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Abstract: In a real Hilbert space, we denote CFPP and VIP as common fixed point problem
of finitely many strict pseudocontractions and a variational inequality problem for Lipschitzian,
pseudomonotone operator, respectively. This paper is devoted to explore how to find a common
solution of the CFPP and VIP. To this end, we propose Mann viscosity algorithms with line-search
process by virtue of subgradient extragradient techniques. The designed algorithms fully assimilate
Mann approximation approach, viscosity iteration algorithm and inertial subgradient extragradient
technique with line-search process. Under suitable assumptions, it is proven that the sequences
generated by the designed algorithms converge strongly to a common solution of the CFPP and VIP,
which is the unique solution to a hierarchical variational inequality (HVI).

Keywords: method with line-search process; pseudomonotone variational inequality; strictly
pseudocontractive mappings; common fixed point; sequentially weak continuity
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1. Introduction and Preliminaries

Throughout this article, we suppose that the real vector space H is a Hilbert one and the nonempty
subset C of H is a convex and closed one. An operator S : C — H is called:

(i) L-Lipschitzian if there exists L > 0 such that |Su — Sv|| < L|ju — v|| Vu,v € C;

(ii) sequentially weakly continuous if for any {w, } C C, the following implication holds: w, —
w = Sw,; — Sw,

(iii) pseudomonotone if (Su,u —v) <0 = (Sv,u —v) <0Vu,v € C;

(iv) monotone if (Su — Sv,v —u) < 0Vu,v € C;

(v) y-strongly monotone if 3y > 0s.t. (Su — Sw,u — w) > y|u — w|* Vu,w € C.

It is not difficult to observe that monotonicity ensures the pseudomonotonicity. A self-mapping
S : C — Cis called a 7-strict pseudocontraction if the relation holds: (Su — Sv,u —v) < |lu — v||> —
1_T'7||(I —S)u — (I —S)v||> Yu,v € C for some 5 € [0,1). By [1] we know that, in the case where
S is y-strictly pseudocontractive, S is Lipschitzian, i.e., ||[Su — Sv|| < }_LZHu —v|| Vu,v € C. Itis
clear that the class of strict pseudocontractions includes the class of nonexpansive operators, i.e.,
||Su— Sv|| < ||u—v| VYu,v € C. Both classes of nonlinear operators received much attention and many
numerical algorithms were designed for calculating their fixed points in Hilbert or Banach spaces; see
e.g., [2-11].
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Let A be a self-mapping on H. The classical variational inequality problem (VIP) is to find z € C
such that (Az,y —z) > 0 Vy € C. The solution set of such a VIP is indicated by VI(C, A). To the best
of our knowledge, one of the most effective methods for solving the VIP is the gradient-projection
method. Recently, many authors numerically investigated the VIP in finite dimensional spaces, Hilbert
spaces or Banach spaces; see e.g., [12-20].

In 2014, Kraikaew and Saejung [21] suggested a Halpern-type gradient-like algorithm to deal
with the VIP

O = Pc(uk — éAuk),

Cr={veH: (u—LAu, — v, vp —v) >0},
wy = Pc, (un — LAvy),

Ugp1 = okto + (1 — op)wp  Vk >0,

where £ € (0,1), {ox} C (0,1), limy 000k =0, T2 0x = +0o, and established strong convergence
theorems for approximation solutions in Hilbert spaces. Later, Thong and Hieu [22] designed an
inertial algorithm, i.e., for arbitrarily given ug, u; € H, the sequence {4} is constructed by

zy = ug + ok (ux — Ug—1),

O = PC(Zk — gAZk),

Co={veH: (zx— LAz — v}, v — V) >0},
U1 = PCk<Zi’l — fAZ)k) Vk 2 1,

with ¢ € (0, ). Under mild assumptions, they proved that {1} converge weakly to a point of VI(C, A).
Very recently, Thong and Hieu [23] suggested two inertial algorithms with linear-search process, to
solve the VIP for Lipschitzian, monotone operator A and the FPP for a quasi-nonexpansive operator
S satisfying a demiclosedness property in H. Under appropriate assumptions, they proved that the
sequences constructed by the suggested algorithms converge weakly to a point of Fix(S) N VI(C, A).
Further research on common solutions problems, we refer the readers to [24-38].

In this paper, we first introduce Mann viscosity algorithms via subgradient extragradient
techniques, and then establish some strong convergence theorems in Hilbert spaces. It is remarkable
that our algorithms involve line-search process.

The following lemmas are useful for the convergence analysis of our algorithms in the sequel.

Lemma 1. [39] Let the operator A be pseudomonotone and continuous on C. Given a point w € C. Then the
relation holds: (Aw,w —y) <0Vy e C & (Ay,w—y) <0VyeC.

Lemma 2. [40] Suppose that {sy } is a sequence in [0, 4+00) such that s; 1 < tyby + (1 — t)sx Yk > 1, where
{tc} and {b} lie in real line R := (—o00,0), such that:

(a) {tx} C [0,1] and Y12 1 ty = oo;

(b) limsup,_, ., by < 0o0r Y37 1 |tkby| < co. Then s — 0ask — oo.

From Ceng et al. [2] it is not difficult to find that the following lemmas hold.
Lemma 3. Let I be an y-strictly pseudocontractive self-mapping on C. Then I — I is demiclosed at zero.

Lemmad4. Forl =1,..., N, let I'; be an n;-strictly pseudocontractive self-mapping on C. Then forl =1,...,N,
the mapping T; is an y-strict pseudocontraction with 1 = max{n; : 1 <1 < N}, such that

1
ITju = Tyo|| < %Hu —o| VuveC.

Lemma 5. Let T be an y-strictly pseudocontractive self-mapping on C. Given two reals vy, B € [0,+00).
If (y +B)n <, then ||y (u —v) + p(Tu = To) || < (v + p)||u —vf| Vi, € C.
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2. Main Results

Our first algorithm is specified below.

Algorithm 1

Initial Step: Given xg, x; € H arbitrarily. Lety >0, I € (0,1), u € (0,1).

Iteration Steps: Compute x,,,1 below:

Step 1. Put v, = x, — 0 (x,—1 — x,) and calculate u, = Pc(v, — ¢, Av,), where ¢, is picked to be the
largest ¢ € {7,791, 9I?,..} s.t.

| Avy — Auyl| < pllog — unl|- (1)

Step 2. Calculate z, = (1 —an)Pc, (vn — €nAuy) + anf(xy) with C, := {v € H : (v, — £, Av, —
Uy, Uy —v) > 0}.
Step 3. Calculate

X1 = Tnlc, (Un - EnAun) +8uThzy + Buxn. (2>

Update n := n + 1 and return to Step 1.

In this section, we always suppose that the following hypotheses hold:

Ty is a {g-strictly pseudocontractive self-mapping on H fork = 1,..., N s.t. € [0,1) with { = max{{j :
1<k<N}

A is L-Lipschitzian, pseudomonotone self-mapping on H, and sequentially weakly continuous on C,
such that Q := NY_ Fix(T) N VI(C, A) # @.

f+ H — Cis a 6-contraction with 6 € [0, }).

{on} C [0,1] and {an}, {Bn}, {¥n} {0n} C (0,1) are such that:

(i) Bn + vn + 6n = Land sup,»; 3 < oo;

(i) (1 —=26)0n > vn = (yn +6n)l ¥n > 1 and liminf, e ((1 — 20)8, — yu) > 0;

(iii) limy 5o 0y = 0and Y7 4 &y = o0;

(iv) liminf, ;e By > 0, liminf,; . 6, > 0 and limsup,,_,  Bn < 1.

Following Xu and Kim [40], we denote T}, := T;;modn, V7 > 1, where the mod function takes values in
{1,2,..,N},ie, whenever n = jN + g for some j > 0 and 0 < g < N, we obtain that T;, = Ty in the
caseof g =0and T, = T, in the case of 0 < g < N.

Lemma 6. The Armijo-like search rule (1) is well defined, and min{-y, %l} </t <7.

Proof. Obviously, (1) holds for all 4" < % So, ¢, is well defined and ¢,, < <. In the case of
¢y = 1, the inequality is true. In the case of ¢, < 7, (1) ensures ||Av, — APc(vy — ET”AUH)H >
£ llon — Pe(vn — ET”Avn) |l. The L-Lipschitzian property of A yields ¢, > ”Tl O

i

Lemma 7. Let {v,}, {un} and {z,} be the sequences constructed by Algorithm 1. Then

lzn —wl* < (1= an)|lon — w[* + and|lxn — wl> = (1 = &) (1 = @) [[lon — unl? (3)
+ |y — un ] + 200 {fw — w, zy — w) Yw € Q,

where hy, := Pc, (vy — €y Auy) Vi > 1.

Proof. First, taking an arbitrary p € (2 C C C C;, we observe that

2|k — PH2 < 2(hy — p,vn — bn Aty — p)
= |l = plI* + llow — plI* = 1hn — o> — 2{€n Att, b — p).

So, it follows that ||v, — p||?> — 2(hy — p, €nAuy) — ||y — v4||? > |1y — p||?, which together with (1),
we deduce that 0 > (p — u,, Au,) and

17y = plI* < llow = plI* = 1hn — 0ul|? + 260 ((Aun, p — ) + (A, g — hy))
< lon — PHZ — |lun — hnHz — |lon — ”n||2 +2(un — vy + Ly Atln, Uy — hy).

(4)
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Since hy, = Pc, (v — €nAuy) with C, == {v € H : (uy — vy + €y Avy, uuy — v) < 0}, we have (u, — v, +
0y Avy, uy — hy) < 0, which together with (1), implies that

2{uy — vy + by Asig, uy — hy) = 2(uy — vy + €y Avy, iy — hy) + 20, (Avy — Aty by — uy)
< 2pllun — oull|ln — b || < p(llon — ”nHZ + [[hn — ”n”Z)-

Therefore, substituting the last inequality for (4), we infer that
= pII* < llow = plI* = (1 = p)llon —un® = (1= )l — un® Vp € Q. (5)
In addition, we have

zn—p=(1—an)(hn —p) +an(f — Dp +an(f(xn) — f(p))-

Using the convexity of the function /(t) = t? Vt € R, from (5) we get

lzn = Pl < [andllxn = pll + (1= an) [7n = pll]> + 200 ((f = D)p, 20 — p)
< aydl|xn — PHZ (1 —an)l[hn _PHZ +2an((f = D)p,za — p)
< apdlxn — plI> + (1= an)lon = plI* = (1 — an) (1= p) [[[on — 0 ]?
+ 1 = wn|?] + 200 ((f = D)p, 20 = p)-

_l’_
_l’_

O

Lemma 8. Let {x,},{u,}, and {z,} be bounded sequences constructed by Algorithm 1. If x, — X411 —
0, vy —uy =0, vy —zy = 0and I{v,, } C {v,} s.t. vy, =z € H, thenz € Q.

Proof. According to Algorithm 1, we get 0,,(x, — x,,_1) = vy — X, V1 > 1, and hence ||x,, — x,_1]| >
||lvy — xx|. Using the assumption x,, — x,,41 — 0, we have

lim o, — x| = 0. (6)
So,

1zn — xall < [[on = zall + [[on — xal| — 0.
Since {x,} is bounded, from v, = x, — 0,,(x,_1 — x,) we know that {v,} is a bounded vector

sequence. According to (5), we obtain that h, := Pc, (v, — ¢, Au,) is a bounded vector sequence.
Also, by Algorithm 1 we get a,, f(xy,) + hy — X — ayhy = 2y — x4. So, the boundedness of {x, }, {h,}
guarantees that as n — oo,

hn = xull = llzn — xn — @nf(xn) + anhnll < |lzn — x|l + an ([ f(xn)[| + ||2a]]) — O.

It follows that
Xn+1 — Zn = ')/n(hn - xn) + (5n(Tnzn - Zn) + (1 - én)(xn - Zn)/

which immediately yields
OnllTuzn — zanll = llXns1 — xXu +xn — 20 — (1 = 8n) (Xn — z0) — Y (hu — xn) ||

= Hxn+1 — Xn +5n(xn - Zn) - 'Yn(hn - xn)H
< [xns1 = xull + [xn — znl| + [|hn — xn].
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Since x;, — x;41 — 0, 2y — x4 — 0, by — x;, — 0 and liminf, . 6, > 0, we obtain ||z, — T,z || — O as
n — oco. This further implies that

lxn — Tuxnll < llxn — zull + [|zn — Tuzall +1 17 ||Zn — Xn| 7)
< lE—gﬂxn — zn|| + ||zn — Tnzal| % 0 (n— o0).
We have (v, — ¢, Av, — uy,v —uy) < 0Vo € C,and
(Un — Up, 0 — Up) + Ly (Avy, tty — vy) < Ly(Avy, v —vy) Yo € C. (8)

Note that ¢, > min{7, %l} So, liminf; o (Avy,, v — v,,) > 0 Vo € C. This yields liminf;_, o (Auy,, v

uy;) > 0Vv € C. Since v, — x;, — 0and v,, — z, we get x,,, — z. We may assume k = n;modN for all
i. By the assumption x, — x,,x — 0, we have x,, ,; — z forall j > 1. Hence, |[x,4j — Tiy jXn,+jl| =
%44+ — Tyt jXn;+ll = 0. Then the demiclosedness principle implies that z € Fix(Tj, ;) for all j. This

ensures that
N

z € () Fix(Ty). )
k=1

We now take a sequence {g;} C (0,1) satisfying ¢; | 0 asi — co. For all i > 1, we denote by m;
the smallest natural number satisfying

(Aup, v —up) +6; =20 Vj=m. (10)

Since {¢;} is decreasing, it is clear that {m;} is increasing. Noticing that {u,, } C C ensures Auy,, #
0Vi>1,wesetey, = T,

Um;) > 0Vi > 1. Also, the pseudomonoton1c1ty of A implies (A(v + Giem,), v + Giem, — Um;) > 0Vi > 1.
This immediately leads to

i Hz’ we get (Auy,, ep,) = 1Vi > 1. So, from (10) we get (Au;, v + Giem, —

(Av — A(v+Gihm,), v+ Giem, — Um;) — Gi(Av, hy,) < (Av, 0 —uy,) Vi>1 (11)

We claim lim;_, G;e; = 0. Indeed, from v,, — z and v, — u, — 0, we obtain u,, — z. So,
{un} C Censuresz € C. Also, the sequentially weak continuity of A guarantees that Au,, — Az. Thus,
we have Az # 0 (otherwise, z is a solution). Moreover, the sequentially weak lower semicontinuity

of || - || ensures 0 < ||Az|| < liminf;_,q || Atty, || Since {uy, } C {uy,} and g; | 0asi — oo, we deduce
. . ; li
that 0 < limsup;_, , ||Giem, || = limsup,_, HAum < hmﬂzi}?’;ﬂj’ls; 7 = 0. Hence we get g;en; — 0.

Finally we claim z € Q). In fact, letting i — oo, we conclude that the right hand side of (11) tends to
zero by the Lipschitzian property of A, the boundedness of {1, }, {hn, } and the limit lim;_,, g;e;; = 0.
Thus, we get (Av,v — z) = liminf; ,(Av,v — uy,) > 0Vov € C. So, z € VI(C, A). Therefore, from (9)
we have z € NI Fix(T,) NVI(C,A) = Q. O

Theorem 1. Assume A(C) is bounded. Let {x,} be constructed by Algorithm 1. Then

Xn — Xp41 — 0,

m—xte &
n { sup,~1 [|xn — fxn|l < oo

where x* € () is the unique solution to the hierarchical variational inequality (HVI): ((I — f)x*,x* —w) <
0, Yw € Q.
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Proof. Taking into account condition (iv) on {v,}, we may suppose that {,} C [a,b] C (0,1).
Applying Banach’s Contraction Principle, we obtain existence and uniqueness of a fixed point x* € H
for the mapping Pq o f, which means that x* = P f(x*). Hence, the HVI

(I-fx",x"—w) <0, YweO (12)

has a unique solution x* € ) := NI Fix(Ty) N VI(C, A)
It is now obvious that the necessity of the theorem is true. In fact, if x, — x* € (), then we get
sup,>1 [|xn — f(xn) || < sup,oq ([[xn — x| + [[x* = fF(x) | + || f(x*) = f(xn)[]) < ooand

1200 = Xnpa || < floen = %7 + [xnp1 = 27| =0 (n — c0).

For the sufficient condition, let us suppose x, — x,41 — 0 and sup, - [|(I — f)xx|| < co. The
sufficiency of our conclusion is proved in the following steps. [

Step 1. We show the boundedness of {x,}. In fact, let p be an arbitrary point in ). Then
T,p=pVn>1,and

[0 = plI* = (1= )|l — uall> = (1 = ) l|on — unll® > [|hn — p|1%, (13)
which hence leads to
lon = pll = |hn —pl Vn =1 (14)
By the definition of v,,, we have
0
lon = pll < llxn =Pl + onllxn = xnall < llxn — pll 4+ an - ;"Hxn = xp—1]]- (15)
n

Noticing sup,, ., %Z < o0 and sup,» [[xn — x,-1]| < o, we obtain that sup, -, %Hxn — Xy 1| < oo.
This ensures that 3M; > 0 s.t.
Zillxn —xpal <My Vi >1 (16)
n

Combining (14)—(16), we get
[hn = pll < llow — pll < [lxn — pll + @uMy V> 1. (17)

Note that A(C) is bounded, u, = Pc(vy, — ¢, Avy), f(H) C C C Cyand hy, = Pc, (v — £y Auy). Hence
we know that { Auy, } is bounded. So, from sup, .1 [|(I — f)xx| < co, it follows that

Ihn — fxn)ll < llon — bnAun — f(xn) ||
< lxn — xpall + [[xn — f(xn) || + [ Aunl| < Mo,

where IMy > 0s.t. My > sup, o1 (|[xn — xp—1ll + ||xn — f(xn)[| + 7| Atin]|]) (due to the assumption
Xn — Xp+1 — 0). Consequently,

lzn =Pl < andllxn = pll + (1= an)|lhn = pll + aul[(f = Dpll
< (L= an(1=8))l[xn = pll + an(My + |[(f = Dpl),

which together with (v, + ,) < 7y, yields

[xut1 —pll < Bullxn —pll + (1 - /37!)H1_1ﬁ[7n(zn =)+ 0u(Tuzn — P + Ynllhn — zul
< Bullxn = pll + (1= Bu) (1 = an(1 = 8))llxn — pll +ata(Mo + M + [|(f = Dpl)]
= [1 = aa(1 = Ba) (1 = 8)] 1200 — pll + &n(1 — o) (1 — &) Mot Mt {TDpl,
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This shows that ||x, — p|| < max{|[|x; — p|, %W} Vn > 1. Thus, {x,} is bounded, and so
are the sequences {h, }, {vn}, {ttn}, {zn}, {Tuzn}.

Step 2. We show that IM, > 0 s.t.
(1= ) (1= Bu) (1 = p)ll[eon = yull® + llttn = yul ) < |20 = I = 201 = Pl + 0 M.

In fact, using Lemma 7 and the convexity of || - ||?, we get

21— plI* < 1Bu(xn — p) + Yn(zn — p) + 0n0(Tuzn — p)|I* + 2vnttn (i — f(xn), Xps1 — p)
< Bullxn = plI> + (1 = Bu)llzn — plI* +2(0 = Bu)anllhn — f(xn) [ 1201 — Pl (18)
< Bullxn — plI> + (1 = Bu){and||xn — pl* + (1 — an)lon — plI?
— (1= an) (X = @) [[|on — unl|® + [|hn — un]|?] + anMp},
where My > 05t My > supysy 201(F — Dpllzn — pll + lhen — £ Con) s — pl). Also,

lon = pII> < llxn — plI* + an(2Mi || X0 — pl| + @ M3)

19
< Jlxn = pl2 + auMs, (19)

where IM3 > 0s.t. M3 > sup, - (2Mq|lx, — pl| + BnM?). Substituting (19) for (18), we have

201 =PI < Bullxn = plI> + (1= Bu) {(1 — an(1 = 8))llxn — p[I* + (1 — an)anMs
— (1= an) (1 = p)[llon = wnl* + [[hn — un||?) + an My} (20)
< = plI> = (1= an) (1= Bu) (1= p) [l — wnll® + |y — 1 [[] + an M,
where My := Mj + Mj3. This immediately implies that
(1= an)(1 = ) (1= w)llon — ull® + [|n — unl’] <l = pI* = 21 — pl* +auMsy. (21)

Step 3. We show that 3M > 0 s.t.

Hxn+1_Pl|§5 s
1_2 m— In _2 n—'I'n n 2 n
< [1 — % ]Hxn - PHZ + I 1,)0(”7: la ' {(1_25;5’1_% ||f(xn) - PH ||ZVZ - xn+1||

1 2§5§5,% 1f Cen) = plllzn = xull + iy (F(P) = p, 30 — p)
+ #ﬁ;n’i% C |l — xp-1[|3M]}
In fact, we get

lon = pl? < llxn = plI* + oullxn — xu_1l|2llxn = pll + oullxn — xu1]))

22
< tn — pI + 0}t — 1o _1]|3M, (22)

where IM > 0s.t. M > sup, - {|lxn — pll, oul[xn — x4—1]|}. By Algorithm 1 and the convexity of || - I,
we have

21— plI? < NBu(xn = p) + Yu(zn = p) + 60 (Tuzn — P)I1* + 2vnttn (hn — f(xn), X1 — p)
< Bullxn —plI* + (1~ .Bn)Hﬁh’n(zn = p) +0u(Tuzn — )|
+ 29ntn(hn — P, Xnp1 — p) + 270 (p — f(Xn), Xns1 — p),

which leads to

lxne1 = pl* < Bullan = plI* + (1= Bu) (1 = an) [l — Pl + 20 (f (xu) — p, 20 — p)]
+ it ([ = pI? + 1xns1 = pI?) + 27nea(p — f(xn), Xns1 — p)-
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Using (17) and (22) we obtain that |1, — p||*> < ||xn — pl|> + oullxn — x,—_1]|3M. Hence,

[xpg1 = plI* < [1—an(1 = Bu)lllxn — plI* + (1 = Bn) (1 — @n)onl|xn — x4-1(3M

+ 2006, (f (Xn) = P, 2 — P) + Yuttn (X0 — pII* + | X0s1 — plI?)
+ (1= Bu)an0ul|xn — xn—1|3M + 29000 (f (Xn) — P, 2n — Xn11)

< 1= an (1= Bu)lllxn — pII* + 29nau |l f (xn) = pllllzn — %41l
+ 2065 (f (xn) — P, Xn — P) + 200 (f (xn) — P, 20 — Xn)
+ yuttn (10 = plIZ + xns1 — pI?) + (1= Bu)oullxn — x4-1(13M

< 1= an(1 = Bu)lllxn — pII* + 29nau |l f (xn) = pllllzn — %41l
+ 200640 || xn — plI* + 20000 (f(P) — s Xn — P) + 200n]| f (xn) — pll[|zn — xa]|
+ vyt (10 = plIZ + [xn41 = pI?) + (1 = Bu)oulxn — x4-1]13M,

which immediately yields

a1 = I

< " (1725)‘571*%1 2 [(1725)‘511*771]“7! 2Yn

= [1_ T—anyn ]Hx” _PH + T—a,7n {(1 26)5,— %,Hf(xn) P||||Zn_xn+1||
+ 2t 1 o) = plllzn = 2l + = @~ pxn—p)

0,
el — xa1[I3M}.

(23)

Step 4. We show that x, — x* € ), where x* is the unique solution of (12). Indeed, putting
p = x*, we infer from (23) that

i1 — x* 2
1-26)0,— 1-26)0,,— 2
< (1= Ol — P e gt o) =z — v

24

On On

+(1_2(?)ﬂ||f(xn)*X*|||\Zn*xn||+m<f(x ) — X%, xn — x¥) (24)
n ‘Sn n

+ (17725);5"7% - 2w — x0-1[3M].

It is sufficient to show that limsup,, . ((f — I)x*, x, — x*) < 0. From (21), x;, — x4,41 — 0, &y — 0
and {B,} C [a,b] C (0,1), we get

lim sup(1 — ) (1= b) (1 — ) [[lon — un|® + [y — un|?]

n—oo

< limsup(([|xn — pll + |Xns1 = plDIlxn — 21 || + 2 Ma] = 0.
n—oo
This ensures that
lim ||v, —uy||=0 and lim ||h, — uy|| = 0. (25)
n—00 n—00

Consequently,
lxn — unll < X0 —onll + [[on — un| =0 (1 — o0).

Sil‘lce Zy = anf(xn) + (]. - D(n)hn With hn = Pcn (Un - énAun), we get

lzn —unll = llanf(xn) — anhy +hy — || (26)
< an([lfCen) [l + [[Bnl]) + |y — unl| =0 (n — o0),

and hence
zn — xall < llzn — tnll + lun — xul| =0 (1 — o0). (27)

Obviously, combining (25) and (26), guarantees that

lon = znll < l[on — unll + llun — znl|l =0 (1 — o0).
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From the boundedness of {x;}, it follows that 3{x,,} C {x,} s.t.

limsup((f — I)x*, x, — x*) = Lim ((f — I)x™, x,, — x™). (28)

n—oo 1—00

Since {x,} is bounded, we may suppose that x,, — X. Hence from (28) we get

limsup((f — I)x*, x, — x*) = Im ((f — I)x*, x,, — x*) = ((f — Dx*, ¥ — x7). (29)
n—ro0 1—00
It is easy to see from v, — x, — 0 and x,, — & that v,, — % Since x, — x,41 — 0, vy, —u,; —
0, v, —zy — 0 and v,, — %, by Lemma 8 we infer that ¥ € (). Therefore, from (12) and (29) we
conclude that
limsup((f — I)x*, x, —x*) = ((f = I)x*, ¥ — x*) <0. (30)

n—o0

Note that lim inf, e 1220971 - 0 1t follows that Y20 (=200 —Tn o9 Tt is clear that

1—apyn 1—apyn
2 26
msup = o) el + o)~ =l
29, +4
+ mg(?‘*) — X%, X — X°) + % - & llxn — 201 [3M} < 0.

Therefore, by Lemma 2 we immediately deduce that x, — x*.

Next, we introduce another Mann viscosity algorithm with line-search process by the subgradient
extragradient technique.

Algorithm 2

Initial Step: Given xo, x; € H arbitrarily. Lety >0, I € (0,1), € (0,1).

Iteration Steps: Compute x,, 11 below:

Step 1. Put v, = x, — 0 (x,—1 — x») and calculate u, = Pc(v, — ¢, Av,), where ¢, is picked to be the
largest ¢ € {7,791, 91?,..} s.t.

U Avy — Auyl| < pllog — unl|. (32)

Step 2. Calculate z, = (1 — a,)Pc, (vn — €y Auy) + anf(x,) with G, := {v € H : (v, — £, Avy —
Uy, Uy —v) > 0}.
Step 3. Calculate

Xn+1 = YnPc, (Vn — CnAuyn) + 84 Tuzn + Buvn. (33)

Update n := n + 1 and return to Step 1.

It is remarkable that Lemmas 6, 7 and 8 remain true for Algorithm 2.
Theorem 2. Assume A(C) is bounded. Let {x,} be constructed by Algorithm 2. Then

Xp — Xpy1 — 0,

X, —xe &
' { supyoy 11— f)]| < o0

where x* € Q) is the unique solution of the HVI: ((I — f)x*,x* —w) <0, Yw € Q.

Proof. For the necessity of our proof, we can observe that, by a similar approach to that in the proof of
Theorem 1, we obtain that there is a unique solution x* € Q) of (12).

We show the sufficiency below. To this aim, we suppose x;, — x,41 — 0and sup,,~ ||(I = f)xu|| <
oo, and prove the sufficiency by the following steps. O -
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Step 1. We show the boundedness of {x,}. In fact, by the similar inference to that in Step 1 for
the proof of Theorem 1, we obtain that (13)—(17) hold. So, using Algorithm 2 and (17) we obtain

lzn =Pl < (1= an(1 = 8))[lxn = pll + an(My + [[(f = Dpl),

which together with (v, + 9,) < 7y, yields

i1 —pll < Bullon —pll + (1 — ,Bn)Hﬁ[')’n(Zn =) +6n(Tuzn — )|l + vallhn — zul|
< Bu([lxn — pll + anMy) + (1 = Bu) [(1 — an (1= 6))lxn — pll
+an(Mo + My + [[(f = Dpll)]
Mo+ﬁM1+H(f—1)PH

=1 = an(1=Bn) (1= 0)][lxn = pll + an(1 = Bn)(1 = 9) =3

Therefore, we get the boundedness of {x, } and hence the one of sequences {h, }, {v.}, {un}, {zn}, {Tnzn}
Step 2. We show that IM, > 0 s.t.

(1= ) (1= Bu) (1 = p)llleon = yll® + llttn = yulP) < |20 =PI = 201 =PI + 0 M.

In fact, by Lemma 7 and the convexity of || - ||, we get

X1 — pII* < NBu(on —p) + Yu(zn — p) + 00(Tuzn — p)||* + 2vutn (hn — f(x0), X1 — p)
< Bullon — pl* + (1 = Bu) llzn — plI* +2(0 — Bu)anllhn — £ (x) ||| X031 — pll (34)
< Bullon — PH2 + (1= Bu){and||xn — PH2 + (1 —an)|lon — P”2
— (1= ) (X = ) [[lon — unll® + |hn — un|?] + 2n Mz},
where IMj > 05t My > supyo 201(F — Dpllzn — Il + 1 — FG) s — pl). Also,

low = pl* < llxn = pII* + an (M ||x — p|| ‘H"nM%)

35
< Jlxn = Pl + auMs, (35)

where IM3 > 0s.t. M3 > sup, - (2Mq[|xn — p| + BnM3). Substituting (35) for (34), we have

xnp1 = pIIP < Bullxn — I+ (1= Bu) {1 = an(1 = 6))xn — pl* + (1 — an)anMs
— (1= an)(1 = p)[llow — un|® + [|hn — ual?] + an M2} + BranMs (36)
= [lxn = plI* = (1 =) (1 = Bu) (1 = ) [lon — wn||* + [ — 14 ]|*] + &n Ma,
where My := M, + M3. This ensures that
(1= an) (1= B) (1 = W) [lon — wnl® + 1hn — a|*] < [0 = PI* = [IXn1 — pII* + €uMa.  (37)

Step 3. We show that 3M > 0 s.t.

Hxn+1 —1}7”;5 [ 1-26)0,
— m— I'n — n_I'n n 2 n
<[ BBty |x, — p|? 4+ Ol B £ () — |2 — X |

tas zgégn — ”f(xn) pllllzn = xall + g2 (f(p) — P, xa — P)
+ ey ak o — xu-113M3.

In fact, we get

low = pI> < llan = pl* + oulln — 2u-1[|2llxa — pll + oullxn — xu-al])
< llxn = pI? + oullxn — x4-11I3M,
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where IM > 0s.t. M > sup, o1 {[|xn — p||, onl[xn — x,—1]|}. Using Algorithm 1 and the convexity of
I+ 117, we get
%61 = pI* < 1Bu(on = p) + Ynlzn — p) + 0n(Tuzu — p) 1> + 2nttn (tn — f(xn), X1 — p)
< Bullon — pll> + (1 - ﬁn)Hﬁ[% (zn — p) + 6u(Tuzn — p)]|I?
+ 29ntn (hn — P, Xni1 = P) + 270 (p — f(Xn), Xns1 — p),
which leads to
Ixn1 = pI? Bullon = plI? + (1= Bu)[(1 — an)llfn = plI* + 20n (f (xu) — p, 20 — p)]

+ Yuten (|[hn — PHZ + X011 —

Using (17) and (38) we deduce that ||k, — p||* < ||vn —
< [1—an(1—Bu)]llxn — plI*> +
+ 20,6, (f (xn) — P, 20 —
+ (1= Bn)anonl|xn — x_1(13M + 2y,
< [1—an(1—Bu)lllxn —
+ 200,65 (f (%) —
+ Yntin ([0 — I + %011 — plI*) +0u]
< [1—an(1— Bu)]llxn

Ixn1 = plI?

pI? < llxn —

Pl + 2vnen | f (xn) —
P, Xn — p) + 2000n (f (xn)

=PI+ 2ynatn | £ (xn) —

PHZ) + 29nan(p — f(xn), X1 — p)-

plI? + oul|xn — x4_1||3M. Hence,

(1 —an(1 = Bu)loullxn — xn-1[3M
p) + Ynn(||xn —

pl?+ llxus1 — plI?)
(f(xn) = przn — Xny1)
Pllllzn — xp4a|
—PrZn — Xn)
Xp-1[|3M

I —

|xn —

+ 20166 2 — sz + 20160 (f(P) — P, Xn — P) + 2000u | f (xn) — plll|zn — x|
+ uten([[xn = plI + 2011 = pI?) + 0nllxn — x01[13M,
which immediately yields
[E —1PH; S .
7 o n— I'n 7 n— I'n n 2 n
< [0 - Rl — pIP T (B £ o) = plll2n = v (39)
i ) pllen =l + i () = o =)
+ (1—25)1(5,1—7,1 cik|len — xpu—1[|3M}

Step 4. In order to show that x, — x* € (), which is the
similar method to that in Step 4 for the proof of Theorem 1.

Finally, we apply our main results to solve the VIP and
the following illustrating example.

unique solution of (12), we can follow a

common fixed point problem (CFPP) in

The starting point xg = x1 is randomly picked in the real line. Put f(u) = % sinu, y=1=p=

1 _1 _1 _ 1
3 On =t = 5iq, Pn =73, Tn = gand oy = ;

We first provide an example of Lipschitzian, pseudomonotone self-mapping A satisfying the
boundedness of A(C) and strictly pseudocontractive self-mapping T; with Q) = Fix(T;) N VI(C, A) #
@. Let C = [—1,2] and H be the real line with the inner product (a,b) = ab and induced norm

|-l =1 Then f is a 6-contractive map with 6 = £ € [0, 1)
Hlsinu —sino| < 1|u —o| forallu,v € H.

Let A: H— Hand Ty : H — H be defined as Au := 1+|

sin u|

and f(H) C Cbecause || f(u) — f(v)]| =

and Thu := 2u— gsmufor

1
T[]’

all u € H. Now, we first show that A is L-Lipschitzian, pseudomonotone operator with L = 2, such

that A(C) is bounded. In fact, for all u,v € H we get

1 1 1 1
HAu B AUH = |1+H”H 1+|o| | + |1-t-| sinul| 1+[ sino]| ‘
| o]l = lull |+| | sinv||— HsmL{H |
e | e simaly o

|| sinu—sinv||

= (1+HHH)(1+HU\|) + (1+Ts
<2||lu—o|.

inu([)(1+| sino])



Mathematics 2019, 7, 925 12 of 14

This implies that A is 2-Lipschitzian. Next, we show that A is pseudomonotone. For any given
u,v € H, it is clear that the relation holds:

1 1 1 1
- —0) < 0= (Av,u—0) = B
T sina] 14~ 9) S0 WMou—0) = g ~ 75 )

(Au,u—v) = ( )(u—0) <0.

Furthermore, it is easy to see that Tj is strictly pseudocontractive with constant {; = %. In fact, we
observe that for all u,v € H,

1 3. . 1
ITvu = To|| < Sllu—olf + gl sinu —sinv|| < fju—of| + Z[[(I = Tr)u — (I - T1)o].

Itis clear that (v, +6,)01 = (1 +3) 1 <l=97,<(1-20)6, =(1-2-})1 =2 foralln > 1. In
addition, it is clear that Fix(T;) = {0} and A0 = 0 because the derivative d(Tyu)/du = 1 — 3 cosu > 0.
Therefore, O = {0} # @. In this case, Algorithm 1 can be rewritten below:

Up = Xn — ﬁ(xnfl — Xn),
un = Pc(vn _EnAvn),
zn = 51 f(Xn) + 524 Pe, (0 — lnAuy),

Xpi1 = %xn + %PCH (0 — nAuy) + %len Yn>1,

with {C, } and {¢,}, selected as in Algorithm 1. Then, by Theorem 1, we know that x, — 0 € Q iff
Xp — Xy1 — 0 (n — o) and sup, - [xn — g sinx,| < co.
On the other hand, Algorithm 2 can be rewritten below:

On = Xn — g (X1 — Xu),

uy = Pc(vy, — £, Avy),

Zy = %_Hf(xn) + 7 Pe, (vn — €nAuy),

Xpi1 = %vn + %Pcn(vn —lyAuy) + %len Vn > 1,

with {C,,} and {/, }, selected as in Algorithm 2. Then, by Theorem 2 , we know that x, — 0 € Q iff
Xp — Xpp1 — 0 (n — o0) and sup,,~q |xn — L sinx,| < co.
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