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Abstract: Let T4 = {±1,±i} be the subgroup of fourth roots of unity inside T, the multiplicative
group of complex units. For a T4-gain graph Φ = (Γ,T4, ϕ), we introduce gain functions on its line
graph L(Γ) and on its subdivision graph S(Γ). The corresponding gain graphs L(Φ) and S(Φ) are
defined up to switching equivalence and generalize the analogous constructions for signed graphs.
We discuss some spectral properties of these graphs and in particular we establish the relationship
between the Laplacian characteristic polynomial of a gain graph Φ, and the adjacency characteristic
polynomials of L(Φ) and S(Φ). A suitably defined incidence matrix for T4-gain graphs plays an
important role in this context.

Keywords: complex unit gain graph; line graph; subdivision graph; oriented gain graph;
voltage graph

1. Introduction

Let Γ be a simple graph with the vertex set V(Γ) = {v1, v2, . . . , vn} and the set of oriented edges
~E(Γ) that contains two copies of each edge of Γ with opposite directions. We write eij for the oriented
edge from vi to vj. Given any group G, a (G-)gain graph is a triple Φ = (Γ,G, ϕ) consisting of an
underlying graph Γ, the gain group G and a map ϕ : ~E(Γ) → G such that ϕ(eij) = ϕ(eji)

−1 called the
gain function.

Gain graphs (also known in the literature as voltage graphs) are studied in many, not necessarily
pure mathematics, research areas (for more details, see [1] and the annotated bibliography [2]). During
the last decade, there has been a growing interest for the study of matrices and eigenvalues associated
to gain graphs. For instance, in [3], N. Reff studied some spectral properties of the adjacency and the
Laplacian matrix of T-graphs, where T denotes the circle group, i.e., the multiplicative group of all
complex numbers with norm 1. Such gain graphs are also known as complex unit gain graphs. In [4],
the same author introduced a notion of orientation for gain graphs in order to provide a suitable
setting to build up line graphs of gain graphs. This setting works reasonably well when G is abelian.
More recently, in [5], the third and the fourth authors of the present paper began to explore the
spectral properties of T4-gain graphs, where T4 denotes the group of the fourth roots of unity {±1,±i},
showing in particular how the least Laplacian eigenvalue of a T4-gain graph is related to its frustration
index and number. Other spectral results concerning T4 are obtained in [6–8], where gain graphs are
called weighted directed graphs (see also their list of references).
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In this paper, we also investigate T4-gain graphs. The interest towards T4-gain graphs is due
to the fact that every spectral result concerning T4-gain graphs applies as well to T2-gain graphs,
which are well-known as signed graphs. In fact, the latter ones can be seen as T4-gain graph such
that ϕ(~E(Γ)) ⊆ {±1}. Moreover, T4 is the minimal complex unit gain context allowing to retrieve
the spectral theory of digraphs and mixed graphs as developed, for instance, in [9]. In other words,
digraphs and mixed graphs can be also seen as T4-gain graphs Φ = (Γ, ϕ), such that ϕ(~E(Γ)) ⊆ {1,±i}.

The rest of the paper is organized as follows. In Section 2, we recall some background theory on
gain graphs, including notions of balancedness and switching equivalence. In Section 3, we revisit the
N. Reff’s notion of line graph associated to G-gain graph emphasizing his results in the case G = T4.
Finally, in Section 4, we introduce subdivision graphs determined by T4-gain graphs. To best of our
knowledge, no attempts in the same direction have been done in the literature. Our constructions are
consistent with those carried out for signed graphs in [10] (Section 2) (see also [11] (Section 2)).

2. Preliminaries

From now on, a T4-gain graph is simply denoted by Φ = (Γ, ϕ). We write (Γ, 1) for the T4-gain
graph with all neutral edges. The all-negative T4-gain graph (Γ,−1) is a gain graph (Γ, ϕ) such that ϕ

maps all oriented edges onto {−1} ⊂ T4. We say that a T4-gain graph Φ = (Γ, ϕ) is of order n and
size m if its underlying graph Γ has n vertices and m edges.

Moreover, we adopt the following notation

V(Γ) = { v1, . . . , vn } and E(Γ) = { e1, . . . , em }

for the set of vertices and the set of (unoriented) edges of Γ, respectively.
Let Mm,n(C) be the set of m times n complex matrices. For a matrix A = (aij) ∈ Mm,n(C),

we denote by A∗ = (a∗ij) ∈ Mn,m(C) its conjugate (or Hermitian) transpose; i.e., a∗ij = āji.

The adjacency matrix A(Φ) = (aij) ∈ Mn,n(C) of a T4-gain graph Φ = (Γ, ϕ) is defined by

aij =

{
ϕ(eij) if vi is adjacent to vj,

0 otherwise.

If eij is an arc from vi to vj, then aij = ϕ(eij) = ϕ(eji)
−1 = ϕ(eji) = āji. Consequently, A(Φ) is

Hermitian and its eigenvalues are real. The Laplacian matrix L(Φ) is defined as D(Γ)− A(Φ), where
D(Γ) stands for the diagonal matrix of vertex degrees of Γ. Therefore, L(Φ) is also Hermitian. As shown
in [3] by N. Reff, the matrix L(Φ) is positive semidefinite, and all its eigenvalues are nonnegative.
The multiset of eigenvalues of A(Φ) (respectively, of L(Φ)) is called the adjacency (respectively, the
Laplacian) spectrum of Φ and is denoted by Spec(A(Φ)) (respectively, Spec(L(Φ))). A switching
function of a given gain graph Φ is any map ζ : V(Γ)→ T4. In other words, the switching the T4-gain
graph Φ = (Γ, ϕ) means replacing ϕ by ϕζ , where ϕζ(eij) = ζ(vi)

−1 ϕ(eij)ζ(vj) and obtaining in this
way the new T4-gain graph Φζ = (Γ, ϕζ). We say that Φ1 = (Γ, ϕ1) and Φ2 = (Γ, ϕ2) (and their
corresponding gain functions) are switching equivalent if there exists a switching function ζ such that
Φ2 = Φζ

1. By writing Φ1 ∼ Φ2 or ϕ1 ∼ ϕ2, we mean that Φ1 and Φ2 are switching equivalent.
To each switching function ζ, we associate a diagonal matrix D(ζ) = diag(ζ(v1), . . . , ζ(vn)) also

known as switching matrix. Note that

A(Φ2) = D(ζ)∗A(Φ1)D(ζ) and L(Φ2) = D(ζ)∗L(Φ1)D(ζ).

Hence, given any pair (Φ1, Φ2) of switching equivalent T4-gain graphs, we get the following equality
between their spectra:

Spec(A(Φ1)) = Spec(A(Φ2)) and Spec(L(Φ1)) = Spec(L(Φ2)).
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One of the key notions in the theory of gain graphs (and of the more general theory of biased
graphs as well) is balancedness (see [1]). An oriented edge eihik ∈ ~E(Γ) is said to be neutral for
Φ = (Γ, ϕ) if ϕ(eihik ) = 1. Similarly, the walk W = ei1i2 ei2i3 · · · eil−1il is said to be neutral if its gain

ϕ(W) := ϕ(ei1i2)ϕ(ei2i3) · · · ϕ(eil−1il )

is equal to 1. An edge set S ⊆ E is said to be balanced if every directed cycle ~C with edges in S is neutral.
A subgraph is balanced if its edge set is balanced (see [3] and [5] for further details).

The following proposition gives necessary and sufficient conditions for a T4-gain graph to be
balanced. It also holds in the more general context of complex unit gain graphs (see [5] for a proof).

Proposition 1. Let Φ = (Γ, ϕ) be a T4-gain graph. Then, the following are equivalent:

1. Φ is balanced.
2. Φ ∼ (Γ, 1).
3. There exists a function θ : V(Γ)→ T4 such that

θ(vi)
−1θ(vj) = ϕ(eij) for all eij ∈ ~E(Γ).

Although the following characterization of balanced T4-gain graph Φ is not used in our paper,
we recall by sake of completeness that a connected T4-gain graph Φ is balanced if and only if its least
Laplacian eigenvalue λn(Φ) is 0. This follows by [3] (Lemma 2.1 (2)) or [12] (Theorem 2.8).

The next proposition restates the result of [4] (Lemma 2.2) in the case of T4-gain graphs.

Proposition 2. Let Φ1 = (Γ, ϕ1) and Φ2 = (Γ, ϕ2) be T4-gain graphs with the same underlying graph Γ.
If for every cycle C in Γ there exists a directed cycle ~Cv with base vertex v such that ϕ1(~Cv) = ϕ2(~Cv), then
there exists a switching function ζ such that Φ2 = Φζ

1.

By Proposition 2, it follows that a gain graph Φ is balanced if and only if all its directed cycles
are neutral. Moreover, if in Φ, there exists a directed cycle with an imaginary gain, then Φ cannot be
switching equivalent to a signed graph.

To depict T4-gain graphs in Figures 1–5, each continuous (respectively, dashed) thick undirected
line represents two opposite oriented edges with gain 1 (respectively, −1), whereas the arrows detect
the oriented edges uv’s such that ϕ(uv) = i. The other possible choice for the arrow direction
not employed here—namely using an arrow from v to u to denote the oriented edge uv such that
ϕ(uv) = i—would lead to an alternative and fully satisfactory way to “read” the imaginary gains from
the drawings.

3. Line Graphs Associated to T4-Gain Graphs

Recall that T stands for the multiplicative group of all complex numbers with norm 1. In other
words, T = {z ∈ C : zz̄ = 1} is a subgroup of the multiplicative group C× of all nonzero complex
numbers. Clearly, T4 = {±1,±i} is a subgroup of T.

We start with an elementary algebraic lemma. For its relevance in the sequel, we also provide
its proof.

Lemma 1. Let (a, b) and (c, d) be two pairs in T×T such that

b̄a = d̄c. (1)

Then, there exists ρ ∈ T such that (c, d) = ρ(a, b).
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Proof of Lemma 1. By multiplying both sides of (1) by bd, we get det

(
a b
c d

)
= 0. Therefore,

(c, d) = ρ (a, b),

for some ρ ∈ C×. Together with (1), this implies |ρ|2b̄a = b̄a, i.e., ρ ∈ T.

Let Φ = (Γ, ϕ) be a T4-gain graph. We say that the n×m matrix H(Φ) = (ηve) with entries in
T4 ∪ {0} is an incidence matrix of Φ if

ηvieh =

{
−ηvjeh ϕ(eij) if the endpoints of eh are precisely vi and vj,

0 otherwise.

In the case when eh joins vi and vj, we also require that ηvieh ∈ T4. We say “an” incidence matrix,
because by this definition H(Φ) is unique only if Γ is empty, i.e., if it is of size 0. If each column is
multiplied by any element in T4 the result will still be an incidence matrix. The next proposition shows
that all the other possible incident matrices can be obtained from a fixed H(Φ) in that way.

Proposition 3. Let H(Φ) = (ηve) and H(Φ)′ = (η′ve) be two incidence matrices both related to the T4-gain
graph Φ = (Γ, ϕ). There exists an m× m diagonal matrix S with entries in T4 ∪ {0} such that H(Φ)′ =

H(Φ)S and S∗S = I.

Proof of Proposition 3. Let vi and vj be the endpoints of a fixed edge eh ∈ E(Γ). Clearly, the only
non-zero elements in the hth columns of H(Φ) and H(Φ)′ are ηvieh , ηvjeh , η′vieh

and η′vjeh
, where

ηvjeh
ηvieh = −ϕ(eij) = η ′vjeh

η′vieh
.

By Lemma 1, there exists a ρh ∈ T4 such that (η′vieh
, η′vjeh

) = ρh(ηvieh , ηvjeh). For S = diag(ρ1, . . . , ρm),
it can be easily verified that H(Φ)′ = H(Φ)S and S∗S = I.

In particular, by Proposition 3, for a fixed edge eh ∈ E(Γ) with endpoints vi and vj, we have four
different possibilities for the corresponding column in the incidence matrix:

(ηvieh , ηvjeh) =



(1,−ϕ(eij));

(−1, ϕ(eij));

(i,−i · ϕ(eij));

(−i, i · ϕ(eij)).

(2)

In other words, every T4-gain graph Φ = (Γ, ϕ) admits 4m different incidence matrices related
to it.

Proposition 4. Let H(Φ) = (ηve) be an incidence matrix related to the T4-gain graph Φ = (Γ, ϕ). Then

H(Φ)H(Φ)∗ = D(Γ)− A(Γ) = L(Φ). (3)

Proof of Proposition 4. Let H(Φ)H(Φ)∗ = (cij). By definition,

cii = ∑
eh∈E(Γ)

|ηvieh |
2 = dΓ(vi). (4)
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In fact, |ηvieh | = 1 whenever ηvieh 6= 0, and there are precisely dΓ(vi) summands of this type in (4).
If i 6= j, then

cij = ∑
eh∈E(Γ)

ηvieh ηvjeh
= −ϕ(eij),

where ϕ(eij) is 0 whenever vi and vj are not adjacent. This completes the proof.

To have a lighter notation, in what follows, we denote by H a specific incidence matrix related to
the T4-gain graph Φ = (Γ, ϕ). We next explain how H determines a T4-gain structure on the line graph
L(Γ). It is well-known that V(L(Γ)) = E(Γ) and e f ∈ E(L(Γ)), whenever e and f share an endpoint.
We denote by LH(Φ) the T4-gain graph (L(Γ), ϕL

H), where

ϕL
H : e f ∈ ~E(L(Γ)) 7−→ ηweηw f ∈ T4, (5)

where w is the endpoint shared by the edges e and f . It is easy to verify that ϕL
H is a gain function.

In fact,
ϕL

H( f e) = ϕL
H(e f ).

The proof of our Theorem 1 reads the same line as the one of [4] (Theorem 5.1).

Theorem 1. Let H be one of the incidence matrices related to the T4-gain graph Φ = (Γ, ϕ). Then,

H(Φ)∗H(Φ) = 2Im + A(LH(Φ)). (6)

Proof of Theorem 1. First, note that H(Φ)∗H(Φ) is an m×m matrix. Consider next the dot product
of row rh of H(Φ)∗ with column ck of H(Φ). We differ two cases:

• h = k (same edge). Let u and w be the endpoints of eh. Then, ηueh and ηweh are the only non-zero
entries in column ch. Therefore,

rh · ch = c∗h · ch = η̄ueh ηueh + η̄weh ηweh

= |ηueh |
2 + |ηweh |

2

= 2.

• h 6= k. By definition,
rh · ck = c∗h · ck = ∑

vi∈V(Γ)
η̄vieh ηviek .

In the last sum there is at most one non-zero summand, which actually exists if and only if eh and
ek are adjacent in the line graph, i.e., when eh and ek share a common endpoint, say w. Hence,
supposing ehek ∈ ~E(L(Γ)),

rh · ck = η̄weh ηwek .

Now, the statement follows from Equation (5).

Let G be an abelian group. In [4], N. Reff already introduced a line graph associated to the gain
graph (Γ,G, ϕ). Its gains not only depend on the chosen incidence matrix, but also on the pick of a
weak involution in G, i.e., on an element s ∈ G such that s2 = 1G. Our definition of LH(Φ) is consistent
with N. Reff’s for s = 1G and G = T4. In the case when ϕ(~E(Γ)) ⊆ {−1, 1}, i.e., when the T4-gain
graph Φ is actually a signed graph, with a gain function ϕL

H defined as in Equation (5), we retrieve the
same signature on L(Φ) as assigned in [10] (Section 2) and [11] (Section 2). It is also possible to define
the adjacency matrix of a line graph as A(L(Φ)) = 2Im − H∗H. In that case the signature of the line
graph is consistent to the one defined by T. Zaslavsky.
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Proposition 5. Let H and H′ be two incidence matrices both associated to the same T4-gain graph Φ = (Γ, ϕ).
Then, LH(Φ) and LH′(Φ) share the same adjacency spectrum. Moreover, every gain graph which is switching
equivalent to LH(Φ) is a line graph associated to Φ.

Proof of Proposition 5. By Proposition 3, there exists a diagonal matrix S with entries in T4 ∪ {0}
such that H′ = HS and S∗S = I. Next by Equation (6):

A(LH′(Φ)) = (H′)∗H′ − 2Im

= S∗H∗HS− 2S∗ ImS

= S∗(H∗H − 2Im)S

= S∗A(LH(Φ))S.

This proves the first assertion.
Let now Ψ be a T4-gain graph, which is switching equivalent to LH(Φ). Then, there exists a map

ζLH : V(LH(Φ)) = E(Γ)→ T4 such that LH(Φ)ζLH = Ψ. For D(ζLH) = diag(ζLH(e1), . . . , ζLH(em)),
it easily follows Ψ = A(LH′(Φ)), where H′ = HD(ζLH).

By Proposition 5 line graphs associated to T4-gain graphs fully represent a class of switching
equivalent gain graphs, similarly as the corresponding construction in the smaller context of signed
graphs (see [10]).

Preservation of switching equivalence classes is often recognized as a minimum requirement to
judge positively new constructions involving signed or gain graphs. Next, proposition shows that the
introduced notion of line graph associated to a T4-gain graph is appropriate in this sense.

Proposition 6. Line graphs of switching equivalent T4-gain graphs Φ1 = (Γ, ϕ1) and Φ2 = (Γ, ϕ2) are
switching equivalent.

Proof of Proposition 6. Let H2 = (η
(2)
ve ) be a fixed incident matrix for Φ2. Since Φ1 ∼ Φ2, there exists

a map ζ : V(Γ)→ T4 such that ϕ2 = ϕ
ζ
1.

Suppose that vi and vj are the endpoint of the edge e ∈ E(Γ). By definition, we obtain

η
(2)
vie η̄

(2)
vje = −ϕ2(eij) = −ζ(vi)ϕ1(eij)ζ(vj),

and consequently (
ζ(vi)η

(2)
vie

)(
ζ(vj)η

(2)
vje

)
= −ϕ1(eij).

It turns out that, for the switching matrix D(ζ) = diag(ζ(v1), . . . , ζ(vn)), the matrix H1 = D(ζ)H2

is an incidence matrix of Φ1, and ϕL
H1(Φ1)

= ϕL
H2(Φ2)

. In fact, if w is the endpoint shared by two edges e
and f of Γ,

ϕL
H1(Φ1)

(e f ) = η̄
(1)
we η

(1)
w f = η̄

(2)
we ζ̄(w)ζ(w)η

(2)
w f = η̄

(2)
we η

(2)
w f = ϕL

H2(Φ2)
(e f ).

Hence, LH1(Φ1) = LH2(Φ2). Now, the proof follows by Proposition 5.

The line graph of a balanced T4-gain graph (Γ, ϕ) does not have necessarily to be balanced, i.e.,
it may happen that L(Φ) is balanced while Φ is not, as shown in the following example.
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Example 1. Let Φ = (C3, ϕ) be the T4-gain graph depicted on the left in Figure 1. Since
ϕ(e12) = 1, ϕ(e23) = i and ϕ(e31) = i, then ϕ(e12)ϕ(e23)ϕ(e31) 6= 1, thus the gain graph Φ is unbalanced.
For the incident matrix of Φ

H =

−1 0 1
1 −i 0
0 1 −i


a direct calculation shows that

A(LH(Φ)) = H∗H− 2I3 =

 0 −i −1
i 0 −i
−1 i 0

 . (7)

In addition,
ϕL

H(e1e2) ϕL
H(e2e3) ϕL

H(e3e1) = (−i) · (−i) · (−1) = 1

which shows that the graph LH(Φ) is balanced.

2

1

3

e1 e3

e2

e1

e2

e3
Φ

LH(Φ)

Figure 1. The unbalanced graph Φ = (C3, ϕ) and its balanced line graph LH(Φ).

The following theorem gives a characterization of T4-gain graphs whose associated line graphs
are balanced.

Theorem 2. Let Φ = (Γ, ϕ) be a T4-gain graph. Its associated line graphs are balanced if and only if each
even directed cycle in Γ is neutral, and the gain of every odd directed cycle in Γ is −1, i.e., if and only if Φ is
switching equivalent to (Γ,−1).

Proof of Theorem 2. By Proposition 1 all directed cycles of a balanced gain graph are neutral. Let H
be any incidence matrix of Φ. Observe that LH(Φ) has three types of cycles:

(i) cycles arising from cycles of Γ;
(ii) cycles arising from induced stars in Φ (forming cliques); and

(iii) cycles obtained by combining the cycles of Types (i) and (ii).

A directed cycle originating from a directed cycle ~Ck of Γ has gain (−1)k ϕ(~Ck). Since every
induced star (K1,r, ϕ|K1,r ) is switching equivalent to (K1,r,−1), then the induced cliques on LH(Φ)

are all balanced. Finally, for the cycles of Type (iii), the theory of biased graphs (see [1]) tells that
combining positive cycles leads to positive cycles. Hence, the cycles of Type (iii) are positive if and
only if so are the cycles of Type (i). The statement now follows easily by Propositions 2 and 6.

Corollary 1. If a T4-gain graph Φ = (Γ, ϕ) and its associated line graphs are all balanced then Γ is bipartite.

Proof of Corollary 1. By Theorem 2, if Φ and LH(Φ) are both balanced, then Γ does not contain any
odd cycle. Hence, the graph Γ is bipartite.
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4. Subdivision Graphs Associated to T4-Gain Graphs

For any graph Γ, the subdivision graph S(Γ) is obtained from Γ by replacing each of its edges by
a path of length 2, or, equivalently, by inserting an additional vertex into each edge e of Γ. Adopting an
abuse of notation (which has become classical in this context), we denote by e the additional vertex
inserted on the homonymous edge. For the set V(S(Γ)), we choose the ordering {v1, . . . , vn, e1, . . . , em}.

Any incident matrix on Φ induces a gain structure on S(Γ), ϕS
H : ~E(S(Γ)) → T4 defined in the

following way:
ϕS

H(ve) = ϕS
H(ev) = ηve

for any v ∈ V(Γ) and for any e ∈ E(Γ).
According to the chosen vertex ordering the adjacency matrix of the gain graph SH(Φ) =

(S(Γ), ϕS
H) is

A(SH(Φ)) =

(
On H
H∗ Om

)
. (8)

By Proposition 3, or equivalently by Equation (2), for every edge eh ∈ E(Γ), we have four different
choices for gains of the corresponding pair of ‘new’ edges in the gain subdivision graph. Figures 2–4
analyze several possibilities.

vi

vj

eij

vi

vj

vi

vj

vi

vj

vi

vj

Figure 2. Four possibilities for gains on the pair of edges in the subdivision graph corresponding to
eij ∈ ~E(Φ) when ϕ(eij) = 1.

vi

vj

eij

vi

vj

vi

vj

vi

vj

vi

vj

Figure 3. Four possibilities for gains on the pair of edges in the subdivision graph corresponding to
eij ∈ ~E(Φ) when ϕ(eij) = −1.

vi

vj

eij

vi

vj

vi

vj

vi

vj

vi

vj

Figure 4. Four possibilities for gains on the pair of edges in the subdivision graph corresponding to
eij ∈ ~E(Φ) when ϕ(eij) = i.
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It is reasonable to ask what the relation between two different subdivision graphs of the same
T4-gain graph Φ is. The following proposition provides an answer to this question.

Proposition 7. Let Φ = (Γ, ϕ) be a T4-gain graph, and let H and H′ be two of its incidence matrices. Then,
SH(Φ) and SH′(Φ) are switching equivalent; A(SH(Φ)) and A(SH′(Φ)) are similar and share the same
adjacency spectrum.

Proof of Proposition 7. Proposition 3 guarantees that H′ = HS for a suitably chosen diagonal matrix
S = diag(s1, . . . , sm) with diagonal entries in T4. Taking into account Equation (8), it is not hard to
verify that

A(SH′(Φ)) = (In ⊕ S)∗A(SH(Φ))(In ⊕ S),

where the symbol ⊕ denote the block diagonal sum of two matrices.

The switching function ζH′
H such that SH′(Φ) = SH(Φ)ζH′

H is defined as follows:

ζH′
H (vh) = 1, h = 1, . . . , n , and ζH′

H (ek) = sk, k = 1, . . . , m.

Proposition 7 implies that a subdivision graph of a T4-gain graph Φ is balanced if and only if any
other subdivision graph of Φ is balanced.

Proposition 8. Subdivision graphs of two switching equivalent T4-gain graphs Φ1 = (Γ, ϕ1) and Φ2 =

(Γ, ϕ2) are switching equivalent.

Proof of Proposition 8. We argue as in the proof of Proposition 6. Let ζ : V(Γ)→ T4 be the map such
that ϕ2 = ϕ

ζ
1. If H2 = (η

(2)
ve ) is a fixed incident matrix of Φ2, then H1 := D(ζ)H2 is an incidence matrix

of Φ1, where D(ζ) is the state matrix.

Consider the map Z : V(SH1(Φ1))→ T4 defined as follows:

Z(vh) = ζ(vh), h = 1, . . . , n and Z(ek) = 1, k = 1, . . . , m.

It turns out that SH2(Φ2)
(Φ2) = SH1(Φ1)

(Φ1)
Z. In fact,

ϕS
H2(Φ2)

(ve) = η
(2)
ve = Z(v)−1η

(1)
ve = Z(v)−1η

(1)
ve · Z(e) = Z(v)−1 ϕS

H1(Φ1)
(ve)Z(e).

We now investigate which conditions on Φ ensure the balancedness of its subdivision graphs.
Figure 5 gives an example of an unbalanced T4-gain graph having balanced subdivision graphs.

2

1

3

e1 e3

e2

2

1

3

e1

e2

e3

Φ

SH(Φ)

Figure 5. The graph Φ = (C3, ϕ) and one of its subdivision graphs for an incidence matrix H of Φ.

Lemma 2. Let Φ = (Γ, ϕ) be a T4-gain graph, and let ~C = ei1i2 ei2i3 · · · eik i1 be a directed cycle in Γ. Then,
for any incident matrix H of Φ, we have

ϕS
H(S(~C)) = (−1)k ϕ(~C). (9)
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Proof of Lemma 2. The directed cycle S(~C) is obtained by considering consecutively the following
elements in ~E(S(Γ)):

vi1 ei1i2 , ei1i2 vi2 , . . . , vik eik i1 , eik i1 vi1 .

Hence,

ϕS
H(S(~C)) = ϕS

H(vi1 ei1i2) · ϕ
S
H(ei1i2 vi2) · · · · · ϕ

S
H(vik eik i1)ϕS

H(eik i1 vi1)

= ϕS
H(vi1 ei1i2) · ϕS

H(vi2 ei1i2) · · · · · ϕ
S
H(vik eik i1)ϕS

H(vi1 eik i1)

= ηvi1
ei1 i2

η̄vi2 ei1 i2
· · · ηvik

eik i1
η̄vi1

eik i1

= (−ϕ(ei1i2)) . . . (−ϕ(eik i1))

= (−1)k ϕ(~C).

Theorem 3. Let Φ = (Γ, ϕ) a T4-gain graph. Its subdivision graphs are balanced if and only if each even
directed cycle of Γ is neutral, and the gain of every odd directed cycle in Γ is −1, i.e., if and only if Φ is switching
equivalent to (Γ,−1).

Proof of Theorem 3. Let Φ1 and Φ2 be T4-gain graphs with the same underlying graph Γ.
By Proposition 2, Φ1 and Φ2 are switching equivalent if and only if, for every directed cycle ~C
in Γ, ϕ1(~C) = ϕ2(~C). Lemma 2 provides a necessary and sufficient condition to obtain all neutral
directed cycle in the subdivision graphs coming from Φ: every even directed cycle of Γ should be
neutral, and the gain of every odd directed cycle in Γ should be −1. Clearly (Γ,−1) satisfies this
condition. Since Proposition 8 holds, the proof is completed.

Corollary 2. If Γ contains a directed cycle having an imaginary gain, then the T4-gain graph Φ = (Γ, ϕ) and
its subdivision graphs are all unbalanced.

By Theorems 2 and 3, we may conclude that the structural conditions on Φ to have balanced
associated line graphs, or balanced associated subdivision graphs are the same.

Our final result concerns the mutual interrelationships between the Laplacian polynomial of a
T4-gain graph Φ and the adjacency characteristic polynomial of its line graphs and its subdivision
graphs. Propositions 5 and 7 allow us to drop the incident matrix out of notations in the statements.

For a T4-gain graph Φ, let ϕ(Φ; x) and ψ(Φ; x) be the adjacency characteristic polynomial and the
Laplacian characteristic polynomial of Φ, respectively.

Theorem 4. Let Γ be a graph of order n and size m, and Φ a T4-gain graph having Γ as underlying graph.
Then,

1. ϕ(L(Φ), x) = (x + 2)m−nψ(Φ, x + 2);

2. ϕ(S(Φ), x) = xm−nψ(Φ, x2).

Proof of Theorem 4. To prove (1), we use Equations (3) and (6), and the fact that H∗H and HH∗ share
the same non-zero eigenvalues.
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The argument to prove (2) is essentially the same as the one used in the proof of [10] (Theorem 2.2).
We use the Schur’s formula for computing the determinant of a 2× 2 block matrix, namely:∣∣∣∣∣A B

C D

∣∣∣∣∣ = |D||A− BD−1C|.

Now,

ϕ(S(Φ), x) =

∣∣∣∣∣ xIn −H
−H∗ xIm

∣∣∣∣∣ = xm|(xIn)−H(xIm)
−1H∗|

= xm|x−1
(

x2 In −HH∗
)
| = xm−n|x2 In − L(Φ)|

= xm−nψ(Φ, x2).

Example 2. Let Φ be the T4 gain graph depicted on the left of Figures 1 and 5. It is immediately seen that

L(Φ) =

 2 −1 i
−1 2 −i
−i i 2

 .

A direct computation shows that Spec(L(Φ)) = {1(2), 4}. We use the incidence matrix H from Example 1
and (8) to calculate

Spec(A(L(Φ))) = {(−1)(2), 2} and Spec(A(S(Φ))) = {−2, (−1)(2), 1(2), 2},

which turns out to be precisely as what expected by Theorem 4.
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