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Abstract: Gibbs effect represents the non-uniform convergence of the nth Fourier partial sums
in approximating functions in the neighborhood of their non-removable discontinuities (jump
discontinuities). The overshoots and undershoots cannot be removed by adding more terms in
the series. This effect has been studied in the literature for wavelet and framelet expansions. Dual
tight framelets have been proven useful in signal processing and many other applications where
translation invariance, or the resulting redundancy, is very important. In this paper, we will study
this effect using the dual tight framelets system. This system is generated by the mixed oblique
extension principle. We investigate the existence of the Gibbs effect in the truncated expansion of a
given function by using some dual tight framelets representation. We also give some examples to
illustrate the results.

Keywords: Gibbs phenomenon; quasi-affine; shift-invariant system; dual tight framelets; oblique
extension principle; B-splines

1. Introduction

The Gibbs effect was first recognized over a century ago by Henry Wilbraham in 1848 (see Ref. [1]).
However, in 1898 Albert Michelson and Samuel Stratton (see Ref. [2]) observed it via a mechanical
machine that they used to calculate the Fourier partial sums of a square wave function. Soon after,
Gibbs explained this effect in two publications [3,4]. In his first short paper, Gibbs failed to notice
the phenomenon and the limits of the graphs of the Fourier partial sums was inaccurate. In the
second paper, he published a correction and gave the description of overshoot at the point of jump
discontinuity. In fact, Gibbs did not provide a proof for his argument but only in 1906 a detailed
mathematical description of the effect was introduced and named after Gibbs phenomenon by Maxime
(see Ref. [5]) as he believed Gibbs to be the first person noticing it. This phenomenon has been
studied extensively in Fourier series and many other situations such as the classical orthogonal
expansions (see Refs. [6–8]), spline expansion (see Refs. [9,10]), wavelets and framelets series (see
Refs. [11–17]), sampling approximations (see Ref. [18]), and many other theoretical investigations
(see Refs. [19–23]). By considering Fourier series, it is impossible to recover accurate point values of
a periodic function with many finitely jump discontinuities from its Fourier coefficients. Wavelets
and their generalizations (framelets) have great success in coefficients recovering and have many
applications in signal processing and numerical approximations (see Refs. [24–27]). However, many
of these applications are represented by smooth functions that have jump discontinuities. However,
expanding these functions will create (most often) unpleasant ringing effect near the gaps. It is the
aim of this article to analyze the Gibbs effect of dual tight framelets using a different/higher order of
vanishing moments.

Mathematics 2019, 7, 952; doi:10.3390/math7100952 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-0976-6021
http://www.mdpi.com/2227-7390/7/10/952?type=check_update&version=1
http://dx.doi.org/10.3390/math7100952
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 952 2 of 14

Let us recall the preliminary background by introducing some notations (e.g., see Refs. [28–30]).
Let L2(R) denote the space of all square integrable functions over the space R, where

L2(R) =
{

f : R→ R;
∫
R
| f |2 < ∞

}
.

Definition 1 ([31]). Let ψ ∈ L2(R). For j, k ∈ Z, define the function ψj,k by

ψj,k = 2j/2ψ(2j · −k).

Then, we say the function ψ is a wavelet if the set
{

ψj,k

}
j,k∈Z

forms an orthonormal basis for L2(R).

Every square integrable function f ∈ L2(R) has a wavelet representation and this requires an
orthonormal basis. However, the existence of such complete orthonormal basis is in general hard to
construct and their representation is too restrictive and rigid. Therefore, frames were defined by the
idea of an additional lower bound of the Bessel sequence which does not constitute an orthonormal
set and are not linearly independent. In this paper, we will use dual tight framelets constructed by
the mixed oblique extension principle (MOEP) (see Ref. [32]) which enables us to construct dual tight
framelets for L2(R) of the form {ψ`

j,k, ψ̃`
j,k, ` = 1, · · · , r}j,k. The MOEP provides an important method to

construct dual framelets from refinable functions and gives us a better number of vanishing moments
for ψ` and therefore a better imation orders. In fact, using the unitary extension principle UEP (see
Ref. [32]), it is known that the approximation order of the system will not exceed 2, whereas the MOEP
will give us a better approximation (see Ref. [33]). Please note that the MOEP is a generalization of the
UEP and the oblique extension principle OEP. extension principle OEP (see Ref. [34]), which is again
given to ensure that the system

{ψ`
j,k, ψ̃`

j,k, ` = 1, · · · , r}j,k∈Z,

forms a dual tight framelets for L2(R). We refer the reader to Ref. [34] for the general setup of the MOEP.

Definition 2 ([31]). A sequence Ψ = {ψ`
j,k, ` = 1, · · · , r}j,k of elements in L2(R) is a framelet for L2(R) if

there exists constants A, B > 0 such that

A‖ f ‖2 ≤
r

∑
`=1

∞

∑
j,k
|〈 f , ψ`

j,k〉|
2 ≤ B‖ f ‖2, ∀ f ∈ L2(R). (1)

The numbers A, B are called frame bounds. If we can choose A = B = 1, then Ψ is called a tight
framelet for L2(R).

Please note that we obtain a family of functions Ψ̃ = {ψ̃`
j,k, ` = 1, · · · , r}j,k such that

B−1‖ f ‖2 ≤
r

∑
`=1

∑
j,k
|〈 f , ψ̃`

j,k〉|
2 ≤ A−1‖ f ‖2, ∀ f ∈ L2(R). (2)

The family Ψ̃ is called dual (reciprocal) framelet of the framelet Ψ. Equations (1) and (2) implies,
respectively, the following equation

〈 f , g〉 =
r

∑
`=1

∑
j,k
〈 f , ψ̃`

j,k〉〈ψ
`
j,k, g〉 (3)
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It follows directly from Equation (3) that any function f ∈ L2(R) has the following framelet
representation

f =
r

∑
`=1

∑
j∈Z

∑
k∈Z
〈 f , ψ̃`

j,k〉ψ
`
j,k =

r

∑
`=1

∑
j∈Z

∑
k∈Z
〈 f , ψ`

j,k〉ψ̃
`
j,k. (4)

The framelet constructions of Ψ and Ψ̃ require mother wavelets, called refinable functions φ and φ̃,
where a compactly supported function φ ∈ L2(R) is said to be refinable if

φ(x) = 2 ∑
k∈Z

h0[k] φ(2x− k), (5)

for some finite supported sequence h0[k] ∈ `2(Z). The sequence h0 is called the low pass filter of φ.
For convenience, we define ψ`

0,k(·) = φ0,k(·) and ψ̃`
0,k(·) = φ̃0,k(·). Therefore, Equation (4) can be

rewritten as

f = ∑
k
〈 f , φ̃(· − k)〉φ(· − k) +

r

∑
`=1

∞

∑
j=1

∑
k∈Z
〈 f , ψ̃`

j,k〉ψ
`
j,k (6)

The above series expansion (6) can be truncated as

Qn f =
r

∑
`=1

∑
j<n

∑
k∈Z
〈 f , ψ̃`

j,k〉ψ
`
j,k. (7)

which is typical in kernel-based system identification approaches (see Ref. [35])
Please note that Qn f can be described by a reproducing kernel Hilbert space which is given by a

linear combination of its frame and dual frame product.

Qn f (x) =
∫

R
f (y)Dn (x, y) dy, (8)

where

Dn (x, y) =
r

∑
`=1

∑
j<n

∑
k∈Z

ψ̃`
j,k (y)ψ`

j,k (x) ,

is called the kernel of Qn f . Figure 1 shows the graphs of the kernel D2 (x, y) for different framelets.

Figure 1. The graphs of the kernel, D2(x, y), using the framelets of Example 2, 3 and 4, respectively.

It is known from the approximation theory, see e.g., Refs. ([28,35]), that the truncated expansion (7)
is equivalent to

Qn f = ∑
k∈Z
〈 f , φ̃n,k〉φn,k, n ∈ Z+, f ∈ L2(R). (9)

The general setup is to construct a set of functions as the form of Ψ, which can be summarized
as follows: Let V0 be the closed space generated by {φ(· − k)}k∈Z , i.e., V0 = span {φ(· − k)}k∈Z, and
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Vj =
{

f (2jx) : f (x) ∈ V0, x ∈ R
}

. Let
{

Vj, φ
}

j∈Z be the multiresolution analysis (MRA) generated by
the function φ and Ψ ⊂ V1 such that

ψ` = 2 ∑
k∈Z

h`[k] φ(2 · −k), (10)

where {h`[k], k ∈ Z}r
`=1 is a finitely supported sequence called high pass filters of the system. Please

note that from Equation (7), the functions φ, ψ` and φ̃, ψ̃` are playing a great role. They are used for
computing the coefficients of the expansion of the function f in terms of φ and ψ, and recovering the
projection of f onto Vj from the coefficients 〈 f , ψ̃`

j,k〉. The Fourier transform of a function f ∈ L2(R) is
defined to be

F ( f )(ω) = f̂ (ω) =
∫
R

f (x) e−iωxdx, ω ∈ R,

and the Fourier series of a sequence h ∈ `2(Z) is defined by

F (h)(ω) = ĥ(ω) = ∑
k∈Z

h[k]e−iωk, ω ∈ R.

2. Gibbs Effect in Quasi-Affine Dual Tight Framelet Expansions

In this section, we study the Gibbs effect by using dual tight framelet in the quasi-affine tight
framelet expansions generated via the MOEP. In general, and by using the expansion in Equation (7),
we have limn→∞Qn f (x) = f (x) around x, where f is continuous except at many finite points. Hence,
it is sufficient to study this effect by considering the following function

f (x) =


1− x, 0 < x ≤ 1
−1− x, −1 ≤ x < 0

0, else
.

In fact, this function is useful in the sense that other functions that have the same type of gaps,
can be represented as expansions in terms of f plus a continuous function at x = 0. Please note that if
we define S as

S(x) =


ξ + 1− x, ξ < x ≤ ξ + 1
ξ − 1− x, ξ − 1 ≤ x < ξ

0, else
,

then, S has a jump discontinuity at the point ξ and S(x) = f (x− ξ). Thus, we have the following result.

Theorem 1. Any function with finitely many jump discontinuities can be written in terms of S plus a
continuous function at the origin.

Proof. Let g be a discontinuous function with a jump discontinuity, say at x = ξ, of magnitude D. We
could put several of these together for g but we would likely only be looking at one such function at a
time. Suppose that S and g are in the same direction of the needed jump (i.e., if g(ξ+) > g(ξ−), then
J(ξ+) > J(ξ−), and similarly for g(ξ+) < g(ξ−)) or multiply S by (- or +)D to create the needed jump
in the same direction. Define

F(x) = (+ or −)DS(x) + d,

so that d is a constant that makes the jump endpoints of F and g matched at x = ξ. Our continuous
function in the neighborhood of the point ξ will then be g(x)− F(x).
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The definition of the Gibbs effect under the quasi-projection approximation Qn is defined
as follows.

Definition 3. Suppose a function f is smooth and continuous everywhere except at x◦, i.e., limits limx→x+◦ f (x)
and limx→x−◦ f (x) exist, and that f (x+◦ ) & 6= & f (x−◦ ). Define Qn f to be the truncated partial sum of
Equation (7). We say that the framelet expansion of f exhibits the Gibbs effect at the right-hand side of x◦ if
there is a sequence ds > 0 converging to x◦, and

lim
n,s→∞

Qn f (ds)

{
> f (x+◦ ), i f f (x+◦ ) > f (x−◦ )
< f (x+◦ ), i f f (x+◦ ) < f (x−◦ )

.

Similarly, we can define the Gibbs effect on the left-hand side of x◦.

Let Ψ to be the system defined by Definition 2. Thus, the corresponding quasi-affine system
X J (Ψ) generated by Ψ is defined by a collection of translations and dilation of the elements in Ψ
such that

X J(Ψ) =
{

ψ`
j,k : 1 ≤ ` ≤ r, j, k ∈ Z,

}
where

ψ`
j,k =

{
2j/2ψ`(2j · −k), j ≥ J
2jψ`(2j · −2jk)), j < J

.

In the study of our expansion, we consider J = 0. Many applications in framelet and
approximation theory are modeled by non-negative functions. One family of such important functions
are the B-splines, where the B-spline Bm of order m is defined by

Bm = Bm−1 ∗ B1 =
∫
(0,1]

Bm−1(· − x)dx

where
B1 = χ(0,1].

Figure 2 shows the graphs of the B-splines Bm for different order.
It is known that sparsity of the framelets representations is due to the vanishing moments of the

underling refinable wavelet (see Ref. [29]). We say ψ has N vanishing moments if∫
xrψ`

j,k(x)dx = 0, f or r = 0, 1, · · · , N − 1, (11)

which is equivalent to that ψ̂
(r)
j,k (0) = 0, for all r = 0, 1, · · · , N − 1. This implies that the framelet

ψ`
j,k(x) is orthogonal to the polynomials 1, x, · · · , xN−1. The following statement is well known in the

literature [13] for wavelets, but we present the proof for the reader’s convenience by considering the
general quasi-affine dual framelet system.

Proposition 1. Assume that Ψ̃, Ψ is a quasi-affine dual framelet system for L2(R) and that ψ, where ψ ∈ Ψ
has a vanishing moment of order N. Then for any polynomial d(x) of degree at most N − 1, we have

Qd = d,

where Q = Q0 is defined by Equation (9) for n = 0.
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Proof. From the definition of Ψ̃, Ψ, we know that all the generators must have a compact support.
Therefore, we can find a positive integer A such that the support of all these generators lie in the
interval [−A, A]. Define

CB = χ[−B,B], where B ≥ A. (12)

Let d(·) be a polynomial of degree at most N − 1. Then, by the vanishing moment property of ψ`
j,k

we have ∫
R

CBd(x)ψ`
j,kdx =

∫ B

−B
d(x)ψ`

j,kdx = 0, where x < |B− A|. (13)

Now, the proof is completed by taking B→ ∞ and using Equations (6) and (13). Thus, we have

d(·) = CBd(·) = ∑
k
〈d, φ̃0,k〉φ0,k(·) = Qd(·).


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Figure 2. B-splines of order 1 through 8, respectively.

Now, we present some examples of dual tight framelets constructed by the MOEP in Ref. [34].

Example 1. Let B1 = φ = χ[0,1). Define,

ψ1(x) =
529
1497

χ[0,1)(2x) +
−173
489

χ[0,1)(2x− 1),

ψ̃1(x) =
−1208
3415

χ[0,1)(2x) +
489

1384
χ[0,1)(2x− 1).

Then, the resulting system generates a dual tight framelet for L2(R). We illustrate the framelet and its dual
framelet generators in Figure 3.
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-0.2

0.0

0.2

0.4

0.6

ψ̃1

Figure 3. The graph of the Haar dual tight framelet of Example 1.
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Example 2. Let B2 = φ = φ̃. Then,

F (h0)(ξ) = ĥ0(ξ) =
ˆ̃
0h(ξ) = 0.25(1 + cos(ξ)− i sin(ξ))2.

Thus, by using the MOEP, one can find the following high pass filters,

ĥ1(ξ) = −(1− cos(ξ) + i sin(ξ))2,

ĥ2(ξ) = −16 sin4(ξ/2)(cos(ξ)− i sin(ξ)),

ˆ̃h1(ξ) =
1

480
e−iξ sin4(ξ/2)(32,668 + 57,569 cos(ξ) + 39,422 cos(2ξ) + 21,191 cos(3ξ) +

8428 cos(4ξ) + 2233 cos(5ξ) + 426 cos(6ξ) + 71 cos(7ξ)),

ˆ̃h2(ξ) = − 1
480

e−iξ sin2(ξ/2)(−614− 726 cos(ξ) + 85 cos(2ξ) + 412 cos(3ξ) + 458 cos(4ξ)

+284 cos(5ξ) + 71 cos(6ξ)).

Then, ψ`, ψ̃`, ` = 1, 2 forms a dual tight framelets for L2(R). These functions have vanishing moments (vm) as
follows, vm(ψ1) = vm(ψ̃2) = 2 while vm(ψ2) = vm(ψ̃1) = 4. See Figure 4 for their graphs.
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0
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4
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0

5

ψ2

-4 -2 0 2 4 6

-0.5

0.0

0.5

1.0

ψ̃1

-2 0 2 4

-0.2

0.0

0.2

0.4

ψ̃2

Figure 4. The graphs of the framelets and its dual framelets of Example 2.

Example 3. Let B4 = φ = φ̃. Then,

ĥ0(ξ) =
ˆ̃h0(ξ) = 0.0625(1 + cos(ξ)− i sin(ξ))4.

We have the following high pass filters,

ĥ1(ξ) = (1− cos(ξ) + i sin(ξ))4,

ĥ2(ξ) = 16 sin4(ξ/2)(cos(3ξ)− i sin(3ξ)).

The high pass filters for the dual framelets in `2(Z), where k ∈ Z, is given by

h̃1[k] = [ 311
3,870,720 , 311

967,680 , 865
387,072 , 473

64,512 , 1783
4,83,840 , −19,967

967,680 , −67,453
1,935,360 , −17,887

967,680 , 233,473
1,935,360 , 17,887

967,680 ,

67,453
1,935,360 , 19,967

967,680 , 1783
483,840 , 473

64,512 , 865
387,072 , 311

967,680 , 311
3,870,720 ],

h̃2[k] = [ 311
483,840 , 311

120,960 , 2119
483,840 , 47

10,080 , −4111
483,840 , −5687

120,960 , −21,103
483,840 , 2627

15,120 , −21,103
483,840 , −5687

120,960 ,

−4111
483,840 , 47

10,080 , 2119
483,840 , 311

120,960 , 311
483,840 ].

Then, ψ`, ψ̃`, ` = 1, 2 forms a dual tight framelets for L2(R). Here we have vm(ψ1) = vm(ψ2) = vm(ψ̃1) =

vm(ψ̃2) = 4. Their graphs are depicted in Figure 5.
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Figure 5. The graphs of the framelets and its dual framelets of Example 3.

Example 4. Let B4 = φ, and B2 = φ̃. Thus,

ĥ0(ξ) = 0.0625(1 + cos(ξ)− i sin(ξ))4, and ˆ̃h0(ξ) = 0.25(1 + cos(ξ)− i sin(ξ))2.

Then, we have the following tight framelets,

ψ1(x) =



−8x3/3 if 0 ≤ x ≤ 1/2

−2 + 12x− 24x2 + 40x3/3 if 1/2 < x ≤ 1

38− 108x + 96x2 − 80x3/3 if 1 < x < 3/2

−142 + 252x− 144x2 + 80x3/3 if 3/2 ≤ x < 2

178− 228x + 96x2 − 40x3/3 if 2 ≤ x < 5/2

(8/3)(−3 + x)3 if 5/2 ≤ x ≤ 3

0 if otherwise,

ψ2(x) =



−(1/3)(−1 + 2x)3 if 1/2 ≤ x ≤ 1

−47/3 + 46x− 44x2 + 40x3/3 if 1 < x < 3/2

358/3− 224x + 136x2 − 80x3/3 if 3/2 ≤ x < 2

(2/3)(−461 + 624x− 276x2 + 40x3) if 2 ≤ x < 5/2

953/3− 334x + 116x2 − 40x3/3 if 5/2 ≤ x ≤ 3

(1/3)(−7 + 2x)3 if 3 < x ≤ 7/2

0 if otherwise

and the high pass filters for its dual tight framelets in `2(Z), where k ∈ Z, are given by:
h̃1[k] = [ 13

15,360 , 13
7680 , 61

7680 , 109
7680 , −733

15,360 , −35
256 , 409

1280 , −35
256 , −733

15,360 , 109
7680 , 61

7680 , 13
7680 , 13

15,360 , ],

h̃2[k] = [ 13
2560 , 13

1280 , −89
7680 , −1

30 , −199
3840 , 313

1920 , −199
3840 , −1

30 , −89
7680 , 13

1280 , 13
2560 ].

Then, again ψ`, ψ̃`, ` = 1, 2 forms a dual tight framelets for L2(R). Here we have vm(ψ1) = vm(ψ2) =

2, vm(ψ̃1) = vm(ψ̃2) = 4. Their graphs are depicted in Figure 6.
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Figure 6. The graphs of the framelets and its dual framelets of Example 4.

We will use the framelet expansion defined by Equation (7) to present the numerical evidence of
the Gibbs effect by determining the maximal overshoot and undershoot of the truncated expansion
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Qn f near the origin. The behavior of the truncated functionsQn of a function with jump discontinuities
is related to the existence of the Gibbs phenomenon, which is unpleasant in application, and not so
easy to avoid. Therefore, examining a series of representations to avoid it or at least reduce it, is very
important.

Proposition 2. For any two refinable compactly supported functions φ and φ̃ in L2(R). If

Q sgn ≤ 1 on (x◦, ∞) and Q sgn ≥ −1 on (−∞, x◦),

then Qn f exhibits no Gibbs effect.

Proof. Please note that (Qn f )(2−nx) = Q( f (2−nx)) for all n ∈ N. In particular, (Qn sgn)(2−nx) =
Q(sgn(2−nx)). Suppose that the truncated function Qn f do exhibit the Gibbs effect near x+◦ . Thus,
there exists an open interval U ⊆ (x◦, ∞) such that Q f (x) > 1, ∀x ∈ U . Therefore, ∃u > x◦ such that
maxx∈(x◦ ,u)Q f (x) = U > 1. Define a sequence un > x◦, ∀n such that un → x◦ as n→ ∞ (one can take
un = εn + x◦ such that εn → 0 as n→ ∞). Hence, maxx∈(x◦ ,un)Qn f (x) = maxx∈(x◦ ,u)Q f (x) = U > 1,
a contradiction. Similarly, we can prove the case when x < x−◦ in the same fashion.

Please note that it is important to use non-negative functions in framelet analysis due to its use in
a variety of applications. One of those functions is the B-splines. The following statement will require
such non-negativity to avoid the Gibbs effect.

Theorem 2. Let φ and φ̃ be any two non-negative refinable real valued compactly supported functions in L2(R)
such that ∫

sgn(x)φ(x− k) > 0 and
∫

sgn(x)φ̃(x− k) > 0 on R.

Assume further ∑k φ(x− k) = 1. If the vanishing moment of φ and φ̃ is one, then Q̃ f exhibit no Gibbs effect.

Proof. It suffices to show this for sgn(x) as f (x) = sgn(x)− x on [−1, 1]. Please note that Proposition
1 is held for d = 1, i.e.,

Q̃1 = 1.

Now, for x ∈ R, and since
〈sgn(x), φ(x− k)〉 = φ̂(0),

by assumption, we have

Q̃ sgn(x)− 1 = ∑
k
〈sgn(x), φ(x− k)〉φ̃(x− k)

= −∑
k

(∫ −k

−∞
φ(x)dx

)
φ̃(x− k) < 0.

The other side is analogue. Thus, −1 ≤ Q̃ sgn ≤ 1 for all x ∈ R.

3. Results and Discussion

We present some numerical illustration by using the dual tight framelets which will generalize
the result in Ref. [14]. The results show that if the dual framelet has vanishing moments of order of at
least two, then Qn f must exhibit the Gibbs effect. However, Qn f has no Gibbs effect by using dual
tight framelets of vanishing moments of order one.

Now we present an illustration for the Gibbs effect using the above dual tight framelets by
showing the maximum overshoots, undershoots of f (x), and some related graphs. This is to showcase
the absence of the effect in Table 1 and Figures 7 and 8.



Mathematics 2019, 7, 952 10 of 14

Table 1. Approximate maximum overshoot and undershoot in neighborhoods of x = 0 using Qn f of
Example 1.

Level Maximum Minimum

n = 2 0.907276 −0.907276
n = 3 0.964562 −0.964562
n = 5 0.994801 −0.994802
n = 10 0.999968 −0.999972
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Figure 7. Illustration for the absence of the Gibbs effect using the quasi-operator Qn f of Example 1.
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Figure 8. Illustration for the absence of the Gibbs effect using the quasi-operator Qn f of Example 1 for
n = 5, 10, respectively.

In Figures 9 and 10 we illustrate the graphs of the function Q f and Q sgn, receptively, generated
using the B-splines dual tight framelets. In Tables 2–4 we show the approximated values for the
overshoots and undershoots of Qn f . Figures 11–14 illustrate the graphs of the Gibbs effect.
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Figure 9. Graphs of Q f (x) by the B-splines of order 1 through 8, respectively.
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Figure 10. Graphs of Q sgn(x) by the B-splines of order 1 through 8, respectively.

Table 2. Approximate maximum overshoot and undershoot in neighborhoods of x = 0 using Qn f of
Example 2 for n = 2, 3, 5, 10.

Level Maximum Minimum

n = 2 1.0021 −1.01204
n = 3 1.12708 −1.12708
n = 5 1.22083 −1.18958

n = 10 1.25111 −1.25111
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Figure 11. Illustration of the Gibbs effect using the quasi-operator Qn f of Example 2.

Table 3. Approximate maximum overshoot and undershoot in neighborhoods of x = 0 using Qn f of
Example 3 for n = 2, 3, 5, 10.

Level Maximum Minimum

n = 2 0.997622 −0.996194
n = 3 1.07451 −1.07451
n = 5 1.13384 −1.13384

n = 10 1.15337 −1.15337
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Figure 12. Illustration of the Gibbs effect using the quasi-operator Qn f of Example 3.
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Table 4. Approximate maximum overshoot and undershoot in neighborhoods of x = 0 using Qn f of
Example 4 for n = 2, 3, 5, 10.

Level Maximum Minimum

n = 2 1.08519 −1.08526
n = 3 1.14823 −1.14823
n = 5 1.19514 −1.19514

n = 10 1.21028 −1.21028
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Figure 13. Illustration of the Gibbs effect using the quasi-operator Qn f of Example 4.
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Figure 14. Gibbs effect illustrations by Q5 f (x) of Example 3 and 4, respectively.

4. Conclusions

According to the above results, we show that the Gibbs effect is absent when the dual tight
framelets of vanishing moments of order one are used to represent a function with jump discontinuities
at the origin. Please note that increasing the vanishing moments, e.g., using the MOEP, will increase the
approximation order of the framelet representation Qn f that used to expand the function f ; however,
the Gibbs effects cannot be avoided for any level of n. Quite a few examples of dual tight framelets,
numerical results, and graphical illustrations have been presented for the absence and presence of
Gibbs effect.
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Abbreviations

The following abbreviations are used in this manuscript:

L2(R) The space of all square integrable functions over R
ψ, ψ̃ The wavelet and its dual function
Ψ, Ψ̃ The framelets and its dual framelets system
UEP The unitary extension principle
OEP The oblique extension principle
MOEP The mixed oblique extension principle
〈 f , g〉 The inner product of f and g
φ The refinable function
Dn f The reproducing kernel Hilbert space of the function f
Qn f The truncated partial sum of the framelet system
h0[k] Low pass filter of the framelet system
h`[k] High pass filters of the framelet system
Vj The multiresolution analysis generated by the function φ

F ( f ) The Fourier transform of a function f
Bm The B-spline of order m
vm( f ) The vanishing moments of the function f
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