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Abstract: In this paper, we use the Laplace transform technique to examine the generalized solutions
of the nth order Cauchy–Euler equations. By interpreting the equations in a distributional way,
we found that whether their solution types are classical, weak or distributional solutions relies on the
conditions of their coefficients. To illustrate our findings, some examples are exhibited.
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1. Introduction

The nth order Cauchy–Euler equations

antny(n)(t) + an−1tn−1y(n−1)(t) + · · ·+ a1ty′(t) + a0y(t) = 0, (1)

where a0, a1, . . . , an are real constant coefficients and t ∈ R, are often one of the first higher
order ordinary homogeneous linear differential equations with variable coefficients introduced in
an undergraduate level course. Naturally, we will discuss the second order Cauchy–Euler equations
first. The appropriate form for its solution is y = tr where r is a parameter to be resolved. Replacing y
with tr in the Cauchy–Euler equations yields the characteristic polynomial whose roots determine the
forms of the general solution (e.g., see the textbooks [1,2]). This same technique can be carried over to
solve the higher order Cauchy–Euler equations.

In the framework of distribution theory, R. P. Kanwal [3] classifies solution the type of ordinary
homogeneous linear differential equations

an(t)y(n)(t) + an−1(t)y(n−1)(t) + · · ·+ a1(t)y′(t) + a0(t)y(t) = 0, (2)

where the coefficient functions a0(t), a1(t), . . . , an(t) are infinitely differentiable and t ∈ R. The type
can be explained as follows. The solution is a classical solution if it is at least n times continuously
differentiable so that the differentiation in Equation (2) can be achieved in the ordinary sense with an
identity result. The solution is a weak solution if it is less than n times continuously differentiable
and thus it does not satisfy Equation (2) in the ordinary sense but in the weak or distributional sense.
The solution is a distributional solution if it is a singular distribution satisfying Equation (2) in the
weak sense. All of these are referred to as generalized solutions. It is widely known that the normal
form of Equation (2) does not have weak or distributional, but classical solutions. Of particular interest
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are the singular distributions appearing as a finite series of the Dirac delta function and its derivatives.
They can arise as a distributional solution for certain classes of ordinary differential equations with
singular coefficients (see J. Wiener [4] in 1982). The applications of the distribution theory to differential
equations have been examined by L. Schwartz [5] and A. H. Zemanian [6]. In 1983, J. Wiener and
S. M. Shah [7] provided an overview of research in the distributional field and proposed a unified
way in the investigation of both distributional and entire solutions to some classes of linear ordinary
differential equations. Many mathematicians have also studied the distributional solutions in the field
of theory of distributions, as can be seen in [8–12].

A. Kananthai [13] in 1999 considered certain third order Cauchy–Euler equations

t3y′′′(t) + t2y′′(t) + ty′(t) + my(t) = 0, (3)

where m is an integer and t ∈ R. He constructed a formula for m corresponding to each type of
generalized solution of Equation (3), which are Laplace transformable. In 2017, A. Liangprom and
K. Nonlaopon [14] extended the same study to certain fourth order Cauchy–Euler equations, a natural
extension of Equation (3). The result for the general nth order Cauchy–Euler equations in this form
was finally established by A. Sangsuwan, K. Nonlaopon and S. Orankitjaroen [15] one year after.

In 2018, P. Jodnok and K. Nonlaopon [16] presented the generalized solutions of the fifth order
Cauchy–Euler equations of the form

t5y5(t) + a4t4y4(t) + a3t3y′′′(t) + a2t2y′′(t) + a1ty′(t) + a0y(t) = 0, (4)

where a0, a1, . . . , a4 are real constants and t ∈ R. Depending on the values of a0, a1, . . . , a4, they showed
that the solutions of Equation (4) are either the weak solutions or the distributional solutions.

In 2015, S. Nanta [17] studied the distributional solutions of the nth order Cauchy–Euler

antny(n)(t) + an−1tn−1y(n−1)(t) + · · ·+ a1ty′(t) + a0y(t) = 0, (5)

where ai, i = 0, 1, . . . , n are real constants using Fourier transform. She found that the type of solutions
of Equation (5) depend on the conditions of ai.

Here we aim to seek the generalized solutions of the nth order Cauchy–Euler equations of the
form of Equation (5) in the space of right-sided distributions. The solutions are obtained by applying
the Laplace transform technique. Our work is an improved version of that of A. Sangsuwan et al. [15].

The present paper is arranged into three sections. In Section 2, we provide related definitions
and lemmas necessary to obtain our main results. We then proceed to prove our results together with
supported examples in Section 3.

2. Preliminaries

The space D ′ (the space of distributions) is the dual space of D , the space of testing functions.

Definition 1. A distribution T ∈ D ′ is a continuous linear functional on D . The value of T acting on a testing
function φ(t) is written as 〈T, φ〉 or 〈T, φ(t)〉, and 〈T, φ(t)〉 ∈ C, where C is the set of complex numbers.

Distributions that are most useful are those generated by locally integrable functions. In fact,
every locally integrable function f (t) generates a distribution, which is defined by

〈 f , φ〉 =
∫
R

f (t)φ(t) dt.

Definition 2. The kth order derivative of a distribution T is defined by〈
T(k), φ(t)

〉
= (−1)k 〈T, φ(t)〉
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for all φ(t) ∈ D .

Definition 3. Let f (t) be a locally integrable function which satisfies the following conditions:

(i) f (t) = 0 for all t < 0;
(ii) there exists a real number c such that e−ct f (t) is absolutely integrable over R.

Then the Laplace transform of f (t) is

F(s) = L { f (t)} =
〈

f (t), e−st〉 , (6)

where s is a complex variable.

Furthermore, if f is continuous, then its Laplace transform F(s) is analytic on the half-plane
Re(s) > σa, where σa is an abscissa of absolute convergence for L { f (t)}.

Definition 4. Let f (t) be a function satisfying the conditions in Definition 3, and L { f (t)} = F(s).
The inverse Laplace transform of F(s) is defined by

f (t) = L −1{F(s)} = 1
2πi

lim
ω→∞

∫ c+iω

c−iω
F(s)estds, (7)

whereRe(s) > σa.
Recall that the Laplace transform G(s) of a locally integrable function g(t) that satisfies the conditions of

Definition 3 is
G(s) = L {g(t)} =

〈
g(t), e−st〉 , (8)

whereRe(s) > σa.

Definition 5. Let f (t) be a distribution satisfying the following properties:

(i) f is a right-sided distribution, that is, f ∈ D ′R.
(ii) There exists a real number c for which e−ct f (t) is a tempered distribution.

The Laplace transform of a right-sided distribution f (t) satisfying (ii) is defined by

F(s) = L { f (t)} =
〈

e−st f (t), X(t)e−(s−c)t
〉

, (9)

where X(t) is an infinitely differentiable function with support bounded on the left, which equals to 1 over the
neighborhood of the support of f (t).

ForRe(s) > c, X(t)e−(s−c)t is a testing function in the space S of testing functions of rapid descent and
e−ct f (t) is in the space S′ of tempered distributions. Equation (9) can be deduced to

F(s) = L { f (t)} =
〈

f (t), e−st〉, (10)

then Equation (10) posses the sense given by the right-hand side of Equation (9). Now, F(s) is a function of s
defined over the right half-planeRe(s) > c. A. H. Zemanian [6] proved that F(s) is an analytic function in the
region of convergenceRe(s) > σ1, where σ1 is the abscissa of convergence for which e−ct f (t) ∈ S′ for some real
c > σ1. For more details about the Laplace transform of distributions, see [18,19] and the references therein.

Example 1. Let H(t) be the Heaviside function, δ(t) be the Dirac delta function and f (t) be
a Laplace-transformable distribution in D ′R. If k is a positive integer, then

(i) L {(tk−1H(t))/(k− 1)!} = 1/sk, Re(s) > 0.
(ii) L {δ(t)} = 1, −∞ < Re(s) < ∞.
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(iii) L
{

δ(k)(t)
}
= sk, −∞ < Re(s) < ∞.

(iv) L
{

tk f (t)
}
= (−1)kF(k)(s), Re(s) > σ1.

(v) L
{

f (k)(t)
}
= skF(s), Re(s) > σ1.

Lemma 1. Let ψ(t) be an infinitely differentiable function. Then

ψ(t)δ(m)(t) =(−1)mψ(m)(0)δ(t) + (−1)m−1mψ(m−1)(0)δ′(t)

+ (−1)m−2 m(m− 1)
2!

ψ(m−2)(0)δ′′(t) + · · ·+ ψ(0)δ(m)(t).
(11)

and
[ψ(t)H(t)](m) =ψ(m)(t)H(t) + ψ(m−1)(0)δ(t) + ψ(m−2)(0)δ′(t)

+ · · ·+ ψ(0)δ(m−1)(t).
(12)

We refer the reader to [3] for a proof of Lemma 1.
A useful formula that follows from Equation (11), for any monomial ψ(t) = tn, is

tnδ(m)(t) =

0, for m < n;

(−1)n m!
(m−n)! δ

(m−n)(t), for m ≥ n.
(13)

Lemma 2. If the equation
n

∑
i=0

ai(t)tiy(i)(t) = 0 (14)

with coefficients ai(t) ∈ Cn and an(0) 6= 0 has a solution

y(t) =
k

∑
i=0

biδ
(i)(t), bk 6= 0, (15)

of order k (order of distribution Equation (15)), then we have

n

∑
i=0

(−1)iai(0)(k + i)! = 0. (16)

Conversely, if k is the smallest non-negative integer root of Equation (16), there exists a kth order solution
of Equation (15) at t = 0.

We refer the reader to [4] for a proof of Lemma 2.

3. Main Results

Equipped with the Laplace transform technique, we are now ready to prove our main results.

Theorem 1. Consider the nth order Cauchy–Euler equations of the form

antny(n)(t) + an−1tn−1y(n−1)(t) + · · ·+ a1ty′(t) + a0y(t) = 0, (17)

where ai, i = 0, 1, 2, . . . , n are real constants, an 6= 0, n is any integers with n ≥ 2 and t ∈ R. The types
of Laplace transformable solutions in D ′R of Equation (17) depend on the value of ai, and are given by the
following cases:
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(i) If there exists a non-negative integer k such that

n

∑
i=0

(−1)i(k + i)!ai = 0, (18)

then there exists a distributional solution of Equation (17), which is a singular distribution of the Dirac delta
function and its derivatives.

(ii) If there exists a non-negative integer k less than or equal to n such that

k

∑
i=0

ai
(k− i)!

= 0, (19)

then there exists a weak solution of Equation (17). Moreover, the solution is continuous if k is greater than
or equal to 1.

(iii) If there exists a positive integer k such that

n

∑
i=0

ai
(n + k− i)!

= 0, (20)

then there exists a classical solution of Equation (17).

Proof. We rewrite Equation (17) in brief as

n

∑
i=0

aitiy(i)(t) = 0, (21)

where an = 1. Applying Laplace transform to Equation (21) with a notation L {y} = Y(s), we now
refer to properties (iv) and (v) in Example 1 to get

n

∑
i=0

(−1)iai
di

dsi

[
siY(s)

]
= 0,

that is,
n

∑
i=0

(−1)iai

{
i

∑
m=0

[(
i
m

)2
m!si−mY(i−m)(s)

]}
= 0, (22)

or
n

∑
i=0

(−1)iaii!

{
i

∑
j=0

[(
i
j

)
1
j!

sjY(j)(s)
]}

= 0. (23)

Consider a solution of Equation (23) in a simple form Y(s) = sr, where r is a real constant that
must be determined. Replacing Y(i)(s) for i = 1, 2, 3, . . . , n in Equation (23) gives

n

∑
i=0

(−1)iaii!
i

∑
j=0

[(
i
j

)(
r
j

)]
sr = 0.

The identity
i

∑
j=0

[(
i
j

)(
r
j

)]
=

(
r + i

i

)
and sr 6= 0 imply that

n

∑
i=0

(−1)ii!
(

r + i
i

)
ai = 0. (24)
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We now examine the proposed three cases of the value r.
Case (i). If r is a non-negative integer, then substituting r = k for k ∈ N∪ {0} into Equation (24),

we obtain Equation (18). Thus, if the condition of Equation (18) holds, then the solution of Equation (21)
is Y(s) = sk. Obviously Y(s) is analytic over the whole s-plane. Taking inverse Laplace transform to
Y(s) and applying property (iii) in Example 1, we obtain the distributional solutions of Equation (17)
in the form

y(t) = δ(k)(t). (25)

Case (ii). If r is a negative integer which is no less than −(n + 1), then substituting r = −(k + 1)
for k ∈ { 0, 1, 2, . . . , n } into Equation (24), we obtain

n

∑
i=0

(−1)ii!
(
−(k + 1) + i

i

)
ai

=
k

∑
i=0

(−1)ii!
(
−(k + 1) + i

i

)
ai

=
k

∑
i=0

(−1)ii!
(−(k + 1) + i)(−(k + 1) + i− 1) · · · (−(k + 1) + i− i + 1)

i!
ai

=
k

∑
i=0

k!
(k− i)!

ai = 0.

Thus, if the condition of Equation (19) holds, then the solution of Equation (21) is Y(s) = s−(k+1).
Now we take the inverse Laplace transform to Y(s), applying property (i) in Example 1, and we obtain
the weak solutions of Equation (17), since k ≤ n in the form

y(t) = H(t)
tk

k!
. (26)

Observe that the solution is continuous for k ≥ 1.
Case (iii). If r is a negative integer less than −(n + 1), then a substitution of r = −(n + k + 1) for

k ∈ N into Equation (24), gives

n

∑
i=0

(−1)ii!
(
−(n + k + 1) + i

i

)
ai

=
n

∑
i=0

(−1)ii!
(−(n + k + 1) + i)(−(n + k + 1) + i− 1) · · · (−(n + k + 1) + i− i + 1)

i!
ai

=
k

∑
i=0

(n + k)!
(n + k− i)!

ai = 0.

Thus, if the condition of Equation (20) holds, then the solution of Equation (21) is Y(s) = s−(n+k+1).
Now we take the inverse Laplace transform to Y(s) and, applying property (i) in Example 1, we obtain
the classical solutions of Equation (17) because k ≥ 1 and the solutions are

y(t) = H(t)
tn+k

(n + k)!
. (27)

Theorem 2. The distributional solution of the nth order Cauchy–Euler equations of the form

antny(n)(t) + an−1tn−1y(n−1)(t) + · · ·+ a1ty′(t) + a0y(t) = 0,
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where ai, i = 0, 1, 2, . . . , n are real constants, n is any integer and t ∈ R, depends on the values of ai,
i = 0, 1, . . . , n of the form

n

∑
i=0

(−1)i(k + i)!ai = 0, (28)

for any k ∈ N, being the order of the distribution.

Proof. Using Lemma 2 and substituting ai(0) = ai for i = 0, 1, . . . , n− 1 and an(0) = 1 into Equation (16),
we have Equation (28) as required.

Example 2. When n = 2, Equation (17) is just

t2y′′(t) + a1ty′(t) + a0y(t) = 0, (29)

where t ∈ R. Various values of a1 and a0 lead to various types of solutions as mentioned in Theorem 1.
If a1, a0, k are chosen according to Equation (18), for example a1 = 3, a0 = 1 and k = 1, then

Equation (29) becomes
t2y′′(t) + 3ty′(t) + y(t) = 0, (30)

and Equation (25) implies that the distributional solution of Equation (30) is y(t) = δ(t). Using Equation (13),
we can verify easily that Equation (30) is true for y(t) = δ(t).

If a1, a0, k are chosen according to Equation (20), for example a1 = 7/4, a0 = −45/4 and k = 1, then
Equation (29) becomes

t2y′′(t) +
7
4

ty′(t)− 45
4

y(t) = 0, (31)

and Equation (27) implies that the classical solution of Equation (31) is y(t) = t3H(t)/3!. We can verify easily
that Equation (31) is true for y(t) = t3H(t)/3!.

Example 3. When n = 3, Equation (17) becomes

t3y′′′(t) + a2t2y′′(t) + a1ty′(t) + a0y(t) = 0, (32)

where t ∈ R. Various values of a2, a1 and a0 lead to various types of solutions, as mentioned in Theorem 1.
If a2, a1, a0, k are chosen according to Equation (18), for example a2 = 1/12, a1 = 2/3, a0 = 61 and

k = 2, then Equation (32) becomes

t3y′′′(t) +
1
12

t2y′′(t) +
2
3

ty′(t) + 61y(t) = 0, (33)

and Equation (25) implies that the distributional solution of Equation (33) is y(t) = δ′′(t). Using Equation (13),
we can verify easily that Equation (33) is true y(t) = δ′′(t).

If a2, a1, a0, k are chosen according to Equation (19), for example a2 = 1, a1 = −2/3, a0 = −2/3 and
k = 2, then Equation (32) becomes

t3y′′′(t) + t2y′′(t)− 2
3

ty′(t)− 2
3

y(t) = 0, (34)

and Equation (27) implies that the weak solution of Equation (34) is y(t) = t2H(t)/2!. Using Equations (12)
and (13), we can verify easily that Equation (34) is true for y(t) = t2H(t)/2!.

Remark 1. If n = 3, a1 = a2 = a3 = 1 and a0 = m, then Theorem 1 is reduced to the condition in [13].

Remark 2. If n = 5, then Theorem 1 is reduced to the case of the fifth order Cauchy–Euler equation, as appears
in theorem 3.1 of [16].
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Remark 3. If a1 = a2 = · · · = an = 1 and a0 = m, then Theorem 1 is identical to the condition in [15].
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