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1. Introduction

In order to study the fixed point property (FPP for brevity) and the almost (or approximate) fixed
point property (AFPP for short) for Euclidean topological spaces and digital spaces, we need to recall
some terminology from digital topology and fixed point theory. Hereafter, let N, Zn and R represent
the sets of natural numbers, points in the Euclidean n-dimensional space with integer coordinates
and real numbers, respectively. In addition, for distinct integers a, b ∈ Z, we often use the notation
[a, b]Z := {t ∈ Z | a ≤ t ≤ b} called a digital interval [1]. We say that a digital image (X, k) (see
Equation (2)) is k-connected if, for any two points x, y ∈ X, there is a finite sequence < xi >i∈[0,l]Z⊂ X
such that x0 = x and xl = y and, furthermore, xi and xj are k-adjacent (see Equation (1) and (2) in
Section 2) if |i− j| = 1, i, j ∈ [0, l]Z [1]. We say that a non-empty and k-connected digital image (X, k)
has the FPP [2] if every k-continuous map f : (X, k) → (X, k) has a point x ∈ X such that f (x) = x
(see Section 2 for more details). In addition, we say that a non-empty digital image (X, k) has the
AFPP [2] if every k-continuous map f : (X, k)→ (X, k) has a point x ∈ X such that f (x) = x or f (x)
is k-adjacent to x [2]. In general, a non-empty object Y of a category has the FPP if every morphism
h : Y → Y has a point y ∈ Y such that h(y) = y. It is obvious that the AFPP is weaker than the FPP [2].

Recently, many works relating to the FPP and the AFPP for digital spaces have been
proceeded [2–11]. Furthermore, given a Euclidean subspace X, several types of digitizations of X
were also developed [6,12,13]. These approaches indeed play important roles in applied topology
and computer science, e.g., image processing, image analysis and so on. Hereafter, a compact and
n-dimensional Euclidean space means a certain bounded and closed (or compact) n-dimensional
Euclidean topological space (∏i∈{1,2,··· ,n}[−li, li] := X, En

X),li ∈ N. Then, we naturally wonder if there
is a certain relationship between the AFPP of the above (X, En

X) and the AFPP of a space obtained
by its digitization (or a digitized space for short). Furthermore, based on the study of the AFPP of a
finite digital picture, e.g., [a, b]Z × [c, d]Z with 8-adjacency [2], we may ask if the n-dimensional digital
cube (([−1, 1]Z)n := [−1, 1]nZ := X, k) on Zn has the AFPP. Regarding this issue, we need to recall the
notion of a digital space. For a nonempty binary symmetric relation set (X, π), we recall that X is
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π-connected [11] if for any two elements x and y of X there is a finite sequence < xi >i∈[0,l]Z of elements
in X such that x = x0, y = xl and (xj, xj+1) ∈ π for j ∈ [0, l − 1]Z. We say that a digital space is a
nonempty, π-connected, symmetric relation set, denoted by (X, π) [11]. It is well known that a digital
space [11] includes a digital image (X, k) with digital k-connectivity (i.e., Rosenfeld model) [2,14],
a Khalimsky (K-, for brevity) topological space with Khalimsky adjacency [15], a Marcus-Wyse
(M-, for short) topological space with Marcus-Wyse adjacency [16], and so forth [5,9,10] (see Section 2
in details).

Based on the several kinds of digitizations of a Euclidean space in [6,12,13], the present paper
explores a certain relationship between the AFPP for Euclidean topological subspaces in Rn and that
for their U-, L-, K-, or M-digitized spaces in Zn from the viewpoint of digital topology, where U-, L-,
K- and M- means the upper limit, the lower limit, Khalimsky and Marcus-Wyse topology, respectively.

In fixed point theory for digital spaces, we also assume that every digital space (X, π) is
π-connected and non-empty.

The rest of the paper is organized as follows: Section 2 provides basic notions from digital
topology. Section 3 investigates some properties of digitizations in a K-, an M-, a U-, or an L-topological
approach. Section 4 develops a link between the AFPP from the viewpoint of ETC and the AFPP
from the viewpoint of DTC, KTC, or MTC, where ETC, DTC, KTC and MTC are a Euclidean
topological, a digital topological, a Khalimsky topological and a Marcus-Wyse topological category,
respectively (for more details, see Section 2).

2. Several Kinds of Digital Topological Categories, DTC, KTC and MTC

To study the FPP or the AFPP for digital spaces from the viewpoint of digital topology, we first
need to recall the k-adjacency relations of n-dimensional integer grids (see Equation (2)), a digital
k-neighborhood, digital continuity, and so forth [2,14,17]. To study n-dimensional digital images,
n ∈ N, as a generalization of the k-adjacency relations of Zn, n ∈ {1, 2, 3}, we will take the following
approach [17] (see also [18]).

For a natural number m, 1 ≤ m ≤ n, distinct points

p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn, (1)

are k(m, n)-adjacent if at most m of their coordinates differ by ± 1, and all others coincide.
According to the operator of Equation (1), the k(m, n)-adjacency relations of Zn, n ∈ N, are

obtained [17] (see also [18]) as follows:

(a) k := k(t, n) =
n−1

∑
i=n−t

2n−iCn
i , where Cn

i =
n!

(n− i)! i!

or, equivalently,

(b) k := k(t, n) =
t

∑
i=1

2iCn
i , where Cn

i =
n!

(n− i)! i!
.


(2)

A. Rosenfeld [14] called a set X(⊂ Zn) with a k-adjacency a digital image, denoted by (X, k).
Indeed, to study digital images on Zn in the graph-theoretical approach [2,14], using the k-adjacency
relations of Zn of Equation (2), we say that a digital k-neighborhood of p in Zn is the set [14]

Nk(p) := {q | p is k-adjacent to q} ∪ {p}.

In addition, for a k-adjacency relation of Zn, a simple k-path with l + 1 elements on (Zn, k) is
assumed to be a finite sequence < xi >i∈[0,l]Z⊂ Zn (or k-path) such that xi and xj are k-adjacent
if and only if | i− j | = 1. If x0 = x and xl = y, then the length of the simple k-path, denoted
by lk(x, y), is the number l. A simple closed k-curve with l elements on (Zn, k), denoted by
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SCn,l
k :=< xi >i∈[0,l]Z [17], is a simple k-path < xi >i∈[0,l−1]Z on (Zn, k), where xi and xj are k-adjacent

if and only if |i− j| = ±1(mod l).
For a digital image (X, k), for X ⊂ Zn, we put [17]

Nk(x, 1) := Nk(x) ∩ X. (3)

As a generalization of Nk(x, 1) of Equation (3), for a digital image (X, k) let us recall a digital
k-neighborhood [17]. Namely, the digital k-neighborhood of x0 ∈ X with radius ε is defined in X to be
the following subset of X [17]

Nk(x0, ε) := {x ∈ X | lk(x0, x) ≤ ε} ∪ {x0}, (4)

where lk(x0, x) is the length of a shortest simple k-path from x0 to x and ε ∈ N.
Given a digital image (X, k) on Zn and for two points x, y ∈ X, if there is no k-path connecting

between these points, then we define lk(x, y) = ∞. In addition, we may represent the notion of
"k-connected” as follows: a digital image (X, k) on Zn is k-connected if, for any distinct points x, y ∈ X.
there is a k-path connecting these two points.

Definition 1. We say that a k-connected digital image (X, k) on Zn is bounded if for some point x0 ∈ X, there
is an Nk(x0, ε) that is equal to the set X, where ε � ∞.

In general, we say that a digital image (X, k) on Zn is bounded if there is a finite set {xi ∈ X | i ∈
M : finite} such that X = ∪i∈M Nk(xi, εi), where εi � ∞.

The author in [2] established the notion of digital continuity of a map f : (X, k0) → (Y, k1) by
saying that f maps every k0-connected subset of (X, k0) into a k1-connected subset of (Y, k1) (see
Theorem 2.4 of [2]). Motivated by this approach, the digital continuity of maps between digital images
was represented in terms of the neighborhood of Equation (3), as follows:

Proposition 1 ([17]). Let (X, k0) and (Y, k1) be digital images in Zn0 and Zn1 , respectively. A function
f : (X, k0)→ (Y, k1) is (k0, k1)-continuous if and only if for every x ∈ X, f (Nk0(x, 1)) ⊂ Nk1( f (x), 1).

In Proposition 1, in case k0 = k1, the map f is called a k1-continuous map. Using digitally
continuous maps, we establish the category of digital images, denoted by DTC, consisting of the
following two data [17] (see also [5]):

• The set of objects (X, k), denoted by Ob(DTC);
• For every ordered pair of objects (X, k1) and (Y, k2), the set of all (k1, k2)-continuous maps

f : (X, k1)→ (Y, k2) as morphisms.

In DTC, in case k0 = k1 := k, we will particularly use the notation DTC(k).
The authors in [2] initiated the study of the FPP and the AFPP for digital pictures (see Proposition

2). Based on the approach, many works explored the properties for several types of digital spaces,
such as Khalimsky, Marcus-Wyse topological spaces, and digital metric spaces associated with some
typical fixed point theorems.

Proposition 2 ([2]). Consider a bounded digital plane (or finite digital picture) (X, k), k ∈ {4, 8},
i.e., ([a, b]Z × [c, d]Z := X, k).

Then, it does not have the FPP. However, (X, 8) has the AFPP.

Motivated by Proposition 2, we obtain the following:

Theorem 1. For n ∈ N, the n-dimensional digital cube with k-adjacency ([−1, 1]nZ := X, k) on Zn has the
AFPP if and only if k = 3n − 1.
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Proof. Consider [−1, 1]nZ := X with a certain k-adjacency of Zn (see Equation (2)), i.e., a digital image
(X, k). Motivated by Proposition 2, it is obvious that any k-adjacency of Zn (X, k) does not have the
FPP. With the given hypothesis, in case (X, k) has the AFPP, for any k-continuous self-map of (X, k),
there is a point x ∈ X such that f (x) = x or f (x) is k-adjacent to x. For any k-connectivity of (X, k),
since any k-continuity of f implies (3n − 1)-continuity of f (see Equations (1) and (2)), we may take
the (3n − 1)-connectivity of X for supporting the given AFPP of (X, k).

Conversely, if k 6= 3n − 1, then we first prove that (X, k) does not have the AFPP. For instance,
in Z2, consider the digital image ([−1, 1]2Z := X, 4) instead of (X, 8). Let us consider a self-map of
(X, 4). To be precise, assume f : (X, 4)→ (X, 4) as the composite of the following two 4-continuous
maps f1 and f2 (see Figure 1(1)).

f1(X1) = {(0,−1)}, X1 = {(0,−1), (1,−1)},
f1(X2) = {(0, 0)}, X2 = {(0, 0), (1, 0), (0, 1), (1, 1)},
f1(X3) = {(−1, 0)}, X3 = {(−1, 0), (−1, 1)}, and

f1((−1,−1)) = (−1,−1).

 (5)

Then, we obtain f1(X) = {(0, 0), (0,−1), (−1,−1), (−1, 0)} (see Figure 1(2)). Let us further
consider the map f2 : f1(X)→ f1(X) such that

(0, 0)↔ (−1,−1), and (0,−1)↔ (−1, 0). (6)

Owing to the 4-continuous maps f1 and f2, the composite f = f2 ◦ f1 : (X, 4) → (X, 4) is also
a 4-continuous map. Although this map f is a 4-continuous self-map of (X, 4), it is not a map for
supporting the AFPP of (X, 4).

As a generalization of the non-AFPP of ([−1, 1]2Z := X, 4), using a method similar to the
Equations (5) and (6), we obtain that a digital image (X := [−1, 1]nZ, k), k 6= 3n − 1 does not have
the AFPP either. For instance, on Z3, consider (Y := [−1, 1]3Z, 18 := k(2, 3)). Using the notion of
18-continuity of any self-map of (Y, 18) (see Proposition 1), we prove that the digital image (Y, 18)
does not have the AFPP. To be precise, consider a self-map g of (Y, 18) in the following way: For
t ∈ [−1, 1]Z, 

g(1, 1, t) = (−1,−1, t),

g(1, 0, t) = (0, 0, t) = g(0, 1, t),

g(−1, 1, t) = (−1, 0, t), g(1,−1, t) = (0,−1, t), and

g(Y1) = 1Y1 , where Y1 = [−1, 0]2Z × [−1, 1]Z.

 (7)

According to this map g, we obtain

g(Y) = [−1, 0]2Z × [−1, 1]Z := Z(⊂ Y).

Let us now consider the self-map h of Z such that{
h(Z1) = 1Z1 , Z1 = {(0, 0), (−1, 0), (0,−1), (−1,−1)} × [0, 1]Z,

h(s,−1) = (s, 0), where s ∈ {(0, 0), (−1, 0), (0,−1), (−1,−1)}.

}
(8)

Then, we obtain
h(Z) = [−1, 0]2Z × [0, 1]Z(⊂ Y) := W.

Let us now further consider the self-map r of W such that{
(0, 0, 0)↔ (−1,−1, 1), (0,−1, 0)↔ (−1, 0, 1),

(−1,−1, 0)↔ (0, 0, 1), (−1, 0, 0)↔ (0,−1, 1).

}
(9)
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Then, it is obvious that each of the maps h and r is a 6-continuous map and the map g is an
18-continuous map (see Equations (7)–(9)). Hence, the composite r ◦ h ◦ g : (Y, 18) → (Y, 18) is an
18-continuous map. However, this composite does not have the AFPP of (Y, 18) (see the map r of
Equation (9)).

Finally, in case of (X := [−1, 1]nZ, 3n − 1), according to the notion of (3n − 1)-continuity of any
self-map of (X, 3n − 1) (see Proposition 1), it is obvious that the digital image (X, 3n − 1) has the AFPP.
Indeed, to obtain a contradiction, suppose the digital image (X, 3n − 1) does not have the AFPP. Then,
any self-map of (X, 3n − 1) is not a (3n − 1)-continuous map (see the point 03 := (0, 0, 0)).

)
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1
,
1
(


)
0
,
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,
1
(


)
0
,
0
(


(1)
 (2)


Figure 1. The non-AFPP of the digital 2-cube with 4-adjacency, ([−1, 1]2Z := X, 4). (1) Configuration of
the map f1; (2) Explanation of the map f2.

Let us now briefly recall some basic facts and terminology involving the K-topology. The Khalimsky
line topology on Z, denoted by (Z, κ), is induced by the set {[2n− 1, 2n + 1]Z : n ∈ Z} as a subbase [15].
Furthermore, the product topology on Zn induced by (Z, κ) is called the Khalimsky product topology on
Zn (or Khalimsky n-dimensional space), which is denoted by (Zn, κn). Based on this approach, for a point
p in (Zn, κn), its smallest open neighborhood SNK(p) is obtained [19].

Hereafter, for a subset X ⊆ Zn, n ≥ 1, we will denote by (X, κn
X) a subspace induced by (Zn, κn),

and it is called a K-topological space. For a point x in (X, κn
X), we often call SNK(x) the smallest open

neighborhood of x in (X, κn
X).

For (X, κn
X), we say that distinct points x and y in X are K-adjacent in (X, κn

X) if y ∈ SNK(x) or
x ∈ SNK(y) [19]. According to this K-adjacency, it is obvious that a K-topological space (X, κn

X) is a
digital space.

A simple closed K-curve with l elements on (Zn, κn), denoted by SCn,l
K , is defined as a finite

sequence < xi) >i∈[0,l−1]Z in Zn [20], where xi and xj are K-adjacent if and only if |i− j| = ±1(mod l).
Using the set of K-topological spaces (X, κn

X) and that of K-continuous maps for every ordered pair
objects of K-topological spaces, we obtain the category of K-topological spaces, denoted by KTC [4].

Let us now recall basic concepts on M-topology. The M-topology on Z2, denoted by (Z2, γ),
is induced by the set {U(p) | p ∈ Z2} in Equation (10) below as a base [16], where, for each point
p = (x, y) ∈ Z2,

U(p) :=

{
N4(p) if x + y is even, and

{p} : otherwise.

}
(10)

Owing to Equation (10), the set U(p) is the smallest open neighborhood of the point p in Z2,
denoted by SNM(p). Hereafter, for a subset X ⊆ Z2, we will denote by (X, γX) a subspace induced
by (Z2, γ), and it is called an M-topological space. For a point x in (X, γX), we denote by SNM(x) the
smallest open neighborhood of x in (X, γX). For (X, γX), we say that distinct points x and y in X are
M-adjacent in (X, γX) if y ∈ SNM(x) or x ∈ SNM(y) [10], where SNM(p) is the smallest open set
containing the point p in (X, γX). According to this M-adjacency, it turns out that an M-topological
space (X, γX) is a digital space [9].

A simple closed M-curve with l elements on (Z2, γ), denoted by SC2,l
M , is defined as a finite

sequence < xi >i∈[0,l−1]Z in Z2 [8], where xi and xj are M-adjacent if and only if |i− j| = ±1(mod l).
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Using the set of M-topological spaces (X, γX) and that of M-continuous maps for every ordered
pair of objects of M-topological spaces, we obtain the category of M-topological spaces, denoted by
MTC [10].

Remark 1. It is obvious that SCn,l
K [4], SC2,l

M [7] and SCn,l
k [3] do not have the AFPP in the categories KTC,

MTC and DTC, respectively. For instance, for SCn,l
K := (xi)i∈[0,l−1]Z , consider a self-map of SCn,l

K such that

f (xi) = xi+2(mod l). Whereas f is a K-continuous map, there is no point x ∈ SCn,l
K such that f (x) = x or f (x)

is K-adjacent to x [5]. By using a method similar to this approach for SCn,l
K , it is obvious that SC2,l

M and SCn,l
k do

not have the AFPP in DTC and MTC, respectively (see also [7]).

3. Some Properties of a K-, an M-, a U- or an L-Digitization

Regarding several types of digitizations of X(⊆ Rn) into a certain digital space, first of all
we need to examine if given a digitization preserves the typical connectedness of X into the
digital connectedness of the corresponding digitized space associated with a digital space structure.
Indeed, the authors in [13] intensively studied this property. To combine this approach with the study
of a preservation of the AFPP of a compact Euclidean topological space into that of its digitized space,
we need to study a K-, an M-, a U- or an L-digitization [6,12,13]. Hence, this section recalls four types
of local rules being used to formulate special kinds of neighborhoods of a given point p ∈ Zn.

Definition 2 ([6]). In Rn, for each point p := (pi)i∈[1,n]Z ∈ Z
n, we define the set NK(p) := {(xi)i∈[1,n]Z},

which is called the local K-neighborhood of p associated with (Zn, κn), where t ∈ Z and
if pi = 2t, then xi ∈ [2t− 1

2
, 2t +

1
2
],

if pi = 2t + 1, then xi ∈ (2t +
1
2

, 2t +
3
2
).


It is obvious [6] that the set {NK(p) | p ∈ Zn} is a partition of Rn.

Remark 2. In view of Definition 2, for each point p ∈ Zn, NK(p) can be substantially used to digitize (Rn, En)

onto the K-topological space (Zn, κn) by using the following map [6]: For each NK(p), p ∈ Zn

NK(p)(⊂ Rn)→ p(∈ Zn).

Using NK(p) of Definition 2 and the method given in Remark 2, let us recall the K-digitization of
a non-empty space (X, En

X).

Definition 3 ([6]). For a nonempty space (X, En
X), we define a K-digitization of X, denoted by DK(X), to be

the space with K-topology
DK(X) := {p ∈ Zn |NK(p) ∩ X 6= ∅}.

Let us now recall the M-digitization. For a point p ∈ Z2, the authors in [12,13] used an M-localized
neighborhood of the given point p, denoted by NM(p), associated with (Z2, γ).
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Definition 4 ([12,13]). In R2, for a point p := (p1, p2) ∈ Z2, we define the following neighborhood of p:

NM(p) :=



{(t1, t2) | ti ∈ [pi −
1
2

, pi +
1
2
], i ∈ {1, 2}}

if p = (p1, p2) ∈ {(2m, 2n) |m, n ∈ Z};

{(t1, t2) | ti ∈ [pi −
1
2

, pi +
1
2
], i ∈ {1, 2}} \ {(p1 ±

1
2

, p2 ±
1
2
)}

if p = (p1, p2) ∈ {(2m + 1, 2n + 1) |m, n ∈ Z} and;

{(t1, t2) | ti ∈ (pi −
1
2

, pi +
1
2
), i ∈ {1, 2}}

if p = (p1, p2) ∈ {(2m, 2n + 1), (2m + 1, 2n) |m, n ∈ Z},


which is called an M-localized neighborhood of p associated with (Z2, γ).

It is obvious [12] that the set {NM(p) | p ∈ Z2} is a partition of R2.

Remark 3. In view of Definition 4, for each point p ∈ Z2, NM(p) can be substantially used to digitized
(R2, E2) onto the M-topological space (Z2, γ) via the following map. For each NM(p), p ∈ Z2

NM(p)(⊂ R2)→ p(∈ Z2).

Using NK(p) of Definition 4 and the method given in Remark 3, we can define an M-digitization
of a non-empty space (X, E2

X), as follows.

Definition 5 ([12,13]). For a nonempty 2-dimensional Euclidean topological space (X, E2
X) in R2, we define

an M-digitization of X, denoted by DM(X), to be the set in Z2 with M-topology

DM(X) := {p ∈ Z2 |NM(p) ∩ X 6= ∅}.

Remark 4. In view of Definition 5, for each point p ∈ Z2, NM(p) can be substantially used to digitize the
spaces (X, E2

X) in Ob(ETC) into M-topological spaces DM(X) in Ob(MTC).

Using Definitions 3 and 5 and Remarks 1, 2 and 3, for X ⊆ Rn, we obtain the following:

Proposition 3. For X ⊆ Rn and Y ⊆ R2, there are K- and M-digitizations

DK : P(Rn)→ (Zn, κn) and DM : P(R2)→ (Z2, γ)

defined by
DK(X) = (DK(X), κn

DK(X)) and DM(Y) = (DM(Y), γDM(Y)).

In Proposition 3, P(T) means the power set of the set T.

Let us now recall the so-called U-digitization of (X, UX). The upper limit topology (U-topology,
for brevity) on R, denoted by (R, EU), is induced by the set {(a, b] | a, b ∈ R and a < b} as a base [21].
Based on the U-topology on R, we obtain the product topology on Rn, denoted by (Rn, En

U), induced
by (R, EU). Based on (Rn, En

U), we use a U-local rule [13] that is used to digitize (Rn, En
U) into (Zn, Dn),

where (Zn, Dn) is a discrete topological space.

Definition 6 ([13]). Under (Rn, En
U), for a point p := (pi)i∈[1,n]Z ∈ Zn, we define NU(p) :=

{(xi)i∈[1,n]Z | xi ∈ (pi − 1
2 , pi +

1
2 ]}, and we call NU(p) the U-localized neighborhood of p associated

with (Rn, En
U).
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Using the U-local rule of Definition 6, we define the following:

Definition 7 ([13]). Let DU(k) : (Rn, En) → (Zn, k) be the map defined by DU(k)(x) = p, where x ∈
NU(p), p ∈ Zn and the k-adjacency is taken according to the situation. Then, we say that DU(k) is a
U(k)-digitization operator.

Using the method similar to the establishment of (Rn, En
U) and the above U-local rule, let us

now consider the L-local rule associated with L-topology and its product topology, where the lower
limit topology (L-topology, for brevity) on R, denoted by (R, EL), is induced by the set {[a, b) | a, b ∈
R and a < b} as a base [21].

Definition 8 ([13]). Under (Rn, En
L), for a point p := (pi)i∈[1,n]Z ∈ Zn, we define NL(p) :=

{(xi)i∈[1,n]Z | xi ∈ [pi− 1
2 , pi +

1
2 )}. We call NL(p) the L-localized neighborhood of p associated with (Rn, En

L).

It is obvious [13] that the set {NL(p) | p ∈ Zn} is a partition of Rn.
Using the L-local rule of Definition 8, we define the following:

Definition 9 ([13]). Let DL(k) : (Rn, En) → (Zn, k) be the map defined by DL(k)(x) = p, where x ∈
NL(p), p ∈ Zn and the k-adjacency determined according to the situation. Then, we say that DL(k) is an
L(k)-digitization operator.

For a non-empty set X ⊂ Rn, let us now recall a U(k)- and an L(k)-digitization, as follows.

Definition 10 ([13]). Let X be a subspace in (Rn, En
U) (resp. (Rn, En

L)). The U- (resp. L-) digitization of X,
denoted by DU(X) (resp. DL(X)), is defined as follows:

{
DU(X) = {p ∈ Zn |NU(p) ∩ X 6= ∅ };
DL(X) = {p ∈ Zn |NL(p) ∩ X 6= ∅}

with a k-adjacency of Zn of (2) depending on the situation.

Using Definition 10, for X ⊆ Rn, we obtain the following:

Proposition 4. Given a k-adjacency of Zn and X ⊆ Rn, there are U(k)- and L(k)-digitizations

DU(k), DL(k) : P(Rn)→ (Zn, k)

defined by
DU(k)(X) = (DU(X), k) and DL(k)(X) = (DL(X), k).

In Proposition 4, P(Rn) means the power set of of the set Rn.

4. Explorations of the Preservation of the AFPP of a Compact Plane into the AFPP of a K-, an M-,
a U(k)-, or an L(k)-Digitized Space

The author in [8,10] proved the FPP of the smallest open neighborhood of (Zn, κn) [10] and the
non-FPP of a compact M-topological plane in (Z2, γ) [8]. Thus, we may now pose the following queries
about the AFPP of compact M-topological plane X and the preservation of the AFPP of a compact
n-dimensional Euclidean space (or cube) into that of each of K-, M-, U- and L-digitization, as follows:

Question 1 Let X be the set ∏i∈{1,2,··· ,n}[−li, li]Z. How about the FPP or the AFPP of the K-topological
space (X, κn

X) ?
Question 2 Let Y be the set ∏i∈{1,2}[−li, li]Z. What about the AFPP of the M-topological

space (Y, γY) ?
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Question 3 How about the preservation of the AFPP of a compact n-dimensional Euclidean cube into
the AFPP of its U(k)-, or L(k)-digitized space ?

To address these queries, we first compare the FPP among a compact n-dimensional Euclidean
space, a compact and n-dimensional K-topological space and a compact M-topological plane as follows:

Lemma 1. The smallest open neighborhood of (Z2, γ) has the FPP.

Proof. As the smallest open set SNM(p) of (Z2, γ), p ∈ Z2, we may consider U(p) (see (10)),
where p ∈ {(2m, 2n), (2m + 1, 2n + 1) |m, n ∈ Z} or a singleton {p}, where p ∈ {(2m + 1, 2n),
(2m, 2n + 1) |m, n ∈ Z}.

Case 1 Consider U(p), where p ∈ {(2m, 2n), (2m + 1, 2n + 1) |m, n ∈ Z}. Then, assume any
M-continuous self-map f of (U(p), γU(p)). If p is mapped by f onto a point q ∈ U(p) \ {p},
then the map should be a constant map with f (U(p)) = {q} according to the M-continuity of
f , which implies that (U(p), γU(p)) has the FPP with a fixed point q associated with the map
f . In addition, in case f (p) = p, the assertion is trivial.

Case 2 Assume that U(p) is a singleton. Then, it is obvious that (U(p), γU(p)) has the FPP.

In MTC, we say that an M-homeomorphic invariant is a property of an M-topological space which
is invariable under M-homeomorphism [9].

Proposition 5 ([9]). Each of the FPP and the AFPP from the viewpoint of MTC is an M-homeomorphic
invariant.

Indeed, in Lemma 1, the shape of U(p)( 6= {p}) is a diamond. Then, we may pose a query about
the FPP of another shape of a diamond, as follows:

Corollary 1. Consider an M-topological space (X, γX) which is M-homeomorphic to (Y, γY), where
Y = {(0, 1) := y1, (1, 1) := y2, (0, 2) := y3, (−1, 1) := y4, (0, 0) := y5}. Then, (X, γX) has the FPP.

Proof. According to Proposition 5, since the FPP in MTC is an M-topological invariant property [8],
we may prove that (Y, γY) has the FPP. For any M-continuous self-map f of (Y, γY), we prove that
there is always a point y ∈ Y such that f (y) = y. To be precise, consider any M-continuous self-map
f of (Y, γY). In case f (y1) = y1, y1 is a fixed point of f . In case f (y1) 6= y1, i.e., we may assume
f (y1) ∈ {y2, y3, y4, y5}. Then, according to the M-continuity of f , f should have the fixed point
f (y1) ∈ Y, which implies that there is a point yi ∈ {y2, y3, y4, y5} satisfying f (yi) = yi. Thus, (Y, γY)

is proved to have the FPP.

The notion of an M-retract is used to study both the FPP and the AFPP of M-topological spaces [8].
Thus, let us recall it.

Definition 11 ([8]). In MTC, we say that an M-continuous map r : (X′, γX′)→ (X, γX) is an M-retraction if

(1) (X, γX) is a subspace of (X′, γX′), and
(2) r(a) = a for all a ∈ (X, γX).

Then, we say that (X, γX) is an M-retract of (X′, γX′).

The author in [8] proved that a compact M-topological plane does not have the FPP. Hence, as a
more generalized version, we need to study the following:

Lemma 2 ([8]). For (X, γX) let (A, γA) be an M-retract of (X, γX). If (X, γX) has the AFPP, then (A, γA)

also has the AFPP.
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Using this property, unlike the shape of a diamond in Lemma 1 and Corollary 1, as a generalization
of the non-FPP of a compact M-topological plane [7], we now prove the non-AFPP of a compact
M-topological plane, as follows:

Theorem 2. A compact M-topological plane does not have the AFPP.

Proof. Consider a compact M-topological plane (X, γX) containing the set X1 ∈ {[2m, 2m + 1]Z ×
[2n, 2n + 1]Z, [2m + 1, 2m + 2]Z × [2n + 1, 2n + 2]Z |m, n ∈ Z}. Then, we first prove that (X1, γX1) is
an M-retract of (X, γX). Furthermore, we second permutate (X1, γX1) as an M-continuous self-map
of (X1, γX1). After combining these two processes, we obtain an M-continuous self-map of (X, γX)

which does not support the AFPP of (X, γX).
For instance, let us consider the compact M-topological plane ([−1, 1]2Z := X, γX). Then, further

consider two self-maps f1 (see Figure 2a(1)), f2 (see Figure 2a(2)) of X such that
f1(X1) = {(−1, 0)}, where X1 = {(−1, 0), (−1, 1), (0, 1)},
f1(X2) = {(0,−1)}, where X2 = {(1, 0), (1,−1), (0,−1)},
f1(X3) = {(0, 0)}, where X3 = {(0, 0), (1, 1)}, and

f1((−1,−1)) = (−1,−1).

 (11)

Furthermore, f2 is defined as follows:

(0, 0)↔ (−1,−1) and (−1, 0)↔ (0,−1). (12)

Since the two maps f1 and f2 are M-continuous self-maps of X (see Equations (11) and (12)),
the composite f2 ◦ f1 is also an M-continuous self-map of X. However, owing to this composite f2 ◦ f1,
(X, γX) does not have the AFPP.

In general, let us consider a compact M-topological plane ([2m, 2m + l1]Z × [2n, 2m + l2]Z :=
X, γX), li ∈ N, i ∈ {1, 2} (see Figure 2b) or ([2m, 2m + l1]Z × [2n + 1, 2m + l2]Z := X, γX), li ∈ N, i ∈
{1, 2} (see Figure 2c). Without loss of generality, we may assume X := [0, 5]Z × [0, 5]Z (see Figure 2b)
or X := [0, 5]Z × [1, 5]Z (see Figure 2c) because the other cases are obviously similar to these cases.
Then, consider the following two M-continuous self-maps g1 (see Figure 2b(1)), g2 (see Figure 2b(2)) of
(X, γX) such that

g1(X5) = {(0, 1)}, where X5 = ({0} × [2, 5]Z) ∪ {(1, 2), (1, 4)},
g1(X6) = {(1, 1)}, where X6 = ([2, 5]Z × [2, 5]Z) ∪ {(1, 3), (1, 5), (3, 1), (5, 1)},
g1(X7) = {(1, 0)}, where X7 = ([2, 5]Z × {0}) ∪ {(2, 1), (4, 1)}, and

g1(X8) = 1X8 , where X8 = [0, 1]Z × [0, 1]Z.

 (13)

Furthermore, g2 is defined as follows:

(0, 0)↔ (1, 1) and (1, 0)↔ (0, 1). (14)

Then, the maps g1 and g2 are M-continuous maps (see Equations (13) and (14)) so that the
composite g2 ◦ g2 is also an M-continuous map. However, there is no point in X supporting the AFPP
of (X, γX).

Similarly, let us consider another case such as X := [0, 5]Z × [1, 5]Z (see Figure 2c). Then, consider
the following two M-continuous self-maps h1, h2 of (X, γX) such that
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
h1(X9) = {(1, 2)}, where X9 = ({0} × [1, 5]Z) ∪ ({1} × [3, 5]Z) ∪ {(2, 3), (2, 5)},
h1(X10) = {(2, 2)}, where X10 = ([3, 5]Z × [3, 5]Z) ∪ {(2, 4), (4, 2)},
h1(X11) = {(2, 1)}, where X11 = ([3, 5]Z × {1}) ∪ {(3, 2), (5, 2)}, and

h1(X12) = 1X12 , where X12 = [1, 2]Z × [1, 2]Z.

 (15)

Furthermore, h2 is defined as follows:

(1, 1)↔ (2, 2) and (2, 1)↔ (1, 2). (16)

Then, the maps h1 and h2 are M-continuous maps (see Equations (15) and (16)) so that the
composite h2 ◦ h2 is also an M-continuous map. However, there is no point in X supporting the AFPP
of (X, γX).
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Figure 2. The non-AFPP of an compact M-topological plane.

Based on Propositions 2 and 3, 4 and Theorem 1, we have the following:

Theorem 3. Let X be a compact and two-dimensional Euclidean topological plane,
i.e., (∏i∈{1,2}[−li, li] := X, E2

X), li ∈ N. Then, we obtain the following:

(1) The functor DM does not preserve the AFPP,
(2) The functor DU(k) preserves the AFPP if k = 8,
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(3) The functor DL(k) preserves the AFPP if k = 8

Let X be a compact and n-dimensional Euclidean topological cube, i.e., ([−1, 1]n := X, En
X). Then, we

obtain the following:

(4) The functor DU(k) preserves the AFPP if k = 3n − 1,
(5) The functor DL(k) preserves the AFPP if k = 3n − 1.

Proof. Based on Theorem 1 and Propositions 3 and 4, we consider the following digitizations:
(1) DM : ETC → MTC,

(2) DU(k) : ETC → DTC in terms of the U-digitization, and

(3) DL(k) : ETC → DTC via an L-digitization.


(1) For (X, E2

X)(⊂ (R2, E2), since DM(X) is also M-connected [13] and furthermore that
(DM(X), γDM(X)) is a compact M-topological plane, by Theorem 2, we obtain that
(DM(X), γDM(X)) does not have the AFPP, which completes the proof.

(2) Using Propositions 2 and 4, the proof is completed.
(3) Using the method similar to the proof (2), we complete the proof.
(4) For (X := [−1, 1]n, En

X)(⊂ (Rn, En), it is obvious that (DU(k)(X), k) is k-connected, k = 3n − 1.
Hence, by Theorem 1, the digital image (DU(k)(X), k), k = 3n − 1 has the AFPP. Hence, DU(k)
preserves the AFPP if k = 3n − 1.

Indeed, in case k 6= 3n − 1, (DU(k)(X), k) does not have the AFPP. For instance, consider the
compact Euclidean topological plane ([0, 1]× [0, 1] := X, E2

X). Since ([0, 1]× [0, 1] := X, E2
X) has the

FPP [21], it obviously has the AFPP. Apparently, according to Theorem 1, the 4-connected digital image
(DU(4)(X), 4) does not have the AFPP because DU(4)(X) = [0, 1]2Z is equal to SC2,4

4 . By Remark 1,
(DU(4)(X), 4) does not have the AFPP.

(5) It is obvious that (DL(k)(X), k) is k-connected, k = 3n − 1. Hence, by Theorem 1, the digital image
(DL(k)(X), k), k = 3n − 1 has the AFPP.

Indeed, in case k 6= 3n − 1, by using a method similar to the case of (2) above, we prove that
(DL(k)(X), k) does not have the AFPP.

Regarding Questions 1 and 3, the author in [10] proved the FPP of SNK(p) in (Zn, κn).
Moreover, the authors in [13] proved that the functor DK preserves the connectedness of (X, κn

X) into
its K-digitized space (DK(X), κn

DK(X)
). Based on this situation, we can conclude that DK : ([−1, 1]n :=

X, En
X)→ (DK(X), κn

DK(X)
) preserves the FPP and furthermore the AFPP. As a general case of this case,

we have the following conjecture.
The author in [10] proved that a smallest open set of (Zn, κn) has the FPP, and the authors

in [22] proved that ∏i∈{1,2,··· ,n}[−li, li]Z := Y, κn
Y) has the FPP, and, using these results, we obtain the

following:

Remark 5. Let X be the compact and n-dimensional Euclidean space ∏i∈{1,2,··· ,n}[−li, li] ⊂ Rn, li ∈ N. Then,
(DK(X), κn

DK(X)
) has the AFPP because it has the FPP.

5. Conclusions

We have studied the AFPP of an n-dimensional digital cube (X, 3n − 1) and also investigated the
preservation of the AFPP via each of K-, U(k)- and L(k)-digitizations if k = 3n − 1. In addition, based
on the non-FPP of a compact M-topological plane, we also explored the non-preservation of the AFPP
via an M-digitization. Furthermore, based on the FPP of SNK(p), we also proved the preservation of
the FPP of ([−1, 1]n := X, En

X) via a K-digitization. This approach can facilitate the study of applied
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sciences such as object classifications, image processing, pattern recognition, artificial intelligence,
and so on.
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