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Abstract: A graph is considered to be induced-matching extendable (bipartite matching extendable)
if every induced matching (bipartite matching) of G is included in a perfect matching of G.
The induced-matching extendability and bipartite-matching extendability of graphs have been
of interest. By letting G = Cm ∨ Pn (m ≥ 3 and n ≥ 1) be the graph join of Cm (the cycle with
m vertices) and Pn (the path with n vertices) contains a perfect matching, we find necessary and
sufficient conditions for G to be induced-matching extendable and bipartite-matching extendable.

Keywords: perfect matching; k-extendable; induced matching extendable; bipartite matching
extendable graph

1. Introduction

Throughout this paper we follow traditional graph theoretical terminologies and only consider
simple connected graphs.

Let G be a graph with vertex set V(G) and edge set E(G). For S ⊆ V(G) we define E(S) = {uv ∈
E(G) | u, v ∈ S}. Similarly for N ⊆ E(G) we have V(N) = {v ∈ V(G) | ∃x ∈ V(G), vx ∈ N}.

A collection of edges M ⊆ E(G) is a matching of G if no two edges in M are adjacent in G.
If V(M) = V(G), then M is a perfect matching of G [1]. A matching M is an induced matching of G if
no two edges of M are joined by an edge of G [2].

The problem of matching extendability asks if a matching of G is included in a perfect matching of
G. First, the concept of k-extendable graphs (Definition 1) was introduced by Plummer [3]. The family
of k-extendable graphs has been studied extensively [4–9].

Definition 1. A connected graph G is called k-extendable if every matching of size k (1 ≤ k ≤ 1
2 (|V(G)| − 2))

extends to a perfect matching in G.

Along this line the following definitions are also introduced.

Definition 2 ([10]). A graph G is called k-factor-critical if G− S has a perfect matching for any S ⊆ V(G)

with |S| = k .

Definition 3 ([11]). A connected graph G is called induced-matching extendable if any induced matching of G
is included in a perfect matching of G.
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Furthermore, A matching M is a bipartite matching if G[V(M)] is a bipartite graph [12]. From the
research of k-extendable graphs, induced-matching extendable graphs and k-factor-critical graphs,
the important roles of bipartite matching and non-bipartite matching were noticed. Wang et al.
proposed the novel concept of bipartite-matching extendable graph in 2008 [12]. More recently, in 2017,
Chiarelli et al. presented the sufficient conditions for graphs G and H, under which the lexicographic
product G[H] is 2-extendable [8].

Definition 4 ([12]). A connected graph G is bipartite-matching extendable if every bipartite matching of G is
included in a perfect matching of G.

It is easy to see that a graph G is induced-matching extendable if it is bipartite-matching extendable.
We also note that bipartite-matching extendability is the same as regular extendability when G itself
is bipartite.

In general, matching extendable graphs frequently appear in applications and have been well
studied. See, for instance, resonance circle theory in chemical graphs [13,14]. Other work on matching
extendable graph can be found in [12,15–17].

In this note we will consider induced-matching extendability and bipartite-matching extendability
for another specific class of graphs. Given two graphs G and H, G ∨ H is the graph join of G and H,
with every vertex of G connected to every vertex of H by an edge. For general notations and facts on
graph join one may see [1,4].

Graph joins have been considered in many different topics including edge-colouring [18],
the chromatic index [19,20], the total chromatic number [21], the Laplacian spectrum [22], the skewness [23],
the thickness [24]. In the remaining of this paper we consider the induced-matching extendability and
bipartite-matching extendability of graph join Cm ∨ Pn (m ≥ 3, n ≥ 1). In particular, we will show the
following main results.

Theorem 1. Let m and n be positive integers with m + n ≡ 0 (mod 2):

(i) If m > n, then Cm ∨ Pn is k-extendable if and only if

k ≤
⌊

n + 1
2

⌋
.

(ii) If n ≥ m, then Cm ∨ Pn is k-extendable if and only if

k ≤
⌊m

2

⌋
.

Theorem 2. Let m ≥ 3 and n ≥ 1 be two positive integers, then Cm ∨ Pn is induced-matching extendable if
and only if

m + n ≡ 0 (mod 2)

and
1− (−1)r

2
+
⌊n

3

⌋
≤ m ≤ 3n + 5

where n ≡ r (mod 3) for some 0 ≤ r ≤ 2.

Theorem 3. Let m ≥ 3 and n ≥ 1 be two positive integers, then Cm ∨ Pn is bipartite-matching extendable if
and only if

m + n ≡ 0 (mod 2)

and ⌊m
3

⌋
− 1− (−1)r

2
≤ n ≤ 3m + 2
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where m ≡ r (mod 3) for some 0 ≤ r ≤ 2.

First, in Section 2, we introduce some previously established facts on matching extendability.
We then establish Theorem 1 on k-extendability of the graph join Cm ∨ Pn in Section 3. Lastly we prove
Theorem 2 in Section 4 and Theorem 3 in Section 5.

2. Some Preliminaries

In this section, we list some interesting and useful previous results on matching extendabilities.
They build the foundation for our study.

Lemma 1 ([25]). A graph G has a perfect matching if and only if o(G− S) ≤ |S| for every S ⊆ V(G).

Here, o(G) is the number of components of G with an odd number of vertices. From Lemma 1
and the definition of bipartite-matching extendability, Wang et al. obtained the following [12]:

Lemma 2 ([12]). A graph G is bipartite-matching extendable if and only if o(G−V(M)− S) ≤ |S| for every
bipartite matching M of G and every S ⊆ V(G) \V(M).

Lemma 3 ([12]). A graph G is bipartite-matching extendable if and only if o(G− S) ≤ |S| − 2mb(S) for any
S ⊆ V(G), where mb(S) is the number of edges in a maximum bipartite matching of G[S].

A matching M is called a forbidden matching if it is a bipartite matching and V(M) is a vertex cut
such that G−V(M) has an odd component [15]. Consequently a graph G is not bipartite-matching
extendable if there exists a forbidden matching. The following is also shown in [15].

Lemma 4 ([15]). If G is bipartite-matching extendable, then

• G is 2-connected;
• G does not have a forbidden matching;
• if {u, v} is a vertex cut of G and uv 6∈ E(G), then G− {u, v} has exactly two components and both of

them are odd ;
• for a bipartite matching M of G and an independent set X of G−V(M), |NG−V(M)(X)| ≥ |S|.

It is easy to see, from the definitions and properties of induced-matching extendable and
bipartite-matching extendable graphs, that Wn = Cn ∨ K1(n ≥ 3) is bipartite-matching extendable if
and only if n = 3, 5, 7. We now move on to consider the generalization of K1 to Pn.

3. On k-Extendable Graph Joins Cm ∨ Pn

In this section, we examine when is the graph join Cm ∨ Pn k-extendable.
First, let G = Cm ∨ Pn have a perfect matching. Then we must have m + n ≡ 0 (mod 2). In the

rest of this section we only need to consider m and n being both even or both odd. We now consider
Case (i) of Theorem 1. Case (ii) is similar.

Case (i) of Theorem 1. For convenience we let

Cm = x1x2 · · · xm−1xm

(with the edge x1xm) and
Pn = y1y2 · · · yn−1yn.

We will first show that Cm ∨ Pn is not k-extendable for k > b n+1
2 c. By the Definition 1, it suffices

to show that Cm ∨ Pn −V(M) dose not have a perfect matching, for some matching M of Cm ∨ Pn with
|M| > b n+1

2 c.
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• If m and n are odd:

– If n = 1, note that for the matching M0 = {x1ym, x2x3} of G, G − V(M0) has an isolated
vertex x1. Consequently G − V(M0) does not have a perfect matching. Hence Cm ∨ Pn is
not 2-extendable.

– If n ≥ 3, from the structural characteristics of graph Cm ∨ Pn, there must exist a matching, say

M1 = {y4y5, y6y7, · · · , yn−1yn, x1y1, x3y2, x4y3}

of Cm ∨ Pn with size n+3
2 , such that Cm ∨ Pn − V(M1) has an isolated vertex x2, which

imply that Cm ∨ Pn − V(M1) does not have perfect matching, and thus the Cm ∨ Pn is not
n+3

2 -extendable. Consequently, Cm ∨ Pn is k (k ≤ n+3
2 − 1 =

⌊
n+1

2

⌋
) extendable follows from

the known conclusion that G is k-extendable, it must be a k− 1 extendable.

• If m and n are even:

– If n = 2, consider the matching M′0 = {x1y1, x3y2}. Then G−V(M′0) has an isolated vertex
x2 and consequently without a perfect matching. Hence Cm ∨ Pn is not 2-extendable.

– If n ≥ 4, consider the matching

M′1 = {y3y4, y5y6, · · · , yn−1yn, xmy1, x2y2}

of size n+2
2 . Then Cm ∨ Pn − V(M′1) has an isolated vertex x1 and consequently without

a perfect matching. Hence Cm ∨ Pn is not n+2
2 -extendable.

We will now show that Cm ∨ Pn is indeed k-extendable for smaller values of k. The key idea in
the following argument lies in the fact that Cm ∨ Pn is highly connected and Cm ∨ Pn −V(M) contains
a Hamiltonian path of even order for any “small” matching M.

• If m and n are both odd, with m > n ≥ 1, note that Cm ∨ Pn is (n + 2)-connected. For every
matching M of size n+1

2 in Cm ∨ Pn, Cm ∨ Pn−V(M) is connected. By the definition of Cm ∨ Pn, it is
not difficult to see that Cm ∨ Pn −V(M) is not only connected but also containing a Hamiltonian
path of even order. This implies that Cm ∨ Pn −V(M) has a perfect matching. With Definition 1,
we have Cm ∨ Pn is k-extendable for k ≤ n+1

2 .
• Similarly, for even m > n ≥ 2 and any matching M of size n

2 , Cm ∨ Pn − V(M) contains
a Hamiltonian path of even length. This implies that Cm ∨ Pn − V(M) has a perfect matching.
Hence Cm ∨ Pn is k-extendable for k ≤ n

2 .

4. Proof of Theorem 2

We note that the m + n ≡ 0 (mod 2) is obvious for the same reason as before. Also as before
we let

Cm = x1x2 · · · xm−1xm

(with the edge x1xm) and
Pn = y1y2 · · · yn−1yn.

First we show the bounds for m are necessary for induced-matching extendability. Suppose that
G is induced-matching extendable. For the lower bound:

• If n = 3s for some s, consider an induced matching

M = {y3t+1y3t+2 : 0 ≤ t ≤ s− 1 = bn
3
c − 1}.
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If m ≤ b n
3 c − 1, then

o(G−V(M)−V(Cm)) = o(Pn −V(M)) = bn
3
c > m = |V(Cm)|.

This implies, by Lemma 1, that G−V(M) does not have a perfect matching. This is a contradiction
with the assumption G is induced-matching extendable. Therefore, b n

3 c ≤ m.
• If n = 3s + 1, consider an induced matching

M = {y3t+2y3t+3 : 0 ≤ t ≤ s− 1 = bn
3
c − 1}.

If m ≤ b n
3 c, then

o(G−V(M)−V(Cm)) = o(Pn −V(M)) = bn
3
c+ 1 > m = |V(Cm)|,

again implying, with Lemma 1, that G−V(M) does not have a perfect matching, a contradiction.
Therefore, b n

3 c+ 1 ≤ m.
• If n = 3s + 2, consider the induced matching

M = {y3t+1y3t+2 : 0 ≤ t ≤ s− 1 = bn
3
c − 1}.

If m ≤ b n
3 c − 1, then

o(G−V(M)−V(Cm)) = o(Pn −V(M)) = bn
3
c > m = |V(Cm)|,

yielding a contradiction as before. Hence b n
3 c ≤ m.

For the upper bound, consider the induced matching

M = {x3i+1x3i+2 : 0 ≤ i ≤ bm
3
c − 1}.

Then we have

o(Cm −V(M)) =

{
bm

3 c − 1, m ≡ 1 (mod 3)

bm
3 c, m ≡ 0, 2 (mod 3).

Since G is induced-matching extendable, G−V(M) has a perfect matching. By Lemma 1, we have

o(G−V(M)−V(Pn)) = o(Cm −V(M)) ≤ |V(Pn)| = n.

Thus

m ≤


3n, m ≡ 0 (mod 3)

3n + 4, m ≡ 1 (mod 3)

3n + 5, m ≡ 2 (mod 3)

(1)

We now show that G = Cm ∨ Pn is indeed induced-matching extendable under these conditions.
Let M be an induced matching:

• If V(M) ∩ V(Cm) = ∅, then M ⊆ E(Pn) and components of Pn − V(M) are either paths or
isolated vertices. Assume M = {x2x3, x5x6, · · · , x3s−4x3s−3, x3s−1x3s} be the induced matching
that maximizes the number of odd components of Pn −V(M), therefore the x1, x4, x7, x3s−2 and
x3s+1 are b n

3 c+ 1 isolated vertices of Pn −V(M). It is easy to see that

o(Pn −V(M)) ≤ bn
3
c+ 1
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if n ≡ 1 (mod 3), and
o(Pn −V(M)) ≤ bn

3
c

otherwise.

Now let N be a maximum matching of Pn −V(M):

– if Pn −V(M) ∪V(N) has no vertices left, then G−V(M) ∪V(N) is isomorphic to Cm with
m being even. Consequently, G−V(M) ∪V(N) has a perfect matching N1. Now N ∪ N1 is
a perfect matching of G−V(M).

– if Pn − V(M) ∪ V(N) has some vertices left, then G − V(M) ∪ V(N) is isomorphic to the
join of Cm and some isolated vertices. It is easy to see that G−V(M) ∪V(N) has a perfect
matching, say N2. We now have N ∪ N2 as a perfect matching of G−V(M).

• If V(M) ∩V(Cm) 6= ∅, we consider two cases: M ⊆ E(G)− E(Cm) ∪ E(Pn) or M ⊆ E(Cm):

– If M ⊆ E(G)− E(Cm) ∪ E(Pn), then |M| = 1 and it is easy to find a perfect matching for
G−V(M).

– If M ⊆ E(Cm), then the components of Cm−V(M) are either paths or isolated vertices. Let N
be a maximum matching of Cm −V(M):

∗ If Cm − V(M) ∪ V(N) has no vertex left, then G − V(M) ∪ V(N) is isomorphic to Pn

with even number of vertices. Thus G−V(M) ∪V(N) has a perfect matching, say N1.
Consequently, N ∪ N1 is a perfect matching of G−V(M).

∗ If Cm − V(M) ∪ V(N) has some isolated vertices left, then G − V(M) ∪ V(N) is
isomorphic to the join of Pn and some isolated vertices. With (1) we know G−V(M) ∪
V(N) has a perfect matching, say N2. Now N ∪ N2 is a perfect matching of G−V(M).

Therefore G− V(M) has a perfect matching in all cases, implying that G is induced-matching
extendable under the given conditions.

5. Proof of Theorem 3

Some of our arguments here are very similar to those of the previous section. Again we note that
m + n ≡ 0 (mod 2) is obvious, and label Cm and Pn the same way.

First we show the only if part. Let G = Cm ∨ Pn be bipartite-matching extendable. For the
lower bound:

• If m = 3s for some s, consider the bipartite matching

M = {x3t+1x3t+2 : 0 ≤ t ≤ s− 1 = bm
3
c − 1}.

If n ≤ bm
3 c − 1, then

o(G−V(M)−V(Pn)) = o(Cm −V(M)) = bm
3
c > n = |V(Pn)|,

contradiction to Lemma 2 and the bipartite-matching extendability. Therefore n ≥ bm
3 c.

• If m = 3s + 1, consider the bipartite matching

M = {x3t+1x3t+2 : 0 ≤ t ≤ s− 1 = bm
3
c − 1}.
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If n ≤ bm
3 c − 2, then

o(G−V(M)−V(Pn)) = o(Cm −V(M)) = bm
3
c − 1 > n = |V(Pn)|,

a contradiction. Hence n ≥ bm
3 c − 1.

• If m = 3s + 2, consider the bipartite matching

M = {x3t+1x3t+2 : 0 ≤ t ≤ s = bm
3
c}.

If n ≤ bm
3 c − 1, then

o(G−V(M)−V(Pn)) = o(Cm −V(M)) = bm
3
c − 1 > n = |V(Pn)|,

a contradiction. Thus n ≥ bm
3 c.

For the upper bound, consider the bipartite matching M with E(M) ⊂ E(Pn). We have

o(Pn −V(M)) ≤
{
b n

3 c+ 1, n ≡ 1 (mod 3)

b n
3 c, n ≡ 0, 2 (mod 3)

Suppose, for comparison, that n > 3m + 2. Consider now a bipartite matching

M′ = {y3i+2y3i+3 : 0 ≤ i ≤ bn
3
c − 1}.

Then we have

o(G−V(M)−V(Cm)) = o(Pn −V(M)) ≥ m = |V(Cm)|,

contradicting to Lemma 2 and the bipartite-matching extendability. Therefore we have n ≤ 3m + 2.
Next we show that G = Cm ∨ Pn is indeed bipartite-matching extendable under these conditions.

For this purpose we let M be a bipartite matching and we consider two cases:

• If V(M) ∩V(Pn) = ∅, then M ⊆ E(Cm). Let N be a maximum matching of Cm −V(M):

– If Cm −V(M) ∪V(N) has no vertices, then G−V(M) ∪V(N) is isomorphic to Pn with even
n. Consequently, G − V(M) ∪ V(N) has a perfect matching N1. Now N ∪ N1 is a perfect
matching of G−V(M).

– If Cm −V(M) ∪V(N) has some isolated vertices, then G−V(M) ∪V(N) is isomorphic to
the join of Pn and some isolated vertices. It is easy to see that G−V(M)∪V(N) has a perfect
matching, say N2. Then N ∪ N2 is a perfect matching of G−V(M).

• If V(M) ∩V(Pn) 6= ∅, we have M ⊆ E(G)− E(Cm) ∪ E(Pn) or M ⊆ E(Pn):

– If M ⊆ E(G)− E(Cm)∪ E(Pn), we know that the M− saturated vertices in Pn and Cm are not
adjacent to each other in Pn, Cm, respectively. Moreover, the components of Pn −V(M) and
Cm −V(M) are either path or isolated vertex. Further note that each vertex in components
of Pn −V(M) is adjacent to each vertex in components of Cm −V(M), G−V(M), resulting
an odd length Hamiltonian path as before. Hence G−V(M) has a perfect matching.

– If M ⊆ E(Pn), then

o(Pn −V(M)) ≤
{
b n

3 c+ 1, n ≡ 1 (mod 3)

b n
3 c, n ≡ 0, 2 (mod 3)
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Let N′ be a maximum matching of Pn − V(M). We then argue as before that G− V(M) ∪
V(N′) has a perfect matching, say N′1. Then N′ ∪ N′1 is a perfect matching of G−V(M).

Thus G− V(M) has a perfect matching in all cases. Hence G = Cm ∨ Pn is bipartite-matching
extendable under the given conditions.

6. Concluding Remarks

Through searching the Hamiltonian path or cycle for the auxiliary substructure of graph join
G = Cm ∨ Pn, we presented the necessary and sufficient conditions for G to be induced-matching
extendable and bipartite-matching extendable. Our results provide a fundamental basis that helps
study the induced and bipartite matching extendability for general graphs, and will probably be used
to analyze the resonance circle properties of the chemical graphs.

As for future work, we plan to explore the correlations between the k-extendable and forbidden
subgraphs of graphs. It is also interesting to investigate which of the graphs Cm ∨ Cn(m, n ≥ 3) are
k-extendable, induced-matching extendable or bipartite-matching extendable.
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