, W(X, Y, T),
and above-ground water per unit area, H(X, Y, T) (both in units of kg/m2) [38,39].

In order to account for the emergence of vegetation patterns from uniform vegetation, the models
should capture positive feedback loops that are capable of inducing nonuniform instabilities of
a uniform-vegetation state. The more detailed models are advantageous in that they capture
several pattern-forming feedbacks of this kind and thus allow us to study the interplay between
different feedbacks [40–42]. These models also introduce better defined and measurable parameters.
When applied to particular ecological contexts these models often simplify considerably and allow
further mathematical analysis [43]. We refer the reader to Ref. [43] for a detailed description of a
three-variable vegetation model that captures three distinct pattern-forming feedbacks. Here, we briefly
describe this feedbacks and presents two simplified versions of the model that will be used later on to
demonstrate the advantages of PDE models in studies of dryland ecosystems.

3.1. Pattern-Forming Feedbacks

Pattern-forming feedbacks in flat terrains follow the general scheme illustrated in Figure 2, that is,
a positive feedback loop between local vegetation growth and water transport towards the growing
vegetation [11,44]. They differ from one another in the mechanism of water transport: overland water
flows, conduction of water by laterally extended root systems, and soil–water transport, as explained
below. The transport of water towards denser vegetation patches accelerates vegetation growth there,
and, at the same time, inhibits the growth in their surroundings. It, therefore, favors the growth
of nonuniform perturbations. This is a short-range activation—long-range inhibition mechanism of



Mathematics 2019, 7, 987 6 of 22

pattern formation [45], also termed “scale-dependent feedback” [46], where biomass is the activator
and lack of water is the inhibitor. Associated with the three water-transport mechanisms are three
different positive feedback loops as described below.

+

+

Figure 2. A general positive feedback loop that drives the formation of vegetation patterns in drylands.
The feedback concomitantly accelerates vegetation growth in patches of denser vegetation and inhibits
the growth in adjacent sparser patches. The combined processes favor the growth of nonuniform
perturbations and the formation of vegetation patterns. From [11].

3.1.1. Infiltration Feedback

Infiltration rates of surface-water into the soil in sparsely vegetated areas are typically lower than
those in densely vegetated areas. Two main factors contribute to that effect: soil crusts in bare-soil
that reduce the infiltration rate [47,48] and denser roots in denser vegetation that make the soil more
porous and increase the infiltration rate. The infiltration contrast that builds up as the vegetation
becomes denser in a given location induces overland water flow towards that location, which accounts
for the upper arrow in Figure 2, i.e., enhancement of water transport by local vegetation growth.
The increased soil moisture in the growth location further increases the rate of vegetation growth
(lower arrow in Figure 2), which completes the positive feedback loop and sets the ground for a
yet stronger positive-feedback loop. This pattern-forming feedback is referred to as the infiltration
feedback.

To capture the infiltration feedback in the model equations we assume a monotonically increasing
dependence of the infiltration rate I on the biomass variable B [38,39,49],

I = A
B + Q f
B + Q

. (1)

The parameter Q controls how fast the asymptote I = A is approached. The parameter f ∈ [0, 1]
controls the infiltration contrast, and, thus, the strength of the infiltration feedback. The value f = 1
corresponds to a constant infiltration rate, I = A, or no infiltration contrast, while values f � 1
correspond to high infiltration contrasts, for which the infiltration rate in bare soil is significantly
higher than in vegetated soil. This feedback may apply to ecosystems in which bare soil is covered by
soil crusts, as these crusts typically reduce the infiltration rate relative to vegetation patches [48]. It is
not expected to apply to uncrusted sandy soil, where the infiltration rate is high everywhere.

3.1.2. Root-Augmentation Feedback

As noted in Section 2.1, there is a positive correlation between root growth and shoot growth
that is quantified by the so-called root-to-shoot ratio. This property constitutes another mechanism
by which water transport is enhanced by vegetation growth, as the lateral extension of the roots as
the shoot grows enables water uptake and conduction from a larger volume. These processes and the
consequent accelerated vegetation growth define the root-augmentation feedback.
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The root-augmentation feedback is modeled by introducing a biomass-dependent kernel function,

G(X, X′) = G̃
(
|X− X′|
S[B(X)]

)
. (2)

This function describes the spatial distribution of the roots in the horizontal directions X and
Y, where X = (X, Y) represents the plant (shoot) location and X′ a distant point. The function S(B)
determines the width of the kernel function and provides a measure for the horizontal extension of
the roots. The root-augmentation feedback is captured by letting S increase monotonically with the
biomass variable B(X), which represents the shoot mass. Figure 3 shows an example of a root kernel
and its lateral extension as the plant grows and the above-ground biomass increases. The mathematical
form of the kernel function is given by Equations (A1) and (A2) in Appendix A.

Figure 3. Root system growth as shoot biomass increases. A plot of the axisymmetric root kernel, G
(see (A1) in Appendix A), as a function of the space coordinate X when (A) B(X, T) = 0, (B) B(X, T) =
0.2, (C) B(X, T) = 0.3, (D) B(X, T) = 0.4 =: K. The kernel is a Gaussian function multiplied by
a polynomial factor, that mimics adventitious root branching observed in some plant species [50].
Parameters in (A1) and (A2): S0 = 0.15m, c0 = 1, c2 = −0.135, c4 = 7.09× 10−3, c6 = −9.11×
10−5, c8 = 3.84× 10−7.

3.1.3. Soil–Water Diffusion Feedback

Water depletion due to water uptake by the plants’ roots, followed by soil–water diffusion from
the patch surroundings, is a third mechanism of water transported that is enhanced by vegetation
growth [51]. The associated feedback loop is referred to as the lsoil—water diffusion feedback. Like the
root-augmentation feedback, this feedback relies on the root-to-shoot property of plants, except that
here the role of the roots is to create soil–water gradients by local water uptake. This pattern-forming
feedback can possibly apply to plants with vertical roots and strong water uptake, and to soil types for
which lateral water diffusion is fast relative to the rate of vegetation spread.

3.2. Mathematical Models

For the sake of simplicity, we confine ourselves in this paper to ecosystems with sandy soil
for which the infiltration rate is high also in bare-soil areas and, therefore, overland water flow can
be neglected. Mathematically, this amount to assuming f = 1 (no infiltration contrast) and to the
elimination of the equation for surface water. The full model then reduces to the following pair of
equations for B and W [43]:

∂T B = GBB (1− B/K)−MB + DB∆B ,

∂TW = P− LWW − GWW + DW∆W . (3)

Here, ∆ is the Laplacian operator in the X, Y plane, LW is a biomass dependent evaporation rate,

LW =
N

(1 + RB/K)
, (4)
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where N is the evaporation rate in bare soil and R quantifies the reduction in evaporation rate in
vegetation patches, and GB and GW are the rates of biomass growth and water uptake by plants’ roots,
respectively. These rates are given by the integrals

GB = Λ
∫

Ω
G(X, X′, T)W(X′, t)dX′ , (5a)

GW = Γ
∫

Ω
G(X′, X, T)B(X′, t)dX′ , (5b)

over the system domain Ω, where the kernel function G(X, X′, t) satisfies the general form (2), and Λ
and Γ are rate constants in units of (kg/m2)−1y−1. These nonlocal forms represent the effects of
laterally extended roots; the growth of a plant at point X depends on water availability at all points X′

within the reach of the plant’s roots, and likewise, the water uptake at point X is due to plants at all
points X′ whose roots extend to X. Two forms for the root kernel, G(X, X′, T), will be used in this study.
The first form represents vertical roots with negligible lateral extension. In that case the expressions in
Equation (5a) for GB and GW simplify to algebraic expressions as shown in Appendix B. The second
form represents laterally extended roots, as described in Appendix A.

Equation (3) capture several processes that affect biomass dynamics: water-dependent plant
growth (GBB), mortality (−MB), and short-distance seed dispersal (DB∆B). In addition, the late
biomass growth phase is slowed down by species-specific constraints that dictate a maximal standing
biomass per unit ground area K. These may represent self-shading, limited stem strength of a woody
plant, etc. The processes that affect soil–water dynamics, according to Equation (3) are precipitation
(P), water loss due to biomass dependent evaporation (−LW), water uptake by plants’ roots (−GWW),
and soil–water diffusion (DW∆W). The simplified model equations do not capture the infiltration
feedback, as no overland water flow takes place, but still capture the root-augmentation feedback and
the soil–water diffusion feedback.

4. Advantages of Continuum PDE Models

Continuum PDE models are advantageous over discrete models, such as individual based models
(IBM), in that they lend themselves to mathematical analysis, which results in deeper insights into the
phenomena in question and the ecological implications they have. We chose to demonstrate this aspect
using three examples, as described in the following subsections.

4.1. Instability Thresholds

The simplest solutions of Equation (3) are stationary uniform solutions obtained by solving
the algebraic equations that result by setting the time and space derivatives of the state variables
to zero. Two such solutions are found, (B, W) = (0, W0) representing bare soil and existing for
all positive precipitation values, P, and (B, W) = (B1, W1) representing uniform vegetation and
existing only beyond some precipitation threshold (see Figure 4). The stability of these solutions to
infinitesimal perturbations of all forms can be calculated using linear stability analysis [11,52]. Such an
analysis reveals that the bare-soil state is stable in the precipitation range 0 < P < P0, where P0 is
an instability threshold at which a uniform mode (characterized by zero wavenumber) begins to
grow, as the dispersion curves in Figure A1A show. This is a uniform stationary instability [43] where
the first mode to grow is spatially uniform and the growth is monotonic in time. Spatial patterning,
induced by the root-augmentation feedback or the soil–water diffusion feedback, cannot arise from a
nonuniform instability of the bare-soil state as this would involve the growth of a periodic mode from
a zero-biomass state and therefore imply negative biomass values, which are unphysical. Failing to
obtain a uniform instability of the bare-soil state would indicate a modeling flaw. Such a flaw would
be harder to detect in discrete models, such as IBM.

Stationary periodic vegetation patterns may arise from a nonuniform stationary instability of
the uniform vegetation state. A linear stability analysis of that state indeed reveals such instability
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as the precipitation rate P decreases below a threshold value PT . At that threshold a periodic mode
with a characteristic wavenumber kT begins to grow monotonically in time while all other modes still
decay, as the dispersion curves in Figure A1B shows. This analysis can be performed even for quite
complicated laterally extended root kernels G as shown in Figure 3, see Appendix A. The analysis
further confirms the expectation that each of the pattern-forming feedbacks alone, root-augmentation
and soil–water diffusion, can induce a nonuniform stationary instability that culminates in stationary
periodic patterns.

Linear stability analysis not only unravels possible instabilities and the nature of the modes that
grow beyond instability points, but it also provides information about the parameters that control the
instability threshold. For example, the instability of the bare-soil state occurs at P = P0 = MN/Λ,
indicating that species with low ratios of growth rates, Λ, to mortality rates, M, will grow from bare
soil at higher precipitation thresholds, or that high evaporation rates, N, act to stabilize the bare soil
state. Such relations are less apparent in IBM.

4.2. Bifurcation Diagrams

Linear stability analysis does not provide information about the new state that the system
converges to following an instability. This kind of information can be obtained by nonlinear analysis
of the model equations. A common approach, valid close enough to the instability point, involves
the derivation of amplitude equations [11,53–55]. These are nonlinear differential equations for the
amplitudes of the modes that grow beyond the instability point. Amplitude equations are, in general,
much easier to analyze than the original model equations. Moreover, they are dictated by the instability
type, rather than by the specific model equations, and therefore are universal; different systems that go
through the same instability type (e.g., nonuniform stationary instability) will behave similarly near
the instability point. Since all pattern-forming feedbacks lead to the same instability type they will also
induce similar dynamics and patterns, although fine details, such as the relative spatial distribution of
biomass and water, can reflect differences in the these feedbacks [56].

A convenient way to summarize the outcomes of nonlinear analysis is to draw a bifurcation
diagram. Such a diagram shows the existence and stability ranges of various model solutions. In the
context of dryland vegetation it often shows graphs of spatial biomass average (or L2 norm) vs.
precipitation rate for selected model solutions, using the convention that solid (dashed) lines represent
stable (unstable) solutions. If amplitude equations are known, a bifurcation diagram can often be
calculated analytically [11,57,58]. When the derivation of amplitude equations is not easy to perform,
or when there is an interest in dynamical behaviors far from instability points, bifurcation diagrams
can be calculated by numerical continuation methods using software packages such as AUTO [59],
pde2path [60], and others. Since these packages solve the equations using iterative solution methods,
they converge to unstable solutions as well and, thereby, can provide complete solution branches in
the bifurcation diagram.

The utility of bifurcation diagrams can be demonstrated with the example shown in Figure 4,
a bifurcation diagram for a vegetation model (see Appendix B) in one space dimension. We focus here
on one property that bifurcation diagrams often reveal, namely, parameter ranges where multiple
stable states coexist. The (partial) bifurcation diagram of Figure 4 shows a bistability range of bare
soil and periodic patterns, a bistability range of bare soil and uniform vegetation, and a tristability
subrange of bare soil, periodic patterns and uniform vegetation. The stability of the bare soil state at
relative high precipitations values, where uniform vegetation is stable too, can be achieved assuming
high evaporation rates (N) in bare soil. Within the tristability range there exists many more stable
states, which describe spatial hybrids of periodic pattern and uniform vegetation. These hybrid states
appear as confined domains of an increasing size of the patterned state in an otherwise uniform
vegetation state, as the insets in Figure 4 show. Hybrid states in bistability ranges of uniform and
patterned states have been studied extensively, both mathematically and in particular physical systems.
The confined pattern domains are homoclinic solutions that snake back and forth in the bifurcation
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diagram, a behavior termed “homoclinic snaking” [61–66]. They are tightly related to front pinning,
that is, to the existence of stationary front solutions between uniform and patterned states over a range
of the control parameter. This is in contrast to fronts between distinct uniform states that propagate in
general, except, possibly, for a particular parameter value, the so-called Maxwell point at which the
fronts are stationary [67,68], and unlike fronts that are pinned by external heterogeneities [69].
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Figure 4. Bifurcation diagram for the model presented in Appendix B (Equation (A17)) in 1D (panel a).
The vertical axis is the spatial biomass average, while the horizontal axis is the precipitation rate. Solid
(dashed) lines represent stable (unstable) solutions. The diagram shows bistability precipitation ranges
of bare soil and periodic patterns, and of bare soil and uniform vegetation, as well as a tristability range
of bare soil, uniform vegetation and periodic patterns. Within the latter range there exists a subrange
of hybrid patterns, consisting of confined pattern domains of increasing size in an otherwise uniform
vegetation, examples of which are shown in the three panels (b–d). Parameters: Λ = 0.1 [(m2/kg)/y],
Γ = 4 [(m2/kg)/y], E = 7 [m2/kg], K = 1 [kg/m2], M = 4.5 [1/y], N = 8 [1/y], R = 0.1, DB = 0.05
[m2/y], DW = 30 [m2/y].

Homoclinic snaking has been used to explain fairy-circle dynamics in Namibian grasslands [56,70–72].
Fairy circles are circular bare-soil gaps in grasslands that often form nearly periodic hexagonal patterns,
where each gap is surrounded by nearly equidistant six other gaps on average [73]. Empirical studies
indicate that fairy circles are occasionally “born” or “die” locally [74]. Taking into account the high
rainfall inter-annual variability in fairy-circles sites, such dynamical events have been interpreted as
transitions between different hybrid states (homoclinic solutions) induced by rainfall fluctuations
that are strong enough to drive the ecosystem temporarily outside the existence range of these states
(snaking range) [51]. The existence of a multitude of stable hybrid states makes dryland landscapes
more plastic in the sense that their response to varying environmental conditions and disturbances
can involve temporal convergence to different hybrid states, rather than direct convergence to a single
alternative stable state [75].

In order for homoclinic snaking to occur in models of dryland landscapes bistability of uniform
vegetation and periodic vegetation patterns are generally sufficient [75,76]. The snaking range in
the bifurcation diagram of Figure 4, however, lies within a tristability range of uniform vegetation,
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periodic pattern and (uniform) bare soil. The existence of that tristability range may have interesting
consequences. In particular, the organization of hybrid states within a homoclinic snaking structure can
break down as it meets a Maxwell point, where fronts connecting the bare soil and uniform vegetation
states are stationary [77]. Another implication of the tristability of two uniform states and a periodic
pattern state is the emergence of a family of complex front structures that involve all three states [77].

An additional important aspect that bifurcation diagrams uncover is related to the existence
of unstable solution branches. Tracking unstable solutions in bifurcation diagrams can be highly
significant when the response of ecosystems to disturbances or human intervention is studied, as the
appearance or disappearance of unstable solutions can dramatically affect the flow in phase space
and, thus, the response [78]. These subtle aspects, which may have significant ecological implications,
become apparent once a bifurcation diagram is calculated. Bifurcation diagrams showing stable and
unstable uniform, periodic and localized solutions can be calculated using PDE models [60] but,
practically, not with IBM. Bifurcation diagrams have been calculated using IBM but the information
they contain is very limited [79,80].

4.3. Front Dynamics

Bistable ecosystems can go through state transitions, or regime shifts [81], in various
ways, including a passage through a bifurcation point (B-tipping), as a result of environmental
fluctuations (N-tipping), or as a result of fastly varying environmental conditions (R-tipping) [82,83].
Such transitions are generally discussed as whole-system responses, occurring simultaneously at
all points in space. Spatially confined disturbances, however, can induce local state transitions.
The dynamics that follow such disturbances are dictated by the motion of the fronts that bound the
transition area. Of particular interest are degradation fronts, where a dysfunctional state gradually
displaces a functional state by front propagation. An example of such a front in the context of dryland
vegetation is a desertification front, where a bare-soil domain displaces a vegetated domain [68,84].

PDE models are highly valuable in analyzing desertification fronts and addressing questions
such as how to reverse the process of desertification, as we briefly discuss below. We consider again
the bifurcation diagram shown in Figure 4, and focus on a bistability precipitation range of bare
soil and uniform vegetation, which may or may not include the tristability range where periodic
patterns are stable too. In that range we consider precipitation values below the Maxwell point,
where desertification fronts exist (bare soil displacing uniform vegetation). In the vicinity of the
bare-soil instability to uniform vegetation (P = PC in Figure 4) the two-variable model presented in
Appendix B can be reduced to an amplitude equation for the uniform mode that begins to grow at this
instability [85]. Analysis of this equation reveals a transverse front instability [86,87], whereby small
bulges along the front line are first enhanced, then develop into growing fingers that avoid one another,
and ultimately fill up the system domain with a stationary labyrinthine pattern.

According to the analysis of the amplitude equation, the instability occurs as the soil–water
diffusion coefficient, DW , exceeds a threshold value, and that threshold is inversely related to the
root-to-shoot ratio, E, which controls water uptake by plants’ roots [85]. This result uncovers the
mechanism of the instability—fast soil–water diffusion (relative to biomass expansion) towards
incidental bulges along the front line that locally deplete the soil–water content. The fast diffusion
acts to enhance the growth of these bulges and, at the same time, to inhibit vegetation growth on both
sides of any bulge. Fast diffusion can be obtained by increasing the diffusion coefficient, DW , which is
consistent with the finding of a threshold value above which the instability develops. Fast diffusion is
also obtained by steepening the soil–water gradients, which can be achieved by strong water uptake.
This is consistent with the finding that the threshold value decreases as the parameter E that controls
water uptake, is increased.

Figure 5 shows a desertification front that develops a transverse instability. While the bare soil
area initially expands into the vegetated area, the instability results in vegetation fingers that grow
backward into the bare-soil area and thereby reverse the desertification process. The resulting state is a
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productive vegetation pattern that prevents further irreversible degradation processes (not captured by
the model), such as soil erosion, and maintains the ecosystem in a reversible state capable of forming
uniform vegetation when favorable rainfall conditions resume. But how can a transverse instability be
induced in stable desertification fronts? One possible answer to this question is the introduction of a
species with sufficiently high root-to-shoot ratio so as to reduce the threshold value of DW above which
the instability sets in, and thereby induce a transverse instability. There is, however, another possibility
associated with the tristability range of uniform vegetation, bare soil and periodic patterns. In this
range, desertification fronts that are stable to small perturbations (linearly stable) may still be unstable
to larger perturbations (nonlinearly unstable), which drive the system to the periodic-pattern state
through finger growth [88] as Figure 6 demonstrates.

These results are very appealing from the point of view of ecosystem management. First,
they imply local manipulations in the front zone only, rather than extensive intervention across
the whole ecosystem. The manipulations may involve planting a different species capable of inducing
a linear front instability, or modulating the front line strongly enough in order to induce a nonlinear
front instability. The latter intervention form may involve periodic grazing management, clear-cutting
or irrigation, and is relevant in cases when indications for the existence of periodic patterns exist
(e.g., scattered patches of periodic vegetation). Second, such manipulations are limited in time, as they
are needed only to trigger the instability. Once the instability sets in, a process of self-recovery begins.
These conclusions, which are based on the mathematical analysis of front solutions, could not have
been obtained in studies of IBM.

t=0 t=50 t=63

t=75 t=150 t=250

Figure 5. Snapshots of model solutions (see Appendix B) that demonstrate a linear front instability of
a desertification front. Following a short phase in which the bare-soil domain (yellow) expands into
the uniform-vegetation domain (green), transverse perturbations begin to grow and form vegetation
fingers that grow back into the bare-soil domain. The time indicated in every snapshot is in units of
years. From [85] .
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a)

b)

t=0 t=50 t=150

t=0 t=13 t=38

t=100 t=400  t=600

c) t=70 t=235  t=420
Figure 6. Nonlinear front instability in a tristability range. Snapshots of numerical model solutions
showing (a) the stability of a planar desertification front to small transverse modulation, (b) instability
to transverse modulations that are sufficiently large, and the development of vegetation fingers that
grow back into bare soil. The time indicated in every snapshot is in units of years. From [85].

5. Discussion

Despite their typically small size, discrete plant populations in dryland ecosystems can still
be described by continuum PDE models because of the high phenotypic plasticity of plants and the
dispersal of stress-tolerant seeds, as discussed in Sections 2 and 3. Since the state variables that describe
plant population sizes should reflect that plasticity, biomass densities are more appropriate choices
for plant populations than the often used number densities in population dynamics studies. Unlike
IBM, where the smallest entity is a single individual, in PDE models with biomass densities as state
variables, the smallest entity is a small area element and the processes that take place there. That area
element can be significantly smaller than the scale of a single plant and its roots.

We presented here several examples that demonstrate the utility of continuum PDE models in
gaining mechanistic information and insights about large, landscape-scale behaviors, such as the onset
of a nonuniform stationary instability that culminates in periodic vegetation patterns, uncovering
precipitation ranges of bistability, tristability and multistability of uniform states, periodic patterns
and localized patterns (hybrid states), and dynamics of desertification fronts, where we focused on
front instabilities that may reverse gradual desertification. Many more examples exist, a few of them
are briefly discussed below.

On a slope, a linear stability analysis of uniform vegetation has revealed a nonuniform oscillatory
instability that results in traveling-wave solutions. These solutions describe periodic vegetation stripes
migrating uphill [89,90], as observed in empirical studies [91]. The migration mechanism is easy to
understand; while plants at the top part of a vegetation stripe receive runoff and grow, plants at the
bottom part loose runoff and die. PDE models have been instrumental in clarifying the relations
between migration speed, pattern wavelength, and slope [92,93].

Studies of PDE models in one space dimension have identified many periodic solutions along
the rainfall gradient, the wavenumbers of which decrease as precipitation decreases, down to zero
in a solution that represents a single vegetation patch [94–96]. These solutions reflect two manners
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by which patchy vegetation responds to water stress. The first is an increase of bare soil areas at
the expense of vegetation-patch areas, keeping the wavenumber unchanged. This response occurs
along each solution branch [97]. The second response is a transition to a periodic solution with a
lower wavenumber, quite often half the original wavenumber [95–97]. In this response, the area of
each vegetation patch does not necessarily decrease, but the number of vegetation patches decreases.
In both response forms, the increase in bare-soil area compensates for the reduced rainfall through
increased water transport to adjacent vegetation patches by one of the transport mechanisms discussed
in Section 3.1. Empirical indications for the existence of periodic patterns with different wavenumbers
have been found in studies of banded vegetation in Somalia [98].

In two space dimensions, patchy vegetation can respond to water stress by yet another mechanism
of increasing bare-soil areas, namely, morphological changes, first from hexagonal gap patterns to stripe
patterns, and, at lower precipitation, from stripe patterns to hexagonal spot patterns [36,43,99]. In cases
where the instability of bare soil to uniform vegetation is supercritical, weak nonlinear analyses of PDE
models in two space dimensions have produced bifurcation diagrams that unfold the basic periodic
vegetation patterns along the rainfall gradient: hexagonal gap patterns, stripe patterns and hexagonal
spot patterns [57,58]. Empirical indications for the existence of these vegetation patterns in nature are
abundant, although not yet with a single plant species along a rainfall gradient [56,73,100–102].

PDE models have also been used to study the interactions between two distinct plant species.
One interesting context of such interactions is the bistability of a uniform state of one species and
a periodic-pattern state of the other species. In this range, homoclinic snaking can result in the
multistability of hybrid states that involve the two species, and therefore constitutes a mechanism for
species coexistence [103]. Another interesting context is woody-herbaceous systems, where the woody
species is pattern forming. Studies of a PDE model that captures both the infiltration feedback and the
root-augmentation feedback reveal changes in the relative importance of the two feedbacks along the
rainfall gradient. At high precipitation dominance of the root augmentation feedback results in a strong
depletion of the soil–water content and the exclusion of herbaceous vegetation. At low precipitation,
the dominance of the infiltration feedback results in soil–water concentration at woody patches and
the consequent facilitation of herbaceous-vegetation growth [41]. These results are consistent with the
stress-gradient hypothesis in ecology [104].

While these results are hard to obtain using IBM, we should not regard PDE models as substitutes
to IBM, but rather as complementary means to gain deeper mechanistic understanding. IBM typically
go into much more details, and attempts to include these details in PDE models would render them
mathematically intractable too. PDE models should rather be motivated by specific questions of interest
and by judicious assessments of the processes that are most relevant to these questions. The vegetation
models described in Section 3 have been motivated by empirical observations of regular vegetation
patterns in drylands and by the understanding that the most relevant processes to these phenomena
are positive feedback loops involving vegetation growth and water availability that can induce
pattern-forming instabilities. Various other processes, considered to be of secondary significance,
have been left aside, such as the effect of transpiration on the atmosphere, soil erosion and deposition,
and various plant physiology processes. Such processes are likely to have quantitative rather than
qualitative effects on vegetation pattern formation; they may affect, for example, instability thresholds,
but are not likely to affect the occurrence of instabilities or change their nature. While providing
deep mechanistic insights into ecological processes, and predicting possible qualitative responses to
environmental changes, PDE models should not be regarded as tools for making quantitative forecasts.
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Appendix A. Model for Laterally Extended Roots

We consider here the model Equation (3) in two space dimensions for a laterally extended root
kernel (2) of the form

G(X, X′, T) =
F(X, X′)

2πS2
0

e
− |X−X′ |2

2S2
0(1+EB(X,T))2 , (A1)

where S0 is the lateral root length of a seedling and F is a polynomial given by

F(X, X′) = (c0 + c2S−2
0 |X− X′|2 + c4S−4

0 |X− X′|4 + c6S−6
0 |X− X′|6 + c8S−8

0 |X− X′|8)/ψ . (A2)

Here ψ = c0 + 2c2 + 8c4 + 48c6 + 384c8 is a normalization factor that ensures the integral
of G(X, X′, T) over the entire domain is unity when B(X, T) = 0. Since G has units of of m−2

(see Equation (5a)), F is a dimensionless quantity. The “shape parameters” c0, c2, c4, c6, c8 ∈ R and
the normalization factor ψ are then dimensionless too. For proper choices of these parameters the root
kernel can describe root branching as Figure 3 shows.

Non-dimensionalisation: Using the scalings

b =
B
K

, w =
WΛ
KΓ

, t = MT, x =
X
S0

, (A3)

one can non-dimensionalise model (3) to obtain

∂b
∂t

= Gbb(1− b)− b + δb∆b, (A4a)

∂w
∂t

= p− ν(1− ρb)w− Gww + δw∆w. (A4b)

The non-dimensional biomass growth rate and water uptake rate are given by

Gb = λ
∫

Ω
g(x, x′, t)w(x′, t)dx′, (A5a)

Gw = λ
∫

Ω
g(x′, x, t)b(x′, t)dx′, (A5b)

with

g(x, x′, t) =
f (x, x′)

2π
e
− |x−x′ |2

2(1+ηb(x,t))2 , (A6)

where
f (x, x′) = (c0 + c2|x− x′|2 + c4|x− x′|4 + c6|x− x′|6 + c8|x− x′|8)/ψ. (A7)

The relations between non-dimensional and dimensional quantities are given by

λ =
KΓ
M

, η = EK, p =
ΛP

KΓM
, ν =

N
M

, ρ = R, δb =
DB

MS2
0

, δw =
DW

MS2
0

.

Linear stability: We use here linear stability analysis to study the stability properties of the solution
of (3) that represents steady uniform vegetation, which we denote by U0 = (b0, w0)

T. In this method
one considers (infinitesimally) small nonuniform perturbations about the state in question and
study whether all perturbations decay to zero, or some perturbations grow, indicating an instability.
We denote a small perturbation of this kind by Ũ of U0, so that the perturbed state is given by

U(x, t) = U0 + Ũ(x, t), (A8)
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where U = (b, w)T and Ũ = (b̃, w̃)T. In the standard way [11] we let Ũ(x, t) = a(t)eik·x + c.c where
a(t) = (a1, a2)

T and k = (kx, ky). Substitution of (A8) into (3) gives

∂b̃
∂t

= Gb
∣∣
U0+Ũ(b0 + b̃)(1− (b0 + b̃))− (b0 + b̃) + δb∆b̃, (A9a)

∂w̃
∂t

= p− ν(1− ρ(b0 + b̃))(w0 + w̃)− Gw
∣∣
U0+Ũ(w0 + w̃) + δw∆w̃. (A9b)

To evaluate Gb
∣∣
U0+Ũ and Gw

∣∣
U0+Ũ we expand the kernels (A6) as

g(x, x′, t) = g0(x, x′) + g1(x, x′)b̃(x, t) +O(b̃2) (A10a)

g(x′, x, t) = g0(x′, x) + g1(x′, x)b̃(x′, t) +O(b̃2) (A10b)

where

g0(x− x′) = g0(x′ − x) = g(x− x′, t)
∣∣
U=U0

=
f (x, x′)

2π
e
− |x−x′ |2

2σ2
0 (A11a)

g1(x− x′) = g1(x′ − x) =
∂g
∂b

(x− x′, t)
∣∣∣∣
U=U0

=
η|x− x′|2 f (x, x′)

2πσ3
0

e
− |x−x′ |2

2σ2
0 , (A11b)

with σ0 = 1 + ηb0. Considering linear terms only we can then calculate

Gb
∣∣
U0+Ũ ≈ λw0

∫
Ω

g0(x, x′)dx′ + λ
∫

Ω
g0(x, x′)w̃(x′, t)dx′ + λw0b̃(x, t)

∫
Ω

g1(x, x′)dx′

=
λw0σ2

0 ψ0

ψ
+ λF0(k)w̃(x, t) +

ληw0ψ1

σ0ψ
b̃(x, t), (A12a)

Gw
∣∣
U0+Ũ ≈ λb0

∫
Ω

g0(x′, x)dx′ + λ
∫

Ω
g0(x′, x)b̃(x′, t)dx′ + λb0

∫
Ω

g1(x′, x)b̃(x′, t)dx′

=
λb0σ2

0 ψ0

ψ
+ λF0(k)b̃(x, t) + λb0F1(k)b̃(x, t), (A12b)

where k = |k| is the wavenumber of the perturbation, ψ0 = c0 + 2c2σ2
0 + 8c4σ4

0 + 48c6σ6
0 + 384c8σ8

0 ,
and ψ1 = 2c0σ2

0 + 8c2σ4
0 + 48c4σ6

0 + 384c6σ8
0 + 3840c8σ10

0 . F0(k) and F1(k) are the Fourier transforms
of g0(x, x′) and g1(x, x′), respectively, and are expressed in terms of the quantities

F0 = σ2
0 exp(−σ2

0 k2/2),

F2 = F0σ2
0 (2− σ2

0 k2),

F4 = F0σ4
0 (8− 8σ2

0 k2 + σ4
0 k4),

F6 = F0σ6
0 (48− 72σ2

0 k2 + 18σ4
0 k4 − σ6

0 k6),

F8 = F0σ8
0 (384− 768σ2

0 k2 + 288σ4
0 k4 − 32σ6

0 k6 + σ8
0 k8),

F10 = F0σ10
0 (3840− 9600σ2

0 k2 + 4800σ4
0 k4 − 800σ6

0 k6 + 50σ8
0 k8 − σ10

0 k10),

as

F0(k) =
1
ψ
(c0F0 + c2F2 + c4F4 + c6F6 + c8F8),

F1(k) =
η

σ3
0 ψ

(c0F2 + c2F4 + c4F6 + c6F8 + c8F10).
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The uniform steady states of (3) satisfy

λψ0

ψ
w0b0(1− b0)σ

2
0 − b0 = 0, (A13a)

p− νw0(1− ρb0)−
λψ0

ψ
w0b0σ2

0 = 0, (A13b)

which yield two homogeneous steady states: the bare soil state (0, p/ν) and the uniform vegetation
state, the expression of which we omit here for brevity. Substitution of (A12) into (A9), retaining only
first order terms, and using (A13) yields the system of equations

da
dt

= Ja (A14)

where the components of J ∈ R2×2 are given by

J11 =
λw0

ψ

(
ηψ1b0(1− b0)

σ0
+ σ2

0 ψ0(1− 2b0)

)
− 1− δbk2, (A15a)

J12 = λF0(k)b0(1− b0), (A15b)

J21 = ρνw0 − λw0F0(k)− λb0w0F1(k), (A15c)

J22 = −ν(1− ρb0)−
λb0σ2

0 ψ0

ψ
− δwk2. (A15d)

Assuming a1, a2 ∝ exp(µt) we can calculate the dispersion relation µ=µ(k). Substitution of
the steady states into µ reveal their stability at a given precipitation rate (Figure A1). For P > P0

the bare soil state undergoes a uniform instability (Figure A1A) that drives the system towards a
uniform vegetation state, which may not necessarily be stable. For P < PT the uniform vegetation
state undergoes a non-uniform instability (Figure A1B) which generates a periodic vegetation state.
Both instabilities are stationary (perturbations grow monotonically in time) as Im(µ) = 0 for both of
them. Furthermore, we verified that the root-augmentation feedback alone can induce a non-uniform
instability by setting δw = 0 (i.e., no soil–water diffusion feedback).

BA

Figure A1. Dispersion relations for stable, marginally stable and unstable steady states. (A) Instability
of the bare soil state to the growth of a uniform mode at P0 = 175.3 mm/y (or (kg/m2)y−1).
(B) Instability of the uniform vegetation state to the growth of a non-uniform mode (of finite
wavenumber) at PT = 296.2 mm/y. Precipitation values: (A) P = 299 > PT , P = 293.4 < PT ,
(B) P = 175.8 > P0, P = 174.2 < P0. Other parameters are fixed: E = 7[m2/kg], K = 0.4[kg/m2], M =

10.5[1/y], N = 15[1/y], Λ = 0.9[(m2/kg)/y], Γ = 12[(m2/kg)/y], R = 0.7, DB = 0.1[m2/y], DW =

50[m2/y], S0 = 0.15m, c0 = 1, c2 = 0.0125, c4 = 5.06× 10−4, c6 = −5.70× 10−6, c8 = 3.33× 10−7.

Appendix B. Model for Laterally Confined Roots

Laterally confined roots are modeled by considering the limit S0 → 0 in Equation (2).
This amounts to replacing G(X, X′, T) in Equation (5a) by a delta function, which leads to the
following model:
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∂B
∂T

= ΛBW(1 + EB)2(1− B
K
)−MB + DB∆B ,

∂W
∂T

= P− NW
1 + RB/K

− ΓBW(1 + EB)2 + DW∆W . (A16)

This model is used in the studies described in Sections 4.2 and 4.3, with the nondimensional form

∂tb = bw(1 + ηb)2(1− b)− b + ∆b ,

∂tw = p− nw
1 + ρb

− γbw(1 + ηb)2 + δ∆w , (A17)

obtained by introducing the non-dimensional variables:

b =
B
K

, w =
WΛ
M

, x = X
√

M/DB . y = Y
√

M/DB , t = MT , (A18)

and the non-dimensional parameters

p =
PΛ
M2 , n =

N
M

, γ =
ΓK
M

, ρ = R , η = EK , δ =
DW
DB

. (A19)
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