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Abstract: The connectedness and path connectedness of the solution sets to vector optimization
problems is an important and interesting study in optimization theories and applications. Most
papers involving the direction established the connectedness and connectedness for the solution sets
of vector optimization problems or vector equilibrium problems by means of the linear scalarization
method rather than the nonlinear scalarization method. The aim of the paper is to deal with the
connectedness and the path connectedness for the weak efficient solution set to a vector optimization
problem by using the nonlinear scalarization method. Firstly, the union relationship between the weak
efficient solution set to the vector optimization problem and the solution sets to a series of parametric
scalar minimization problems, is established. Then, some properties of the solution sets of scalar
minimization problems are investigated. Finally, by using the union relationship, the connectedness
and the path connectedness for the weak efficient solution set of the vector optimization problem
are obtained.
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1. Introduction

Whether the decision is made by a team or an individual, it usually involves several conflicting
goals. Problems in the real world must be solved optimally according to criteria, which leads to
the development of vector (multi-criteria) optimization problems. Vector optimization theory is
widely used in many fields such as economic management, financial insurance, engineering design,
transportation, environmental protection, decision-making science and so on. The properties of
solution sets are a very important research direction in optimization theories and applications; a lot
of research results have been obtained on this aspect. Among the properties of solution sets, the
connectedness that can provide the possibility of continuously moving from one solution to any other
solution is of considerable interest (see, for example, [1–10]).

It is well known that the scalarization method is one effective approach to deal with the
connectedness of the solution sets to vector optimization problems, vector variational inequalities and
vector equilibrium problems. Recently, by means of the linear scalarization method, the authors
in [11–15] established the connectedness of the solution set to the class of vector optimization,
weak vector variational inequalities and weak vector equilibrium problems. However, to the best
of our knowledge, there are very few results on the path connectedness of the solution sets of
vector optimization problems. Very recently, in terms of the linear scalarization method, Han and
Huang [16] investigated the path connectedness of the weak efficient solution set for a generalized
vector quasi-equilibrium problem. Xu and Zhang [17] established the path connectedness for the
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solution set of a strong vector equilibrium problem in terms of a nonlinear separation theorem under
some assumptions.

Most papers mentioned above established the connectedness and the path connectedness for
the weak efficient solution sets of vector optimization problems or vector equilibrium problems by
means of the linear scalarization method rather than the nonlinear scalarization method. Naturally,
one question is raised: how to investigate the connectedness and the path connectedness of the weak
solution sets of vector optimization problems by using the nonlinear scalarization method? Therefore,
the aim of this paper is to establish the connectedness and path connectedness of the weak efficient
solution set for a vector optimization problem via the nonlinear scalarization method.

The rest of the paper is organized as follows. In Section 2, some basic definitions and necessary
lemmas are recalled. In Section 3, a union relationship between the weak efficient solution set of
a vector optimization problem and the solution sets of a series of parametric scalar minimization
problems is established without any convexity assumptions of objective function. In Section 4, by using
the union relationship, the connectedness and the path connectedness of the weak efficient solution
set for the vector optimization problem are obtained. As applications, a strategic game with vector
payoffs is given. In Section 5, we give the conclusions of the paper.

2. Preliminaries

Throughout this paper, let Λ, X and Y be topological vector spaces. Assume that C ⊆ Y is a closed,
convex and pointed cone with nonempty interior. Let D be a nonempty subset of Y. Denote the interior,
the convex hull and the closure of D by int D, conv D and cl D, respectively. Let Y∗ be the topological
dual space of Y and C∗ be defined by

C∗ := {l ∈ Y∗ : l(c) ≥ 0, ∀ c ∈ C}.

A nonempty convex subset B of the convex cone C is called a base if C = conv (B) =
⋃{λx : λ ≥

0, x ∈ B} and 0 /∈ cl B. Let e ∈ int C and

B∗ := {l ∈ C∗ : l(e) = 1}.

Let A be a nonempty subset of X and F : X → Y. In this paper, we consider the following vector
optimization problem:

(VOP) min f (x), x ∈ A.

Definition 1. x̄ ∈ A is called a weak efficient solution for VOP, written as x̄ ∈WE( f , A), iff

f (A) ∩ ( f (x̄)− int C) = ∅.

Definition 2. Let φ : Y → R be a real-valued function [18].

(i) The function φ is called monotone increasing on Y iff, for each y1, y2 ∈ Y, one has

y1 − y2 ∈ C ⇒ φ(y1) ≥ φ(y2).

(ii) The function φ is called strictly monotone increasing on Y iff, for each y1, y2 ∈ Y, one has

y1 − y2 ∈ int C ⇒ φ(y1) > φ(y2).

Remark 1. It is easy to see that, if φ is strictly monotone increasing and continuous, then φ is monotone
increasing.
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Definition 3. A set-valued mapping G [19]: Λ ⇒ Y is said to be lower semicontinuous (l.s.c, for short)
at λ0 ∈ Λ iff for any open set V with G(λ0) ∩ V 6= ∅, there exists a neighbourhood U of λ0 such that
G(λ) ∩V 6= ∅, for all λ ∈ U. We say that G is l.s.c on Λ, if it is l.s.c at each points of λ ∈ Λ.

Definition 4. Let A be a convex subset of X and ϕ : A→ Y [20].

(i) ϕ is called a properly quasiconvex function on A iff, for each x1, x2 ∈ A and for any λ ∈ [0, 1], one has

either ϕ(λx1 + (1− λ)x2) ∈ ϕ(x1)− C or ϕ(λx1 + (1− λ)x2) ∈ ϕ(x2)− C.

(ii) ϕ is called a strictly proper quasiconvex function on A iff, for each x1, x2 ∈ A and for any λ ∈ (0, 1),
one has

either ϕ(λx1 + (1− λ)x2) ∈ ϕ(x1)− int C or ϕ(λx1 + (1− λ)x2) ∈ ϕ(x2)− int C.

Definition 5. Let X be a topological linear space and A be a nonempty subset of X [21]. A set-valued mapping
T : A ⇒ X is said to be a KKM mapping iff, for any finite subset {y1, ..., ym} of A, we have

conv({y1, ..., ym}) ⊆
m⋃

i=1

T(yi).

Definition 6. A topological linear space M is said to be connected iff there do not exist nonempty open subset
Vi ⊆ M, i = 1, 2, such that V1 ∩V2 = ∅ and V1 ∪V2 = M [22]. M is said to be path connected (or arcwise
connected) iff ∀x, y ∈ M there exists a continuous mapping γ : [0, 1]→ M, such that γ(0) = x and γ(1) = y.

Definition 7. For given e ∈ int C and q ∈ Y [23], the nonlinear scalarization function ηe(·, q) : Y → R is
defined by:

ηe(y, q) = sup{t ∈ R : y ∈ te + q + C}, y ∈ Y.

Proposition 1. For fixed e ∈ int C and any q ∈ Y [23], one has

(i) ηe(y, q) > t⇔ y ∈ te + q + int C;
(ii) η(y, q) ≥ t⇔ y ∈ te + q + C;

(iii) η(·, q) is a continuous, concave function and strictly monotone increasing on Y;
(iv) η(·, ·) is continuous on Y×Y.

Proposition 2. For any q ∈ Y [23], one has

ηe(y, q) = min{l(y)− l(q) : l ∈ B∗}, y ∈ Y.

Lemma 1. Assume that {Aγ : γ ∈ Γ} is a family of connected sets in topological space Φ [24]. If
⋂

γ∈Γ Aγ 6=
∅, then

⋃
γ∈Γ Aγ is a connected set in topological space Φ.

Lemma 2. Let A be a nonempty subset of a Hausdorff topological vector space X and T [25]: A ⇒ X be a
KKM mapping with closed values. If there exists y0 ∈ A such that T(y0) is compact, then

⋂
y∈A T(y) 6= ∅.

Lemma 3. Let A be a paracompact Hausdorff path connected space and let Y be a Banach space [2]. Assume
that

(i) F : A ⇒ Y is a lower semicontinuous set-valued mapping;
(ii) For each x ∈ A, F(x) is nonempty, closed and convex.

Then, F(A) is a path connected set.
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3. Scalarization for VOP

In this section, we consider the following scalar minimization problem with the parametric q,
which induced by the nonlinear scalarization function ηe(·, q).

(Pq) min ηe( f (x), q).

Definition 8. A point x̄ ∈ A is called a solution for Pq, written as x̄ ∈ S(q), iff

ηe( f (x̄), q) ≤ ηe( f (x), q), ∀ x ∈ A.

Theorem 1. One has
WE( f , A) =

⋃
q∈Y

S(q).

Proof. For any x̄ ∈ ⋃
q∈Y S(q), there exists q ∈ Y such that x̄ ∈ S(q). Then we have

ηe( f (x̄), q) ≤ ηe( f (x), q), ∀ x ∈ A. (1)

Assume that x̄ /∈WE( f , A). Then there exists x′ ∈ A such that f (x′) ∩ ( f (x̄)− int C) 6= ∅, i.e.,

f (x′) ∈ f (x̄)− int C. (2)

It follows from the strict monotonicity of the function η that

ηe( f (x′), q) < ηe( f (x̄), q), (3)

which contradicts (1). Therefore, x̄ ∈WE( f , A).
Next, we claim that

WE( f , A) ⊆
⋃

q∈Y
S(q). (4)

Let x̄ ∈WE( f , A). Then f (x) ∩ ( f (x̄)− int C) = ∅, ∀ x ∈ A, that is,

f (x̄) /∈ f (x) + int C, ∀ x ∈ A. (5)

With the help of Proposition 1 (i), we can obtain that

ηe( f (x̄), f (x)) ≤ 0, ∀ x ∈ A. (6)

In terms of Proposition 2, we have

ηe( f (x), f (x)) = min{l( f (x))− l( f (x)) : l ∈ B∗} = 0, ∀ x ∈ A. (7)

This implies
ηe( f (x̄), f (x)) ≤ ηe( f (x), f (x)), ∀ x ∈ A. (8)

This shows that x̄ ∈ S( f (x)) and so WE( f , A) ⊆ ⋃
q∈Y S(q). Therefore, WE( f , A) =

⋃
q∈Y S(q). �

Remark 2. Theorem 1 gives the union relationship between the weak efficient solution set of VOP and the
solution sets of a series for scalar minimization problems (Pq) without any convexity assumptions on the objective
function and the feasible set. Hence, the result improves the corresponding ones in [14–16].
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4. Connectedness and Path Connectedness of VOP

In this section, we shall apply the union relationship established in Section 3 to study the
connectedness and the path connectedness of WE( f , A) for VOP.

Lemma 4. Suppose that A is a closed subset of X and f is continuous on A. Then, for any q ∈ Y, S(q) is a
closed set.

Proof. Let {xn} ⊆ S(q) with xn → x0. Then, we have

ηe( f (xn), q) ≤ ηe( f (x), q), ∀ x ∈ A. (9)

Now, we need to prove that x0 ∈ S(q). Indeed, it follows from the closedness of A that x0 ∈ A. Then,
by (9), the continuity of ηe(·, q) and f , we have ηe( f (x0), q) ≤ m. This implies that

ηe( f (x0), q) ≤ ηe( f (x), q), ∀ x ∈ A. (10)

So, x0 ∈ S(q) and for any q ∈ Y, S(q) is a closed set. �

Lemma 5. Suppose that A is a nonempty convex set of X and f : A→ Y is a properly quasiconvex function.
Then, for any q ∈ Y, S(q) is convex.

Proof. For any q ∈ Y, we let xi ∈ S(q), i = 1, 2 and λ ∈ [0, 1]. Then

ηe( f (xi), q) ≤ ηe( f (x), q), ∀ x ∈ A, i = 1, 2. (11)

It is clear that x(λ) := λx1 + (1− λ)x2 ∈ A for each λ ∈ [0, 1] because of the convexity of A. As f is a
properly quasiconvex function on A, one has

f (x(λ)) ∈ f (xi)− C, either i = 1 or i = 2, ∀ λ ∈ [0, 1]. (12)

Since ηe(·, q) is monotone increasing for each q ∈ Y, and by (11), we obtain

ηe( f (x(λ)), q) ≤ ηe( f (xi), q) ≤ ηe( f (x), q), ∀x ∈ A, either i = 1 or i = 2. (13)

That is, x(λ) ∈ S(q) for each λ ∈ [0, 1]. Hence, S(q) is convex. �

Lemma 6. Assume that

(i) A is a compact and convex subset of X;
(ii) f is continuous on A;

(iii) f is properly quasiconvex on A.

Then,
⋂

q∈Y S(q) is nonempty.

Proof. For each x ∈ A, define

T(x) = {x̄ ∈ A : f (x)− f (x̄) ∈ C}. (14)

Clearly, x ∈ T(x) and so it is nonempty for each x ∈ A. Since the continuity of f , it is easy to get that
T(x) ⊆ A is a closed set. Furthermore, by the compactness of A, we obtain T(x) is compact.

We now claim that T : A ⇒ A is a KKM mapping. Indeed, if not, then there exists a finite subset
{x1, ..., xm} ⊆ A and x0 ∈ conv({x1, ..., xm}) such that

x0 /∈ T(xi), ∀ i = 1, 2, ..., m. (15)
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This shows that
f (xi)− f (x0) /∈ C, ∀ i = 1, 2, ..., m. (16)

Since x0 ∈ conv({x1, ..., xm}), there exist λi ≥ 0 (i = 1, 2, ..., m) with ∑m
i=1 λi = 1, such that x0 =

∑m
i=1 λixi. Noting that f is properly quasiconvex on A, there exists i0 ∈ {1, 2, ..., m} such that

f (xi0) ∈ f (
m

∑
i=1

λixi) + C = f (x0) + C. (17)

This contradicts with (17). Therefore, T is a KKM mapping and
⋂

x∈A T(x) 6= ∅ by Lemma 2.
Let x̄ ∈ ⋂

x∈A T(x), then for any x ∈ A, we have f (x)− f (x̄) ∈ C. It follows from the monotonicity
of he(·, q) that for any x ∈ A, ηe( f (x̄), q) ≤ ηe( f (x), q), that is, x̄ ∈ S(q). By the arbitrariness of
x̄ ∈ ⋂

x∈A T(x), we have
⋂

x∈A T(x) ⊆ ⋂
q∈Y S(q). Hence,

⋂
q∈Y S(q) is nonempty. �

Lemma 7. Assume that

(i) A is a compact subset of X;
(ii) f is continuous on A;

(iii) f is strictly proper quasiconvex on A.

Then, S(·) is l.s.c on Y.

Proof. Assume that there exists q0 ∈ Y such that S(·) is not l.s.c on q0. Then there exist x0 ∈ S(q0), a
neighborhood W0 of 0 ∈ X and a sequence {qn} with qn → q0, such that

(x0 + W0) ∩ S(qn) = ∅. (18)

There are two cases to be considered.
Case 1. S(q0) is singleton. Let xn ∈ S(qn). We have

ηe( f (xn), q) ≤ ηe( f (x), q), ∀ x ∈ A. (19)

Clearly, xn ∈ A. By the compactness of A, without loss of generality, we can assume that xn → x̄. Now,
we claim that x̄ ∈ S(q0). Indeed, if not, then there exists x′0 ∈ A such that

ηe( f (x′0), q0) < ηe( f (x̄), q0). (20)

Since ηe(·, ·) and f respectively are continuous on Y×Y and A, it follows from (20) that there exists
N ∈ N, such that

ηe( f (x′0), qn) < ηe( f (xn), qn), ∀ n ≥ N. (21)

This contradicts (19). Therefore, x̄ ∈ S(q0). As S(q0) is singleton, it follows that x̄ = x0 and so xn → x0.
Hence, xn ∈ (x0 + W0) ∩ S(qn) for n large enough, which contradicts (18).

Case 2. S(q0) is not singleton. Without loss of generality, we assume that x0, x′ ∈ S(q0) with
x0 6= x′, that is,

ηe( f (x0), q0) ≤ ηe( f (x), q0), ∀ x ∈ A, (22)

and
ηe( f (x′), q0) ≤ ηe( f (x), q0), ∀ x ∈ A. (23)

Since f is strictly proper quasiconvex on A, for any λ ∈ (0, 1), one has

either f (x(λ)) ∈ f (x0)− int C or f (x(λ)) ∈ f (x′)− int C, (24)
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where x(λ) = λx′ + (1− λ)x0. It is easy to see that there exists λ0 ∈ (0, 1) such that

x(λ0) ∈ x0 + W0. (25)

It follows from the strict monotonicity of ηe(·, q0) and (24) that

ηe( f (x(λ0)), q0) < ηe(either f (x0) or f (x′), q0). (26)

Combining with (22) and (23), we can obtain that

ηe( f (x(λ0)), q0) < ηe( f (x), q0), ∀ x ∈ A. (27)

It follows from (18) and (25) that x(λ0) /∈ S(qn). Hence, there exists x̃ ∈ A such that

ηe( f (x̃), qn) < ηe( f (x(λ0)), qn). (28)

In terms of the continuity of ηe(·, ·), one has

ηe( f (x̃), q0) ≤ ηe( f (x(λ0)), q0). (29)

This is a contradiction with (27). Therefore, S(·) is l.s.c on Y. �

Theorem 2. Assume the following conditions are satisfied:

(i) A is a compact and convex subset of X;
(ii) f is continuous on A;

(iii) f is properly quasiconvex on A.

Then, WE( f , A) is a connected set.

Proof. It follows from Lemmas 5 and 6 that for any q ∈ Y, S(q) is a convex and nonempty set.
Obviously, S(q) is connected. By Lemma 1 and Theorem 1, we can see that

WE( f , A) =
⋃

q∈Y
S(q)

is a connected set. �

Theorem 3. Suppose that the following conditions are satisfied:

(i) A is a compact and convex set of X;
(ii) f is continuous on A;

(iii) f is strictly proper quasiconvex on A.

Then, WE( f , A) is a path connected set.

Proof. By means of Lemmas 4–6, we have that for any q ∈ Y, S(q) is a closed, convex and nonempty
set. With the help of Theorem 1, we can see that

WE( f , A) =
⋃

q∈Y
S(q).

Therefore, it follows from Lemmas 3 and 7 that WE( f , A) is path connected. �
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Remark 3. Qiu and Yang [6] prove the connectedness of the set of approximate solutions by using the upper
semicontinuity of the solution sets of the following scalar minimization problem

(P̃q) min ξe( f (x), q),

where ξe( f (x), q) = inf{t ∈ R : f (x) ∈ te + q− C} is the Gerstewitz function defined in [18,26]. Theorem 2
in this paper is different from Theorem 5.1 in [6]. In fact, on the one hand, we derive the connectedness by using
the nonlinear scalarization function ηe that is different of the Gerstewitz function. On the other hand, Theorem 2
of this paper is obtained without the upper semicontinuity of the solution sets of the scalar minimization problem
Pq. Furthermore, we also establish the path connectedness of the weak efficient solution set in Theorem 3, which
is not established in [6].

Now, we give the following example to illustrate that Theorem 2 and Theorem 3.

Example 1. Let X = R and A = [−1, 1]. Let C = R2
+, Y = R2 and e = (1, 1). Define f : A→ Y as follows:

f (x) =

{
(x2 + sin x + 2, x), x ∈ [0, 1],
(2, 0), x ∈ [−1, 0).

It is easy to see that the constraint set A = [−1, 1] is a compact and convex set. The function f is continuous
on A. And for each x1, x2 ∈ A, λ ∈ (0, 1), we always have either f (λx1 + (1− λ)x2) ∈ f (x2)− int C or
f (λx1 + (1− λ)x2) ∈ f (x1)− int C. That is, all assumptions in Theorems 2 and 3 are satisfied. It follows
from a direct computation that WE( f , A) = [−1, 0] is connected. By Proposition 2, we know that

ηe(y, q) = min
l∈B∗
{l(y− q)}

= min
0≤α≤1,0≤β≤1,α+β=1

{l(y− q)}

= min
0≤α≤1

{(1− α)(y1 − q1) + α(y2 − q2)}

= min
0≤α≤1

{y1 − q1 + α(y2 − y1 + q1 − q2)}

=

{
y1 − q1, y2 − y1 + q1 − q2 ≥ 0,
y2 − q2, y2 − y1 + q1 − q2 < 0.

By a direct computation, we see that S(q) = [−1, 0] for any q ∈ Y. Hence, WE( f , A) =
⋃

q∈Y S(q) is
connected and it is also path connected.

Remark 4. Now we give an example in economics. This is a strategic game with vector payoffs described
in [27]. The bicriteria strategic game is a tuple Ψ = 〈N, (Ωi)i∈N , (ψi)i∈N〉, where N is the set of players, Ωi
is the strategy set for player i ∈ N, Ω is the Cartesian product ∏i∈N Ωi of the strategy sets (Ωi)i∈N , and
ψi : Ω→ R2 is the utility function for player i. By [27], x̂ ∈ ∏i∈N Ωi is called a weak Pareto efficient solution
of the game if, for each i ∈ N, x̂i ∈WPB(x̂−i), where x̂−i ∈ Ω−i := ∏j∈N\{i}Ωj. Here, the set WPB(x̂−i) of
weak Pareto best answer to x̂−i is the set of the weak efficient solution xi to the following bi-objective optimization
problem (for short, BOOP)

min
R2
+

ψi(xi, x̂−i), s.t. xi ∈ Ωi.

Obviously, x̂ ∈ Ω is a weak Pareto solution of the bicriteria strategic game Ψ if and only if for each i ∈ N,
x̂i ∈ Ωi is a solution of (VOP) with f (x) := ψi(xi, x̂−i), A := Ωi, C = R2

+.

Now, we give the following example to illustrate the above economic problem.
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Example 2. Let N = 1, 2. Let C = R2
+ and Ω1 = [0, 5] and Ω2 = [2, 6]. Let ψi(x) = (xi, xi − x−i), i = 1, 2.

It follows from a direct computation that for each yi ∈ Ωi, ψ1(x)− ψ1(y1) = (x1, x1 − x2)− (y1, y1 − x2) =

(x1 − y1, x1 − y1) and ψ2(x)− ψ2(y2) = (x2, x2 − x1)− (y2, y2 − x1) = (x2 − y2, x2 − y2). Then, one has
WPB(x̂−1) = {5}, WPB(x̂−2) = {6}. Hence, WPB = {(5, 6)} is connected and it is also path connected.

Now, we check that the function fi(x) = ψi(x) = (xi, xi − x−i) (i = 1, 2) satisfy the assumptions
in Theorems 2 and 3. It is easy to see that the functions fi(x) (i = 1, 2) are linear functions. Therefore,
f is continuous and strictly proper quasiconvex on Ωi (i = 1, 2).

5. Conclusions

In this paper, we firstly established the union relationship between the weak efficient solution
set to VOP and the solution sets to a series of parametric scalar minimization problems Pq. Then, we
applied the union relationship to obtain the connectedness and the path connectedness of VOP under
suitable assumptions. The method may be viewed as a refinement and improvement of the linear
scalarization method used in [6,14–16]. However, we find that the parametric set Y of q in the union
relationship of Theorem 1 is too large. Moreover, by the nonlinear scalarization method, the union
relationship can be established only for the weak efficient solution set. Therefore, alteration of the
parametric set Y of q by other parametric sets and the study for the connectedness of efficient solution
sets of vector optimization problems, is a good direction for us.

It would be also interesting to investigate the connectedness and the path connectedness of Robust
efficient solution sets to vector optimization problems under uncertain data by means of the nonlinear
scalarization method. Support vector machine (SVM) and extreme learning machine (ELM) have
gained increasing interest from various research fields recently (see, for example, [28–30]). If we can
combine the knowledge of SVM and ELM with VOP, it may constitute very valuable research in the
future.
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