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1. Introduction and Statements

Starting with Utz [1], expansive dynamical systems have been studied by researchers.
Regarding this concept, many researchers suggest various expansivenesses (e.g., N-expansive [2],
measure expansive [3] and continuum-wise expansive [4]). These concepts were used to show chaotic
systems (see References [3,5-7]) and hyperbolic structures (see References [8-14]).

For chaoticity, Morales and Sirvent proved in Reference [3] that every Li-Yorke chaotic map in the
interval or the unit circle are measure-expansive. Kato proved in Reference [7] that, if a homeomorphism
f of a compactum X with dimX > 0 is continuum-wise expansive and Z is a chaotic continuum of f,
then either f or f ! is chaotic in the sense of Li and Yorke on almost all Cantor sets C C Z. Hertz [5,6]
proved that if a homeomorphism f of locally compact metric space X or Polish continua X is expansive
or continuum-wise expansive then f is sensitive dependent on the initial conditions.

For hyperbolicity, Mafié proved in Reference [12] that if a diffeomorphism f of a compact smooth
Riemannian manifold M is robustly expansive then it is quasi-Anosov. Arbieto proved in Reference [8]
that, C! generically, if a diffeomorphism f of a compact smooth Riemannian manifold M is expansive
then it is Axiom A and has no cycles. Sakai proved in Reference [13] that, if a diffeomorphism f of a
compact smooth Riemannian manifold M is robustly expansive then it is quasi-Anosov. Lee proved in
Reference [9] that, C! generically, if a diffeomorphism f of a compact smooth Riemannian manifold M
is continuum-wise expansive then it is Axiom A and has no cycles.

Through these results, we are interested in general concepts of expansiveness. Actively researching
positive expansivities (positively expansive [15], positively measure-expansive [16,17]) is a motivation
of this paper. In this paper, we study positively continuum-wise expansiveness, which is the
generalized notion of positive expansiveness and positive measure expansiveness.

In this paper, we assume that M is a compact smooth Riemannian manifold. A differentiable
map f : M — M is positively expansive(write f € PE) if there exists a constant 6 > 0 such that for any
x,y € M,if d(fi(x), fi(y)) < & Vi > 0then x = y. From Reference [18], if a differentiable map f € PE
then f is open and a local homeomorphism. For any § > 0, we define a dynamical J-ball for x € M
suchas {y € M : d(f(x), fi(y)) < 6Vi > 0}. Put T (x) = {y € M : d(f'(x), fi(y)) < éVi>0}.
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Note that if a differentiable map f € PE, then T} (x) = {x} for any x € M. Here § > 0 is called an
expansive constant of f.

Let us introduce a generalization of the positively expansive called the positively
measure-expansive (see Reference [3]). Let M (M) be the space of a Borel probability measure of M.
A measure y € M(M) is atomic if u({x}) # 0, for some point x € M. Let A(M) be the set of atomic
measures of M. Note that A(M) is dense in M (M). Let M*(M) = M (M) \ A(M). A differentiable
map f : M — M is positively measure-expansive (write f € PME) if there exists a constant § > 0
such that u(T's(x)) = 0 for any y € M*(M), where § > 0 is called a measure expansive constant.
In Reference [17], the authors found that there exists a differentiable map f : S' — S that is positively
p-expansive for any y € M;}(Sl) but not positively expansive where M}(M ) is the set of non-atomic
invariant measures of M.

Now, we introduce another generalization of the positive expansiveness, which is called positively
continuum-wise expansiveness (see Reference [4]). We say that C is a continuum if it is compact and
connected.

Definition 1. A differentiable map f is positively continuum-wise expansive (write f € PCWE) if there is
a constant e > 0 such that if C C M is a non-trivial continuum, then there is n > 0 such that diamf"(C) > e,
where if C is a trivial, then C is a one point set.

Note that f € PCWE if and only if " € PCWE Vn > 1. We say that f is countably expansive (write
f € C&) if there is a constant § > 0 such that forall x € M, I} (x) = {y € M : d(f'(x), fi(y)) < 6
Vi € Z} is countable. In Reference [19], the authors showed that if a homeomorphism f : M — M
is measure expansive then f is countably expansive. Moreover, the converse is true. Then, as in the
proof of Theorem 2.1 in Reference [19], it is easy to show that f is positively countable-expansive if
and only if f is positively measure expansive. In this paper, we consider the relationship between the
positively measure-expansive and the positively continuum-wise expansive (see Lemma 1). We can
know that if f is positively measure-expansive then it is not positively continuum-wise expansive
because a continuum is not countable, in general.

Definition 2. A differentiable map f : M — M is expanding if there exist constants C > 0 and A > 1 such that
IDxf" ()| = CA™[|o]l,
for any vector v € TyM(x € M) and any n > 0.

Note that a positively measure-expansive differentiable map is not necessarily expanding.
However, under the C! robust or C! generic condition, it is true.

A differentiable map f is C! robustly positive 5j if there exists a C! neighborhood U (f) of f such
that for any g € U(f), g is positive P.

A point x € M is a singular if Dxf : TxM — Tf(,)M is not injective. Denoted by Sy the set of
singular points of f.

Sakai proved in Reference [15] that if a differentiable map f is C! robustly positive expansive
then Sy = @ and it is an expanding map. Lee et al. [17] proved that if f is C! robustly positive
measure-expansive, then Sy = @ and it is expanding. Note that if a differentiable map f is expanding
then it is expansive. According to these facts, we prove the following.

Theorem A If a differentiable map f : M — M is C! robustly positive continuum-wise expansive (write
f € RPCWE) then Sy = @ and it is expanding.

Let D'(M) be the set of differentiable maps f : M — M. Note that D'(M) contains the
set of diffeomorphisms Diff! (M) on M and Diff! (M) is open in D'(M). We say that a subset
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G C DY(M) is residual if it contains a countable intersection of open and dense subsets of D' (M).
Note that the countable intersection of residual subsets is a residual subset of D*(M). A property
“P” holds generically if there exists a residual subset G C D!(M) such that for any f € G, f has
the “P”. Some times we write for C! generic f € D!(M) which means that there exists a residual
set G C D'(M) such that for any f € G. Arbieto [8] and Sakai [15] proved that, C! generically, a
positively expansive map is expanding. Ahn et al. [16] proved that for a C! generic f € D'(M),
if Sy = @ and f is positively measure expansive, then it is expanding. Recently, Lee et al. [17]
showed that, C! generically, if f € D'(M) is positively measure-expansive then S r=Qand fis
expanding. According to these results, we consider C! generic positively continuum-wise expansive
for f € D'(M) and prove the following.

Theorem B For C! generic f € DY(M), if f is positively continuum-wise expansive then S ¢ = Dand it
is expanding.

2. The Proof of Theorem A

The following proof is similar to Lemma 2.2 in Reference [19].

Lemma 1. Let C C M be compact and connected. A differentiable map f € PCWE if and only if there is
a constant § > 0 such that for all x € M, if a continuum C C T'} (x) then C is a trivial continuum set.

Proof. Let § > 0 be a continuum-wise expansive constant and C be compact and connected (that is,
a continuum). Take ¢ = §/2.. We assume that for any x € M, if C C I'J (x) then diamf"(C) < 2c¢ for
all n > 0. Since f is positively continuum-wise expansive, C should be a trivial continuum set. Thus,
if f € PCWE, then for all x € M, if a continuum C C '} (x), then C is a trivial continuum set.

For the converse part, suppose that f € PCWE. Then, there is a constant ¢ > 0 such that
diamf"(C) < ¢ Vn > 0, where C is a continuum. Let x € C be given. Since diamf"(C) < ¢, for all
y € C we have

d(f"(x), f*(y)) < cvn > 0.

Thus, we know y € T'¢(x). Since y € C and y is arbitrary, we have C C T'¢(x). Since a continuum
C C I'c(x), we have that C is a trivial continuum set. [

A periodic point p € P(f) is hyperbolic if D, f p) . TyM — T,M has no eigenvalue with a
modulus equal to 0 or 1, where 77(p) is the period of p. Then, T,M = Ej, & E}; of subspaces such that

(@) Dpf™P(EY) = Ey(c = s,u),and
(b) there exist constants C > 0, and A € (0, 1) satisfies for all positive integer n € N,

o || Dpf"(v) ||[<CA" || v | forany v € Ej, and
e |[[Dpf~(v) [[<CA" [ v | forany v € Ej

A hyperbolic point p € P(f) is a sink if Ej; = {0}, a source if E;, = {0}, and a saddle if E}, # {0}
and E; # {0}. Let P,(f) be the set of hyperbolic periodic points of f. The dimension of the stable
manifold W¥(p) = {x € M : d(f'(x), f'(p)) — 0 asi — oo} is written by the index of p, and denoted
by ind(p). Then, we know 0 < ind(p) < dimM. Let P;(f) be the set of all p € P, (f) withind(p) = i.

Lemma 2. If a differentiable map f € PCWE then P;(f) = @ for 1 <i < dimM.

Proof. By contradiction, we assume that there is i € [1,dimM] such that P;(f) # @. Take p € Pi(f)
and 6 > 0. Then, we can find a local stable manifold W;(p) of p such that Wj(p) # @. We can
construct a continuum J, C W;(p) centered at p such that diamJ, = 6/4. Let Ty ,(p) = {y € M :
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d(f'(p), f'(y)) < 6/2Vi > 0}. Then, we know J, C F;r/z(p). By Lemma 1, J), should be a trivial
continuum set. This is a contradiction since J) is not a trivial continuum set. []

In Reference [17], the authors showed that there is a positively expansive differentiable map f :
S! — S! such that S ¢ # ©. Thus, if f is positively measure-expansive then Sy # ©@. But if f is C!
robustly positive measure-expansive then Sy = . For that, we consider that f is C! robustly positive
continuum-wise expansive.

The following is a version of differentiable maps of Franks’ lemma (see Lemma 2.1 in Reference [8]).

Lemma 3 ([20]). Let f : M — M be a differentiable map and let U(f) be a C' neighborhood of f. Then,
there exists & > 0 such that for a finite set A = {x1,x2,...,x,} C M, a neighborhood U of A and a linear map
Li: Ty M — Ty, M satisfying || L; — Dy, f|| < 6 for 1 <i < n, there exist eg > 0 and g € U(f) having the
following properties;

@ g(x)=f(x)ifxe A and
(b) g(x) =expgoL; oexp;il(x) ifx € Bey(x;) and Vi € {1,...,n}.

It is clear that assertion (b) implies that

and that Dy, ¢ = L;, Vi € {1,...,n}.
Theorem 1. If a differentiable map f € RPCWE then Sy = .

Proof. Suppose that there is x € Sy. Then, by Lemma 3, we can take g C! close to f such that g has a
closed connected small arc B¢ (x) centered at x with radius € > 0, such that dimB(x) = 1 and g(Be(x))
is one point. Take § = 2¢. Let I'} (x) = {y € M : d(g'(x),§'(y)) < 8 Vi > 0}. Itis clear Be(x) C T'f (x).
Since g(Be(x)) is one point, for any y € B (x), we know that diamg’(Be(x)) < 6 for all i > 0. However,
Be(x) is not a trivial continuum set, by Lemma 1 this is a contradiction. [

Recall that a differentiable map f : M — M is star if every periodic point of ¢(C! nearby f) is
hyperbolic.

Lemma 4. If a differentiable map f € RPCWE then f is star.

Proof. Suppose that f is not star. Then, we can take ¢ C! close to f such that ¢ has a non-hyperbolic p €

(p)

P(g). As Lemma 3, we can find g1 C! close to g (g1 C! close to f) such that D, g? P) has an eigenvalue

A with |A| = 1. For simplicity, we assume that g;’ (P) (p) = g1(p) = p. Let E}, be associated with A. If
A € R then dimE; =1,and if A € C then dimE; =2.

First, we consider dimEj, = 1. Then, we assume that A = 1 (the other case can be proved similarly).
By Lemma 3, there are € > 0 and 1 C! close to g7 (also, C! close to f), having the following properties;

o hip)=alp)=»r
o h(x)= exp, © Dpgy o exp;l(x) if x € Be(p), and

o h(x)=gi(x)if x & Bse(p).

Since A = 1, we can construct a closed connected small arc Z, C Be(p) N expp(E;';(e)) with its
center at p such that

e diamZ, =¢€/4,
° h(Ip) =1y, and
e themap h|z, : Ty — Z, which is the identity.
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Take § = €/2. Let T} (p) = {x € M : d(h'(x),hi(p)) < 6 Vi > 0}. Then, it is clear Z, C Ts(p),
and diamh’(Z,) = diamZ, for alli > 0. Since f € RPCWE, according to Lemma 1, Z,, has to be just
a trivial continuum set. This is a contradiction since Z, is not a trivial continuum set.

Finally, we consider dimEj, = 2. For convenience, we assume that P (p) = g(p) = p.
As Lemma 3, we can find € > 0 and g; € U(f), which has the following properties;

e alp)=slp)=p
o ¢1(x)= exp, o Dpgo exp;l(x) if x € Be(p), and

o gi1(x) =g(x)if x & Bye(p)-

For any v € Ej(€), there is | > 0 such that D,g'(v) = v. Take u € E;(€) such that [lul| = e/2.
As in the previous arguments, we can construct a closed connected small arc 7, C Be(p) N exp, (E5(€))
such that

[ ] dlamjp - 6/4/
e ¢(Jp) =Ty and
e ¢ Jp - Jp = Jp is the identity map.

As in the proof of the first case, take § = €/2. Let T} (p) = {x € M : d(g%(x), g} (p) < 6 Vi > 0}.
It is clear that 7, C T'f (p). Then, by Lemma 1, 7, must be a trivial continuum set but it is not possible
since J, is a closed connected small arc. Thus, if f € RPCWE then f is star. [

The differentiable maps f, g : M — M are conjugate if there is a homeomorphism k : M — M such
that f o h = h o g. We say that a differentiable map f is structurally stable if there is a C! neighborhood
U(f) of f € D}(M) such that for any g € U(f), g is conjugate to f. A differentiable map f is Q stable
if there is a C! neighborhood U(f) of f € D'(M) such that for any g € U(f), glng) is conjugate to
flaf), where Q(f) denotes the nonwandering points of f. Przytycki proved in Reference [21] that if f
is an Anosov differentiable map then it is not an Anosov diffeomorphism or expandings which are not
structurally stable. Moreover, assume that f is Axiom A (i.e., P(f) = Q(f) is hyperbolic) and has no
singular points in the nonwandering set Q(f). Then f is Q) stable if and only if f is strong Axiom A
and has no cycles ( see Reference [22]). Here, f is strong Axiom A means that f is Axiom A and Q(f) is
the disjoint union A; U A; of two closed f invariant sets.

According to the above results of a diffeomorphism f € Diff! (M), one can consider the case of
a differentiable f € D' (M) which is an extension of a diffeomorphism. For instance, a diffeomorphism
f € Diff(M) is said to be star if we can choose a C! neighborhood U (f) of f such that every periodic
point of g is hyperbolic, for all g € U(f).

If a diffeomorphism f is star then f is Axiom A and has no cycles (see References [23,24]). Aoki et
al. Theorem A in Reference [25] proved that if a differentiable map f is star and the nonwandering set
Q(f) NSy C{p € P(f) : pisasink } then f is Axiom A and has no cycles.

Theorem 2. Let f € DY(M). If f € RPCWE then f is Axiom A and has no cycles.

Proof. Suppose that f € RPCWE. As Lemma 4, f is star. By Theorem 1, we know S = @, and so,
Q(f) NS¢ = @. By Lemma 2, there do not exist sinks in P(f), thatis, {p € P(f) : pisasink } = @.
Thus, by Theorem A in Reference [25], f is Axiom A and has no cycles. [

Proof of Theorem A. Suppose that f € RPCWE. Then, by Lemma 2, Theorem 2 and Proposition 2.7
in [17], Q(f) = Py(f) is hyperbolic and Py(f) is expanding. Then, by Lemma 2.8 in Reference [17],
M = Py(f). Thus, f is expanding. [

3. The Proof of Theorem B

Denote by KS the set of Kupka-Smale C! maps of M. By Shub [26], KS is a residual set of D' (M).
If f € KS then every p € P(f) is hyperbolic. Then, we can see the following.
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Lemma 5. Let f € KS. If f € PCWE then P(f) = Py(f).

Proof. Let f € PCWE. Suppose, by contradiction, that P;(f) # @ for some 1 < i < dimM. Take p €
Pi(f) and 6 > 0. Then, we can define a local stable manifold W;(p) of p such that W3 (p) # @.
We can construct a closed connected small arc 7, C Wj§ (p) with its center at p such that diamJ, = /4.
LetI'f (p) = {x € M:d(f'(x), fi(p)) < Sforalli > 0}. Then, itis clear J, C ' (p). Since f € PCWE,
by Lemma 1, J, must be a trivial continuum set. This is a contradiction since ) is not a trivial
continuum set. Thus, every p € P(f) is a source so that P(f) = Py(f). O

Lemma 6. Lemma 8 in [15]. There exists a residual set G; C D' (M) such that for given f € Gy, if for any
C! neighborhood U(f) of f there exist ¢ € U(f) and p € Py(g) withind(p) = i(0 < i < dimM), then there
isp’ € Py(f) withind(p') = i.

Lemma 7. There exists a residual subset G, C D(M) such that for a given f € Gy, if f € PCWE then

Sf NPy (f) = Q.

Proof. Let f € G, = KSN Gy and f € PCWE. Suppose, by contradiction, that S¢ NP(f) # @.
Since Sy N Po(f) # @, we can choose a point x € S¢ N Py(f). Then, we can find a sequence of periodic
points {p,} C Py(f) with period 7(p,) such that p, — x as n — co. As Lemma 3, there exists ¢ C!
close to f such that g™(P")(p,) = p, and p, € Se. Again using Lemma 3, there exists g1 C! closed
to g such that g; C! is close to f, gf(p”)(pn) = ppn, and ind(p,) = i(1 < i < dimM). Since f € Gy,
by Lemma 6, f has a hyperbolic saddle periodic point g with index(g) = i(1 < i < dimM). This is
a contradiction by Lemma 2. [

Forad > 0,a point p € P(f)(f™?)(p) = p) said to be a 6-hyperbolic (see Reference [27]) if for an
eigenvalue of Df7(P) (p), we can take an eigenvalue A of Df™()(p) such that

(1=6)7P) < |A| < (1+6)7P),

Lemma 8. There exists a residual subset Gy C D'(M) such that for a given f € G, if f € PCWE, then we
can take & > 0 such that f has no é-hyperbolic.

Proof. Let f € G3 = KSNG1 NGy, and let f € PCWE. Since f € KS N G NGy, by Lemma 2 and
Lemma 7, we know Sy N Py(f) = @. Assume that forany 6 > 0, thereisa p € Py, (f) with a é-hyperbolic.
By Lemma 3, we can take g C! close to f such that p has an eigenvalue with modulus one. Again using
Lemma 3, there exists g1 C! close to g (g1 C' close to f) such that g; has a saddle g € P,(g;) with
ind(q) = i(1 <i < dimM), where P;,(g1) is the set of all hyperbolic periodic points of g;. Since f € G,
f hasasaddle ¢’ € P,(f) withind(g') = i(1 <i < dimM). This is a contradiction by Lemma 2. [J

Lemma 9. Lemma 7 in Reference [15]. There exists a residual subset Gy C D'(M) such that for a given
f € Gyand s > 0, ifany C' neighborhood U (f) of f there exist ¢ € U(f) and p € Py(g) with a 5-hyperbolic,
then we can find p' € Py,(f) with a 26-hyperbolic.

Lemma 10. There exists a residual subset Gs C D(M) such that for a given f € Gs, if f € PCWE then f is star.

Proof. Let f € G5 = G3N Gy and f € PCWE. Suppose that f is not star. Then, as Lemma 3, we can
take ¢ C! close to f such that ¢ has a g € P, (g) with a §/2-hyperbolic for some § > 0. Since f € G, f
has a hyperbolic periodic point p’ with a §-hyperbolic. This is a contradiction by Lemma 8. [

The following is a differentiable version of closing Lemma under the generic sense (see Theorem
1 in Reference [28]). Then we set CL is the residual subset in D'(M) such that for any f € CL,
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Q(f) = P(f).

Proof of Theorem B. Let f € G = GsNCL and f € PCWE. It is enough to show that M = Py(f).
By Lemmas 5 and 7, P(f) = Py(f) and Sy N Py(f) = @. Since f € CL, Q(f) = P(f). According to

Lemma 10, f is star, and so {Q)(f) \ P(f)} NSy = @. Thus we have Q(f) = P(f) = Po(f) is hyperbolic.
As Proposition 2.7 in Reference [17], we have that Py(f) is expanding. Then, as in the proof of Lemma
3.8 in Reference [17], we have M = Py(f). O
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